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Abstract

An option-theoretic model of suicide in the continuous time framework is proposed.
Given completeness of the financial market and the associated contingent claim argument,
the value of human capital consistent with the no-arbitrage principle is determined as the
expected, discounted, present value of the future wage stream under the risk-neutral
probability measure. The suicide option - the right but not the obligation to commit
suicide - is modelled as an American put option with this human capital stock and a
certain reference level of human capital as the underlier and strike price, respectively.
The value of underlier falling short of the srtike price doet not induce the option holder’s
immediate suicide because of the option value to postpone such a fatal and irreversible
decision. This value, the delayed exercise premium, is given in a near closed form up to
a deterministic exercise boundary. The nearly closed-form nature of this boundry allows
one to calibrate the model to the real suicide rates among Japanese male workers from
1998 to 2009. The calibrated value of the strike price roughly amounts to the perpetual
annuity value of the 90 percentage of the initial wage earned as of the new entry into the
labor market, with the coupon rate given by the spread in market prices of risk between
financial and labor market.
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Probably no one who attempts suicide .. is fully aware of all his motives, which

are usually too complex. At least in my case it is prompted by ... a vague sense

of anxiety about my own future.

Ryunosuke Akutagawa, Suicide Note.

1 Introduction

Suicide has drawn public attention in Japan over the last decade. One epoch-making

year is 1998 in which the number of suicide victims exceeded 30 thousands at first since the

record has been made public. The suicide statistics have shown a clear pattern of upheaval

from this year and has remained to be so high for more than a decade until 2012. Just

from a viewpoint of the socio-economic cost calculation, several reports suggest that this is

a substantial welfare loss.

The epigraph is taken from a letter of a Japanese novelist Ryunosuke Akutagawa who

committed suicide in 1927 by taking poison pills. His suicide received public attention with a

great surprise, because he killed himself because of “a vague sense of anxiety” about his own

future. However, several factors indicated in his note are reminiscent of those in the context

of financial option pricing in a stochastic dynamic environment- the value of financial security

in the future is quite uncertain, and the lack of appropriate control for the risk in the future

should be perceived as an actual cost as of today, given the present-value rule: uncertain

future cash-flow should be discounted back to the present value using an appropriate discount

factor to compare the benefit and cost of taking any actions now.

This study is an attempt to modelling a suicide decision from a financial option-theoretic

viewpoint. We will formalize the suicide decision as a problem of optimal exercise of an

American put option written on a version of human capital of a person as the underlying

asset. Every worker is endowed with this option, namely, the right but not the obligation, to

commit suicide. The first target in this study is to articulate what “a vague sense of anxiety

about my own future” exactly means. Based on the literature of the American option pricing,

we can decompose the value of such option into two. The first component is the European

part, namely, the value of option to commit suicide only on the verge of one’s terminal day.

This value is embedded in the American option allowing for the holder to exercise at any

time before the maturity date. Therefore, the value of suicide option should be greater than

or at least equal to the European counterpart. The remaining value in the American part is

called the early-exercise premium. This part comes from the flexibility to commit suicide at

any time before the end of one’s life. If the anxiety in one’s own future is so dominant, the

ultimate way to clear it is to commit suicide. A positive value of the early exercise premium

plays a role of great attraction for a desparate person.

Also based on the literature of American option valuation, we derive an alternative de-

composition of suicide option value into two parts. The first component is the current pain to
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be alive, that is measured by the distance between the current level of human capital in short

of the strike price. The second component is the premium associated with one’s flexibility

to reconsider and postpone such a fatal and irreversible suicide decision. This part is called

the delayed exercise premium, which is introduced by Carr, Jarrow and Myneni (1992). We

interpret this premium as is opposite to the early exercise premium reminiscent of the remark

by Akutagawa- this is the option value to be positive about one’s own future. This premium

partially solves the concern by Dixit and Pindyck (1997) about the earlier economic attempt

to modelling suicide by Hamermesh and Soss (1974) which does not pay a careful attention

to the option value of postponing suicide.

Nearly closed-form expressions of these premia involve one undetermined object: the

immediate exercise boundary dividing the product space of the life time interval and the

value of human capital into two parts: the immediate exercise region and the continuation

region. A person commits suicide once his/her human capital evolved in the continuation

region hits this boundary. We show that this boundary is a continuous and deterministic

function of time. More crucially, the boundary lies below the strike price of suicide option,

interpreted as the reference level above which human capital is free of suicide risk. We also

give a recursive formula to identify the exercise boundary. As long as the values of model

parameters are known, therefore, we can obtain an approximate boundary with the precision

of a desired level.

We calibrate this reference to reality by matching the simulated and actual suicide rates

based on those among Japanese male workers from 1998 to 2009, with the level of wage upon

new entry into the market normalized as one. The resulting threshold is K ≈ 47, i.e., about

47 times as large as the initial wage of a worker in the first working year. This semingly

large magnitude is not surprising once K ≈ .9/ζ where ζ is the implicit dividend yield in the

evolution of wage as specified in (4) later. In other words, the implied threshold amounts

to the perpetual annuity value of the 90% of the initial wage. Surprisingly, the majority of

workers in our simulation exercise have the history of human capital evolution strictly below

this threshold over the entire life. Therefore, virtually everybody is at the risk of suicide,

whereas only a small portion of them actually commit suicide. This discrepancy suggests the

importance of exercise premia in the analysis of suicide option.

The outline of the balance of this study is as follows. Section 2 begins with a briefly review

of the previous literature about the modelling of suicide behavior and the associated empirical

studies. Section 3 deals with the basic setup and motivation of theoretical framework. A few

properties of the value function and the immediate exercise region of the suicide option are

derived. Section 4 is a small numerical study. Section 5 concludes the study with suggestions

for future directions.
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2 Literature Review

The earlier economic approach to modeling suicide is given by Hamermesh and Soss

(1974), who assume that the level of utility from the permanent income hits some lower

bound specified at, e.g., zero. This model is frequently cited as the earliest work to reveal

two representative suicidal risk factors, the income level, and age. However, it has not been

well emphasized in the context of suicidology that the variable in Hamermeh-Soss model is

not the income nor a wage flow but the permanent income. We will elaborate more on this

point in Section 3.4.

A few continuous-time models have been proposed. Lo and Kwok (2006) consider a

signaling index Xt summarizing the current state of affective disorder of a patient. Xt is

supposed to follow a geometric Brownian motion process. The drift of d lnXt has a negative

sign and is interpreted as some preventive treatment. The authors assume that the patient

commits suicide if the level of disorder Xt exceeds the threshold Xc, and characterize this

decision by the transition probability from the initial value X0 to Xc, which resembles a

structural credit-risk modeling since Merton (1974). Although the authors claim that they

apply the contingent claims analysis, they do not consider the optimal choice of the timing

of suicide nor the option value of postoponing a suicide decision. More crucially, there is no

link between the disorder index and the environmental parameters.

Chan and Lien (2010) propose a continuous-time model of enthanasia in the context of

legal and ethical debate after the U.S. Supreme Court’s ruling in 1997. They attempt to give

a behavioral model of a patient who just knows that he/she suffers from a terminal illness

and about to decide if he/she uses the option of euthanasia and therefore to maximize the

benefit of euthanasia, Vt net of the cost Mt at time t. Mt is a summary of the medial cost

of pain management and related medical/legal/psychological burdens until the end of life.

Given the geometric Bronwnian motion assumptions on Vt and Mt, they apply McDonald

and Siegel (1986, (4) and (5)) for the immediate exercise boundary. My model in the next

section is different from theirs in multiple aspects. First, the underlying asset in my case is

more concrete human capital determined as the expected, discounted, present value of the

future earning ability and therefore it is reverting to zero toward the end of life. Second, my

model has an explicit expiration day of the option, namely, the end of life. In contrast, Chan

and Lien (2010) based on McDonald and Siegel (1986) assume the infinite horizon: that is

why their immediate exercise boundary turns out to be a constant, independent of the time-

to-maturity. Obviously, the assumption of perpetuity for the model of a terminal decision is

very strange. Third, their model focuses on the terminal decision after the notification by a

physician of the terminal condition. Therefore, the human capital cannot play a significant

role: the cost Mt in their model should be covered by the financial asset and a government-

sponsored life-assistance. Fourth, they assume that Vt and Mt are driven by two Brownian

motion processes, but they do not give any assumption about the completeness of a financial

market.
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Suzuki (2007) proposes the utility-based real-option approach to the suicide decision. The

wage flow is modelled as a jump-diffusion process in the infinite-horizon setup. The average

growth rate of the wage flow suffers from down-ward reduction by the small yet positive

probability of downside jump, modelling a sudden layoff. However, the assumption of infinite

horizon is rather strange for the analysis of suicide. It appears as a constant threshold of

the wage level below which a person commits suicide and therefore is silent about the aging

effect of a person over time. Moreover, the relation between the threshold wage and the

pre-specified threshold of utility is not well discussed.

Writing an American option on human capital is an idea investigated in the context of

financing the cost of higher education through the so-called income-contingent loans and

through a financially sound design of a government-supported education program. See, e.g.,

Palacios (2007, Chapter 7, Part III and Appendix B).

3 A Model

3.1 A Complete Financial Market

Suppose the life of a person is described by the closed interval [0, T ] with T < ∞. We

identify this interval with his/her working life by abstracting the retirement age. We will give

some discussion about the qualitative validity of our model if we introduce the retirement age

in Section 3.4, and will do some robustness check for these more elaborated wealth processes

in Section 4.2.

Let us fix a complete and filtered probability space (Ω,F , P,F). F = (Ft)t∈[0,T ] is a non-

decreasing sequence of sub-σ-fields of F describing the evolution of public information. P

is the “physical” probability measure defining the expectation and conditional expectation

operators E[(·)] and Et[(·)] = E[(·)|Ft]. On this filtered space is defined a one-dimensional

Brownian motion process W = (Wt)t∈[0,T ]. W summarizes the fundamental source of risk in

the financial market. It generates the Brownian natural filtration F(W ), which is the minimum

σ-field containing information generated by the history of the market risk σ(Ws : s ≤ t) with

the augmentation by the P -null sets. Without loss of generality, we identify F with F(W ) and

therefore the latter notation will not appear henceforth.

Suppose there exist one representative risk-free asset and another representative risky

asset with prices denoted by Bt and St, respectively. As these letters suggest, the leading

examples are a default-free government bond and a stock-market index. Suppose they follow

risk-free and risky geometric processes:

dBt/Bt = rdt (1)

dSt/St = µdt+ σdWt = rdt+ σdW ∗t (2)

where r is the risk-free rate, µ is the average growth rate of the risky asset price and σ is

the volatility or the instantaneous standard deviation to scale the market risk. Suppose r,
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µ and σ are constant and bounded above, and σ > 0. The last assumption implies that the

financial market is complete: the single risk factor Wt is associated with a single risky asset

St accoring to the rule dWt = σ−1(dSt/St − rdt), hence is replicable by a portfolio of traded

risky and risk-free assets. The condition guarantees the existence of the market price of risk

in the risky financial asset

θ := σ−1(µ− r).

The rightest side in (2) stems from the definition dW ∗t := dWt + θdt. At this stage, W ∗ is

just an alternative notation. To assign an economic interpretation to it, define the stochastic

exponential of θ: ηt,s := exp
(
−θ(Ws −Wt)− (θ2/2)(s− t)

)
= η−1

0,t η0,s. Over the interval

[t, s] ⊂ [0, T ], there are two discount factors applied to any Fs-measurable variable to convert

it back to the value at time t:

Rt,s := e−r(t−s), ξt,s := Rt,sηt,s = e−r(t−s)−θ(Wt−Ws)−θ2(t−s)/2.

Rt,s is the objective discount factor based on the risk-free rate of return in the market. ξt,s

is called the stochastic discount factor under the physical probability measure P . Because of

the boundedness of coefficients, (η0,t)t∈[0,T ] is a F-martingale by the Novikov’s theorem and

therefore Et[η0,s] = η0,t or Et[ηt,s] = 1 for s ≥ t. In other words, η can be used as a density

in switching the probability measure from P to another equivalent one, say Q, such that

Q(A) = E[η0,T 1{A}] for any A ∈ F and EQt [(·)] = Et[ηt,T (·)] such that Et[ξt,sY ] = EQt [Rt,sY ]

for any Fs-measurable variable Y . The last property justifies the label of Q as the risk-neutral

probability measure because it allows the application of the risk-free discount factor in the

present-value formula, like a risk-neutral agent would do. Finally, the Girsanov theorem

implies that dWQ
t = dWt + θdt is the Q-Brownian motion increment. Now the right hand

side of (2) characterizes the risk-neutral evolution of the risky asset price. We should keep in

mind that the market risk does not disappear from this risk-neutral valuation: it lives in Q.

3.2 The Spanned Wage Process and Human Capital

Suppose the wage rate ωt, evolves as follows:

dωt/ωt = µ(w)dt+ σ(w)dWt = (r − ζ)dt+ σ(w)dW ∗t (3)

where µ(w) and σ(w) > 0 are bounded and

ζ := r − µ(ω) + σ(ω)θ. (4)

The right hand side is again justified by the Novikov and Girsanov theorems. Notice that the

same Brownian motion process (Wt) drives the middle expressions of (2) and (3), and the

risk-neutral version W ∗ does so in the associated rightest sides. Therefore, we can replicate

and evaluate the cashflow of the wage process by that of a portfolio of the risky and risk-free

assets. Let us define θ(w) := (r−µ(w))/σ(w) as the market price of risk of the wage flow. The
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equivalent expression ζ = σ(w)(θ − θ(w)) means that ζ measures the spread in the market

prices of risk between the risky financial asset and the risky wage per unit of the wage risk.

An immediate implication is that sign(ζ) = sign(θ − θ(w)). For instance, ζ > 0 if and only

if the risky financial asset is more expensive than that of the wage in terms of their prices of

risk. Subtraction of ζ from the drift in the rightest side of (3) means that the evolution of

wage is subject to the implicit continuous dividend payout with ζ as the dividend yield1.

We can solve (3) for ws in terms of wt for t < s as follows:

ws = wtR
−1
t,sZt,sη

(w)
t,s , (5)

Zt,s := e−ζ(s−t), (6)

η
(w)
t,s := eσ

(w)(W ∗s −W ∗t )−[(σ(w))2/2](s−t). (7)

Let Ht denote the human capital at time t. Using the risk-neutral valuation principle, it

is the expected, discounted, present value of the future cash flow generated by the ownership

of the labor hours under the risk-neutral measure Q and the risk-free discount factor R:

Ht = h̄EQt

[∫ T

t
Rt,vωvdv

]
where h̄ is the total amount of labor force of the worker 2.

Let us define the annuity factor associated with ζ:

At,T (ζ) :=

∫ T

t
Zt,sds =

1− e−ζ(T−t)

ζ
.

The exponential term in the numerator accounts for the time-to-maturity effect. The risk-

neutral valuation of the future cashflow generated from human capital at time t ∈ [0, T ] is

given by

Ht = h̄ωtAt,T (ζ) = EQt

[∫ T

t
Rt,sh̄wsds

]
. (8)

The same expression is obtained from the classical contingent-claim approach to exploit the

no-arbitrage partial differential equation3. limt→T At,T (ζ) = 0 implies limt→T Ht = 0 P -a.s.

The Ito’s lemma applied to R0,tHt+
∫ t

0 R0,sh̄wsds and a bit of calculation produces the present

value formula in the right hand side. We can derive the stochastic differential equation for

1If we assume a jump-diffusion model for the wage flow dynamics, as in Suzuki (2007), the drift is subject
to yet another subtraction of the probability of a sudden layoff. In that case, we just need to modify the
definition of ζ. This approach has a limitation that the whole market is incomplete then- we cannot replicate
the jump part by a continuous trading of the risky and risk-free assets evolving continuously as are specified
previously. Moreover, it is still an open question if some important properties of the immediate exercise
boundary in Section 3.5 hold or not. Consequently, we will not pursue the jump diffusion model in this study.

2This does not mean that the worker in our model actually supplies 100% of their endowed time to the
labor service. Although we do not specify any model of the labor-leisure choice, this worker can always buy
their leisure time back at the wage rate as an opportunity cost of the leisure consumption.

3See Bodie, Merton and Samuelson (1992, Section 4).
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Ht by applying the Ito’s lemma and the definition of ζ as follows:

dHt = (rHt − h̄wt)dt+Htσ
(w)dW ∗t (9)

= Ht

{
(r −A−1

t,T (ζ))dt+ σ(w)dW ∗t

}
(10)

for t ∈ [0, T ) with the initial value H0 = h̄w0A0,T (ζ) and the terminal value HT = 0, P -a.s.

(9) is reminiscent of the dynamic evolution of a risky asset price with a fixed terminal value,

e.g., that of a risky bond price4. In fact, the L’hôpital rule delivers limζ→0At,T (ζ) = T − t.
(10) is useful later in Section 3.6 for computing how likely a worker refrains from committing

suicide. Notice that the growth rate of human capital depends on time through A−1
t,T (ζ) in

(10), even though coefficients in (1), (2) and (3) are constant. As is similar to ζ in the drift of

wage flow in (3), A−1
t,T (ζ) is like a continuous dividend yield associated with the depreciation

of human capital as time elapses. As long as ζ > 0, this implicit dividend yield on human

capital becomes ζ as T →∞ because limT→∞At,T = 1/ζ.

3.3 Suicide as an American Put Option written on the Human Capital

Let us introduce a worker’s problem of optimally determine the timing of suicide. Suppose

a worker alive at time t ∈ [0, T ] wants to commit suicide at a certain future point in time,

τ ∈ [t, T ], whenever the human capital is sufficiently low relative to a certain pre-specified

level of the basic standard of living, say K > 0. K would be different from one worker to

another. The optimal timing of suicide solves the following problem:

τt,T := arg sup
τ∈St,T

EQt [Rt,τ (K −Hτ )] = arg sup
τ∈St,T

EQt
[
Rt,τ (K −Hτ )+

]
(11)

V (t,H) := EQt
[
Rt,τt,T (K −Hτt,T )

]
= EQt

[
Rt,τt,T (K −Hτt,T )+

]
(12)

where τ ∈ St,T is a collection of F-stopping times such that P (τ ∈ [t, T ]) = 1 and the second

equalities in (11) and (12) are justified by the optimality, because it is suboptimal to commit

suicide if Ht > K. It is evident now that we model the suicidal behavior of a worker as the

optimal exercise policy of an American put option on human capital as the underlying asset.

3.4 Motivating the Model

We use human capital as the underlying asset of the suicide option. This is partially

inspired by the earliest economic model of Hamermesh and Soss (1974) in which suicide

occurs when the present value of utility from the permanent income hits the lower bound at

4A bond-like behavior is shared by the optimal wealth process obtained from the dynamic optimization
of consumption and leisure streams in Bodie et. al. (2012). However, if we assume a certain optimization
behavior of a worker under consideration, it raises the issue of a simultaneous determination of the optimal
consumption-leisure streams and of the timing of suicide. Introducing a version of preference in a dynamic
stochastic environment and determining the timing of suicide jointly with consumption-saving, labor supply-
leisure consumption would be helpful for understanding some gradual deterioration of mental helth of people
at risk toward suicide.
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zero. The permanent income is the expected, discounted, aggregated present value of any

kinds of future cashflow available to a representative household. We let human capital capture

this capitalized nature of the underlier for the suicide option. The absence of financial wealth,

owing to the lack of modeling consumption-saving decision in our dynamic environment, may

sound quite restrictive. Let us give three justifications of our negligence of the financial asset

allocation.

First, the main focus of this study is to analyze a premium of the suicide option associated

with the flexibility to select a timing of exercise. An option-theoretic approach can isolate such

premium in a clear manner. In a later section we will discuss a broad possibility of modelling

multiple aspects of suicide by borrowing several valuation formula of exotic options. This

is a relatively easy task if we focus on a worker’s life from a viewpoint of the cash-flow risk

management.

Second, some numerical simulation of the life-cycle model by Bodie et. al. (2012) suggests

that the human capital shares the major part of the total wealth, that corresponds to the

permanent income in Hamermesh and Soss (1974). Therefore, our bare-bone model should

be viewed as a first-order approximation to otherwise complex nature of suicide by focusing

on the largest contributor to the total wealth.

Third, the technique to be developed later in our simplified setup is applicable to a more

elaborated wealth process emerged from the optimal choice of consumption, saving, labor

and leisure in Bodie et. al. (2012, (A.8) to (A.10)). Given Tr ∈ (0, T ] as a fixed timing of

retirement, a ∨ b := max{a, b} and a ∧ b := min{a, b}, the total wealth is

H∗t =

(
y∗ξ0,t

a0,t

)−1/R {
fh̄w

(1−η)ρ
t At∧Tr,Tr(g) + φ1/Re−ḡ(Tr−t∧Tr)At∨Tr,T (ḡ)

}
(13)

with limt→T H
∗
t = 0, P -a.s., where y∗ is the Lagrange multiplier of a static budget constraint,

ξ0,t is the stochastic discount factor as defined previously, a0,t = exp(−bt) is the subjective

utility-discount factor with the constant subjective discount rate b > 0, η is a weight on the

relative importance of consumption goods over leisure, R is the relative risk aversion coeffi-

cient, and g, ḡ and f are known functions of model parameters5. Applying the Itô’s lemma,

defining At,T := At∧Tr,Tr(g) + At∨Tr,T (ḡ) and σ
(N)
t := R−1θ + (1 − R−1)(1 − η)σ(w)1{t≤Tr},

and doing a bit of calculation, the dynamic evolution of H∗t is analogous to (10):

dH∗t /H
∗
t = (r −A−1

t,T )dt+ σ
(N)
t dW ∗t .

Therefore, we can apply the same technique developed in our setup to the suicide option

based on H∗t , apart from the different combinations of parameters in the definition of the an-

5 η here comes from the notation in Bodie et. al. (2012) and is different from the stochastic exponential

of θ introduced in this study. f, ḡ, g are given by f := [(1− η)/η]−(1−η)(1−R−1)/η, ḡ = g|η=1 and

g := R−1β + (1−R−1)

(
r +

θ2

2

)
− (1−R−1)(1− η)

(
µ(w) − (σ(w))2

2

)
− (1−R−1)2[θ − (1− η)σ(w)]2

2
.
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nuity factor and the time-dependent yet deterministic volatility of the risk-neutral Brownian

increment, g, ḡ and σ
(N)
t . Consequently, more elaborate version of human capital does not

change the main feature of our model.

The true limitation of our model, which is also common to many previous works, is

the lack of simultaneous determination of the timing of suicide and consumption, saving,

labor and leisure. Notice that Hamermesh and Soss (1974) implicitly assume the two-stage

decision-making of a person in their model: he/she has already chosen a consumption and

labor supply decision optimally to obtain a permanent income process without taking the

risk of suicide into account, then he/she may feel temptation to commit suicide in a later life

by looking at the present value of tility generated from the permanent income. Let us owe

this issue to an investigation by Ikeda (2013b). Therefore, we will not pursue it in this study.

Another main component of the suicide option is K > 0. This parameter corresponds to

the strike price of a financial option. We interpret K as the threshold level of human capital

above which a worker is free of suicide risk. Proposition 1 -(c) in the next subsection justifies

this interpretation. and therefore the threshold for him/her to start feeling a pain even if

he/she gets a positive amount of cash-flow. The constancy of K may not be general enough

once we recognize the fact that a person would feel it more painful to endure a lower quality

of life if the past life had been good (habit/rachet effects) or would become familiar with the

current state of life (acceptance of hardship). We will discuss some possibility of relaxing this

assumption later. However, let us emphasize that the key implication from our model is the

time-dependent exercise boundary of suicide option even if the threshold is a constant as is

specified in (11).

3.5 Properties of the Value Function and Exercise Region

Let us divide the coordinate for the time and human capital, (t,H) ∈ [0, T ] × R+, into

two disjoint subsets, namely, the immediate Exercise region and the Continuation region:

E =
{

(t,H) ∈ [0, T ]× R+ : V (t,H) = (K − S)+
}
,

C =
{

(t,H) ∈ [0, T ]× R+ : V (t,H) > (K − S)+
}
.

H is some constant level of human capital for a person facing the decision of committing

suicide or not as of time t. It is always possible to find w ∈ R+ such that H = h̄wAt,T (ζ).

Proposition 1 (Properties of the Exercise and Continuation Regions)

(a) V (t,H) ∈ C(1,2), i.e., V is continuously differentiable with respect to t ∈ [0, T ] and
twice continuously differentiable with respect to H ∈ R+. Moreover, the admitted partial
derivatives are locally bounded on [0, T )× R+. If (t,H) ∈ C,

VHH(t,H)H2(σ(w))2/2 + VH(t,H)(rH − h̄w) + Vt(t,H)− rV (t,H) = 0.

(b) V (t,H) is non-increasing and convex with respect to H ∈ R+.
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(c) For any t ∈ [0, T ), (t,H) ∈ E ⇒ H ≤ K ·min{1, rAt,T (ζ)}. H ≤ K ⇔ (T,H) ∈ E.

(d) (t,H) ∈ E implies (t,H − ε) ∈ E for any ε ∈ [0, H].

(Proof) Combine Jaillet, Lamberton and Lapeyre (1990) with Detemple (2006, Chapter 4).
See the appendix for details.

Remark 1 Given generality of Jaillet et.al. (op.ct.), (a) is still valid if σ(w) is replaced by
a deterministic function of t, as in the alternative wealth dynamics (13). In (c), (t,H) ∈ E
actually implies H ≤ KrAt,T (ζ) because both the risk-free rate and the annuity factor take
values in [0, 1] given ζ > 0. Given t < T and H = h̄wAt,T (ζ), this implication is restated
as (t,H) ∈ E ⇒ rK − h̄w ≥ 0. The combination of (a) with the continuity of (K −H) with
respect to H implies that the immediate exercise region E is a closed subset of [0, T ] × R+.
(b) means that E is down-connected in [0, T ]×R+. They imply the alternative representation
of E as follows:

E = {(t,H) ∈ [0, T ]× R+ : H ≤ Bt} , Bt = sup{H ∈ R+ : (t,H) ∈ E}. (14)

We will call B = (Bt)t∈[0,T ] the immediate exercise boundary.

Proposition 2 Bt is continuous at any t ∈ [0, T ); BT− = limt→T Bt = 0 and BT = K. If
r < 1 and if we re-parametrize Bt = βtAt,T (ζ) for t < T , βT− = limt→T βt = rK.

(Proof) A repeated application of the argument by Jacka (1991, Proof of Proposition 2.4)
and Detemple (2006, Proof of Proposition 33). See the appendix for details.

Remark 2 The discrepancy between BT− = 0 and BT = K > 0 means that the boundary has
a jump at the terminal day. This property is shared by usual American-style derivatives with
finite maturity dates: see Detemple (2006, Proposition 33 and the subsequent discussion).
Usually, American options in the Black-Scholes environment with constant coefficients have
monotonic immediate exercise boundaries: decreasing for the call and increasing for the put,
as is described by Detemple (2006, Proposition) combined with the put-call symmetry. How-
ever, (10) shows that the drift of the underlying human capital depends on time. Given

D
(c)
a,b := e−

∫ b
a A
−1
c+v,T (ζ)dv, η

(w)
a,b from (7) and doing a bit of calculation,

Hτ
d
= Hte

r(τ−t)e−(σ(w))2(τ−t)/2+σ(w)W ∗τ−te−
∫ τ−t
0 A−1

v+t,T (ζ)dv := HtR
−1
0,τ−tη

(w)
0,τ−tD

(t)
0,τ−t. (15)

The first and second exponential factors depend on t and τ only through their difference τ− t.
On the other hand, the third exponential factor D does depend on t directly as a decreasing
function of t. This is because the implicit dividend yield A−1

t,T (ζ) in (10) accounts for the
time-to-maturity effect. They imply

V (t,H) = sup
τ∈St,T

EQt

[
R0,τ−t(K −HR−1

0,τ−tη
(w)
0,τ−tD

(t)
0,τ−t)

+
]

= sup
τ̄∈S̄0,T−t

Ē0

[
R0,τ̄ (K −HR−1

0,τ̄ η̄
(w)
0,τ̄ D

(t)
0,τ̄ )+

]
where τ̄ := τ − t ∈ S̄0,τ−t if and only if τ ∈ St,T , and the stationary increment property of the

Brownian motion induces the expectation Ē0. The criterion Ē0[R0,τ̄ (K −HR−1
0,τ̄ η̄

(w)
0,τ̄ Dt,τ̄ )+]

11



is increasing whereas the choice set S̄0,T−t is shrinking, as t becomes larger. Consequently,
the effect of t on V (t,H) is not clear. Then, the argument by Detemple (2006, Proposition
39) may not be applicable to B and therefore it may not be monotonic.

3.6 Exercise Premia

According to a similar argument as in Detemple (2006, Theorem 23), we can decompose

V into two parts as follows.

Proposition 3 Given the re-scaling Bt = βtAt,T (ζ),

V (t,H) = p(t,H) + EQt

[∫ T

t
Rt,s1{s=τs}(rK − h̄ws)ds

]
(16)

= KRt,T +

∫ T

t

{
rKRt,sN

(
−d(−)

t,s (h̄wt, βs)
)
− h̄wtZt,sN

(
−d(+)

t,s (h̄wt, βs)
)}

ds (17)

where p(t,H) = EQt [Rt,T (K −HT )+] = KRt,T is the value of an European put option to

commit suicide at the maturity date T , N(·) = (
√

2π)−1/2
∫ ·
−∞ e

−x2/2dx is the cumulative
distribution function of the standard normal variable, and

d
(±)
t,s (a, b) :=

ln(a/b) + (r − ζ ± (σ(w))2/2)(s− t)
σ(w)
√
s− t

. (18)

(Proof) See the appendix.

The first term in (16) is the value of an European-style put option to commit suicide only

at the terminal date T , which is embedded in the American-style put option with exercisability

at any time τ ∈ [t, T ]. However, HT = 0 makes the automatic suicide at time T : there is

no clear distinction between suicide and natural death at time T in our model. Therefore,

the European option value is degenerated to the present value of K. This degeneracy occurs

because the suicide option is written on the human capital which depreciates to zero toward

the end of life. The second term in (16) is the early exercise premium. We interpret this

premium as an economic form of “a vague sense of anxiety about my own future” as cited in

the previous epigraph. It is vague because it is related to, but different from, the burden to live

a life below the threshold K. It is some anxiety about future because (s,H = h̄wAs,T (ζ)) ∈ E
implies rK−h̄ws ≥ 0 from Remark 1 and therefore it represents the present value of benefit to

avoid anxiety about his/her human capital in the future by committing suicide at τ ∈ [t, T ].

Plugging Ht = h̄wtAt,T (ζ) = Bt = βtAt,T (ζ) and therefore h̄wt = βt for t < T to (17)

given the boundary condition βT− = rK, for t ∈ [0, T ),

K − βtAt,T (ζ) = KRt,T +

∫ T

t

{
rKRt,sN

(
−d(−)

t,s (βt, βs)
)
− βtZt,sN

(
−d(+)

t,s (βt, βs)
)}

ds.(19)

One immediate implication is the following:

Proposition 4 Given (1), (2) and (3), the immediate exercise boundary Bt and its re-scaled
version βt are deterministic functions of time.

12



We will exploit (19) later for the numerical identification of the immediate exercise bound-

ary. We suggest previously that the behavior of human capital is reminiscent of a risky bond

price with a finite time horizon. One stark difference is that the former converges to a unit

price, say one thousand US dollars in the case of a U.S. Treasury note, whereas the latter

converges to zero. Notice that zero is the absorbing state from which the geometric evolution

cannot start. On the other hand, the backward recursive equation in the previous works

such as Detemple (2006) always involve the logarithm of the exercise boundary. Because

lnBT− = ln 0 = −∞ is floating around, it may destroy the validity of a formula for Bt then6.

This is why the rescaling Bt = βtAt,T (ζ) and the recursive equation for βt are useful. Because

of the property βT− = rK > 0 as confirmed in Proposition 2, the issue of zero absorbing

state is avoided. The recovery of B from β is immediate.

We can obtain another type of premium as follows.

Proposition 5 Given the rescaling Bt = βAt,T (ζ) and n(·) = (2π)−1/2 exp(−(·)2/2) as the
probability density function of the standard normal variable,

V (t,H) = (K −Ht)
+ +Dt,T (20)

where Dt,T is the delayed exercise premium with the explicit representation

Dt,T = h̄wt

∫ T

t
Zt,s

{
σ(w)As,T (ζ)

2
√
s− t

n
(
−d(+)

t,s (h̄wtAs,T (ζ),K)
)
−N

(
−d(+)

t,s (h̄wt, βs)
)}

ds

−rK
∫ T

t
Rt,s

{
N
(
−d(−)

t,s (h̄wtAs,T (ζ),K)
)
−N

(
−d(−)

t,s (h̄wt, βs)
)}

ds.

(Proof) Carr, Jarrow and Myneni (1992, Theorem 2.1). See the appendix for details.

The sum of the second components in two integrals is identical to the early-exercise premium

in (17). In other words, the remaining parts in Dt,T stem from a decomposition of the

European option value.

(20) reveals that the current level of human capital falling short of K does not necessarily

induce the immediate suicide. The delayed exercise premium accounts for the benefit to

postpone such a fatal and irreversible decision. We can interpret the first integral in Dt,T as

the benefit to wait for future upside opportunity in human capital, whereas the second integral

is the cost incurred by staying alive with human capital falling short of K. This alternative

premium is crucial for the understanding of a remark by Dixit and Pindyck (1994) directed

toward the economic model of suicide by Hamermesh and Soss (1974):

According to them, an individual will end his or her own life when the expected

present value of the utility of the rest of life falls short of a benchmark or cutoff

standard “zero”. Most people react by saying that the model gives an excessively

6The issue of zero absorbing state in the identification of the immediate exercise boundary is, to our best
knowledge, a novel feature of the human-capital option with a finite time horizon.
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rational view of what is an inherently irrational action. Our theory suggests ex-

actly the opposite. Whatever its merits or demerits as descriptive theory, the

Hamermesh-Soss model is not rational enough from the prescriptive viewpoint,

because it forgets the option value of staying alive. Suicide is the ultimate irre-

versible act, and the future has a lot of ongoing uncertainty. Therefore the option

value of waiting to see if “something will improve” should be very large. The

circumstances must be far more bleak than the cutoff standard of the Hamermesh-

Soss model to justify pulling the trigger. This is true even if the expected direction

of life is still downward; all that is needed is some positive probability on the up-

side. (Dixit and Pindyck 1994, p.24)

However, Dixit and Pindyck do not give any formal model to address their concern and

therefore it has been an open question since then. (20) gives a partial answer to it, although

we have not introduced any preference of a person with the exception of the weakest one,

“the more is better”, behind the arbitrage principle7. In the next section, we will conduct a

small simulation study to confirm the size of this “option value of waiting to see if something

will improve”. The lack of recognizing such an option value basically means that we assume

K to be a hard threshold below which everybody commits suicide. Because human capital

depreciates toward zero, any strictly positive value of K would induce that everybody will

commit suicide then. Such interpretation and implication are not true in our model.

4 Numerical Identification of the Exercise Boundary

To study several properties of the option value of suicide numerically given a set of

realistic parameter values, we need to identify the immediate exercise boundary Bt or its

rescaled version βt. Let us discuss how to draw a curve given a particular set of model

parameters.

4.1 The one-dimensional integral equation for the boundary

We will use T in place of T− in the balance of this section for the identification of

(βt)t∈[0,T ). We can transform (19) into the following form:

βt =
K
[
1−Rt,T − r

∫ T
t Rt,sN

(
−d(−)

t,s (βt, βs)
)
ds
]

At,T (ζ)−
∫ T
t Zt,sN

(
−d(+)

t,s (βt, βs)
)
ds

. (21)

Let us define N equally-spaced grids on [0, T ] by N + 1 partitions: (tj)j=0,...,N such that

t0 = 0, tN = T and ∆tj = tj − tj−1 = T/N . Accordingly, let (βtj )j=0,...,N be the discretized

version of (βt)t∈[0,T ]. limt→T βt = rK from Proposition 2 gives the initial condition. Suppose

we have already identified (βtk)k=j+1,...,N . Using the trapezoidal rule for the quadrature

7For a preference-based approach, see Ikeda (2013b).
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approximation of the integrals as in Detemple (2006, Section 8.2), βtj is determined from the

discrete version of (21):

βtj =
K
[
1−Rtj ,tN − r

∑N
k=j Rtj ,tkN(−d(−)

tj ,tk
)∆tk/(1 + 1{k=j,N})

]
Atj ,tN (ζ)−

∑N
k=j Ztj ,tkN(−d(+)

tj ,tk
)∆tk/(1 + 1{k=j,N})

. (22)

Because the right hand side of (22) depends on βtj in a highly non-linear fashion, we need

some iterative method to obtain a sufficiently accurate estimate. From an initial guess of β
(0)
tj

,

compute the right hand side of (22) to obtain the updated guess, β
(1)
tj

. Iterate this step q

times until the size of update, β
(q)
tj
−β(q−1)

tj
, is within a small number of convergence criterion.

The last estimate gives a numerical solution β̂tj . Given (β̂tj )j=1,...,n, it is immediate to have

(B̂tj ) by B̂tj = β̂tjAtj ,tN (ζ).

4.2 A Numerical Study

Let us apply the above method in the setup of Bodie et. al. (2012) for the study of a

person with a certain process of human capital. The following is the list of parameters:

[Table 1 Here]

The bare-bone model of the suicide option on human capital Ht = h̄wtAt,T (ζ) relies on six

parameters in the first three raws with the implication that ζ = .019. We employ the rule of

guess β
(0)
tj

= αβ̂tj+1 with α = .95. We also try a few values of α such as α = 1.05 but estiamtes

are almost identical to the former case when we iterate (22) by ten times, namely, q = 10.

The initial value of the dynamics of wt is normalized at one. We will generate 100 thousands

sample paths of the wage flow and the associated human capital processes by 250 iterations.

Then, calculate the number of paths hitting the immediate exercise boundary before the

maturity as the simulated numbers of suicides for each iteration, compute the sample mean

over these 250 iterations and form an empirical histogram of the number and timing of suicide

summarizing the characteristics of the average suicide behavior of a representative worker.

Assumption 3 The empirical suicide rate obtained as the sample mean of 250 iterations of
100-thousand simulated paths corresponds to the actual suicide rate based on contemporaneous
cross-sectional events of suicides.

The key parameter is K. From the contra-positive argument in Proposition 1-(c), a worker

with human capital above K never exercises the suicide option. Owing to Assumption 3, we

can calibrate the value of K to mimick the actual suicide rate among Japanese male workers

from 1998 to 2009, which is about 36.13 per one hundred thousands population8. It turns out

8The suicide rates are calculated for seven 10-year age cohorts from 15 to 24, 25 to 34, 35 to 44, 45 to 54,
55 to 64, 65 to 74, and over 74. Because of the dispersion in the size of population in different age cohorts,
the suicide rate per 100 thousands are adjusted accordingly. The data come from Jisatsu Taisakunotameno
Jisatushibou no Chiiki Toukei 1973-2009 (Regional Statistics of Suicide Deaths for the Suicide Prevention
Policies, 1973-2009, in Japanese). As noted in the Introduction, 1998 is the year of upheaval of the suicide
rate in Japan.
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that K ≈ 47.1421, namely, 47 times as large as that of the initial level of wage normalized

as one. To understand this puzzling magnitude of K, notice that K = .8957/ζ. Because

1/ζ = limT→∞At,T (ζ), this means that the calibrated value of K amounts to the perpetual

annuity value of about 90% of the initial wage to be received forever, like a coupon payment

of a console bond in the infinite horizon. A worker wishes she/he held such an attractive

insurance to be free of suicide risk. If not, then she/he has to pay attention to the uncertainty

in his/her future human capital evolution in a finite life-time horizon to avoid the pitfall of

suicide risk.

Figure 1 is the plot of the mean over the 250 iterations of the actual number of suicides

in red and their grand mean in starred yellow, the actual numbers of suicides in blue and

their grand mean in starred green. Because there are 100 thousands paths simulated in

each iteration, the reported number of suicides can be interpreted as the suicide rates in the

population of size 100 thousands. The starred lines are almost identical as the calibration

exercise is intended. The simulated age pattern of suicide rates is steeper than the actual one.

On one hand, the model can capture the average tendency of suicide among male workers.

On the other hand, the model gives an under-estimate of suicide among young workers and

an over-estimate of suicide among older workers approaching the retirement age. The steeper

pattern of age profile of suicide rates from the model may owe to the constant strike price K.

If we can adjust K such that it is slightly lower in younger ages and higher in older ages, we

may be able to improve the fit. Another reason for this mis-represented pattern is the lack of

retirement period: in this simulation study, the end of a working life is the end of life. If we

introduce the possibility of life after the retirement, the older workers facing the retirement

may not need to rush into the fatal decision.

[Figure 1 Here]

4.3 Robustness to More Elaborated Wealth Process

We have analyzed the suicide option written on the human capital directly. Let us do

some robustness check of our methodology if the option is written on more elaborated wealth

processes. Suppose the consumption and labor supply are determined optimally with no

regard to the possibility of suicide over [0, T ]. We still assume that Tr = T so that this

worker will have kept working until the end of life without retirement age. The implied

wealth process is basically given by setting T = Tr in (13), i.e. the first term in the right

hand side. We can apply the same methodology as previously for human capital to this case.

The calibrated strike value is K ≈ 43.62, which is not so different from the previous one.

(13) with T = Tr indicates that the implicit coupon rate is g ≈ .0234 as in Footnote-5 given

parameter values as specified in Table 1. Now we have K ≈ .9905/g. Similarly as previously, a

worker with the wealth process generated by choosing the consumption and leisure optimally

without worrying about suicide risk, feels safe if she/he received the perpetual annuity value

of the 99% of her/his initial wealth. A similar pattern emerges from this more elaborated
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wealth process.

[Figure 2 Here]

5 Conclusion and Future Extensions

This study attempts to model and analyze the suicidal behavior from an option-theoretic

viewpoint. We propose a model of commiting suicide as the optimal exercise rule of an

American put option written on human capital. We derive the early exercise premium and

the delayed exercise premium representations of the value of suicide option in near closed

forms. The strike price, or the least acceptable level of the quality of life, does not correspond

to a hard threshold for committing suicide- the true immediate exercise boundary lies below

this strike price, reflecting the option value to postpone such a fatal and irreversible decision.

We also propose an efficient and simple discretization scheme to numerically identify the

boundary through re-scaling of the original boundary. Given a set of some realistic values of

parameters, the strike price of suicide option is calibrated so that the resulting rate of suicide

mimicks the actual one in Japan from 1998 to 2009.

There are many ways to follow subsequently. First, the type of option contract in this

study is a plain American put option. However, there are many exotic options proposed in

the context of financial derivatives. For instance, we can replace the constant strike price K

by a running geometric average of the past human capital until the current time with some

proportionality factor, say K = κ exp
(
t−1
∫ t

0 lnHudu
)

. The option of this type is called

the floating-strike Asian option. The geometric rather than arithmetic nature of the strike

price allows some trick to derive a more complicated but conceptually similar early exercise

premium representation as in Detemple (2006, Proposition 40). Moreover, the empirical

works regarding the covariates of suicide rates have found that the marital status, especially

if divorced or not and if widowed or not, and the relative income of a person with respect

to some regional median income matter- see, e.g., Daly, Wilson and Johnson (2012). We

conjecture that the theory of options on multiple assets as explored in Detemple (2006,

Chapter 6) may have something to do with these inter-personal factors of suicide risk.

Another big issue is to relax the complete market assumption. Remember the fact that

personal health condition matters, especially for older people, as one of the major reasons

to commit suicide. It seems less convincing to claim that the individual’s health risk can be

completely synthesized by a continuous trading of the financial assets. If we introduce an

idiosyncratic risk factor in the human capital formation of each worker, we need to evaluate

the suicide option in an incomplete market environment with no unique stochastic discount

factor. We may need to re-introduce an utility function for the utility-indifferencing pric-

ing. Another important class of wage-flow evolution is the jump-duiffusion emphasizing the

downside risk of layoff and unemployment. The unemployment has been the major economic

variable to account for a large variation of suicide rates. Because the jump component cannot
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be replicated by a continuous trading of financial assets, the model becomes incomplete on

this regard. Moreover, even a feq important theoretical properties of the immediate exer-

cise boundary- if it is continuous or not- may not be well explored. The attempt to resolve

these theoretical complexity should be worthwhile for a richer analysis of suicide from the

option-theoretic viewpoints.
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6 Appendix

6.1 Details of Proof of Proposition 1

(a) Jaillet, Lamberton and Lapeyre (1990, Theorem 3.6).

(b) Detemple (2006, Proposition 32-(ii)).

(c) Suppose H > K. The sub-optimality of the immediate exercise is obvious as long as t < T

because the human capital exceeds the least acceptable level, K. Suppose rAt,T (ζ)K <

H ≤ K. The strict inequality implies h̄w − rK > 0 given H = h̄wAt,T (ζ) for w > 0

assumed in (a). If (t,H) ∈ E holds under the stated assumptions, V (t,H) = K−H. The

market-based opportunity cost of taking the one-unit long position in this suicide option

at time t is −(K−H). The benefit of suicide at time τ , i.e., the value of such long position,

is max{(K −Hτ )+, V (τ,Hτ )}. We can take the long position of the replicating portfolio

for H at time t by paying −H dollars. Its value at time τ is Hτ +
∫ τ
t Rt,sh̄wsds. If we

borror the cash in the risk-free account for K dollars as of time t, the short position will

be worth of −
{
K +

∫ τ
t Rt,srKds

}
as of time τ . Therefore, the initial cost of investment

is zero in the market-based valuation at time t whereas the value of portfolio at time τ is

max
{

(K −Hτ )+, V (τ,Hτ )
}

+

{
Hτ +

∫ τ

t
Rt,sh̄wsds

}
−
{
K +

∫ τ

t
Rt,srKds

}
= max

{
(K −Hτ )−, V (τ,Hτ )− (K −Hτ )

}
+

∫ τ

t
Rt,s

{
h̄ws − rK

}
ds > 0,

which is an arbitrage opportunity9. To be consistent with the absence of arbitrage,

therefore, we must have H ≤ K ·min{1, rAt,T (ζ)}. The last claim is obvious.

(d) Let me introduce another notation for this proof. The solution to (9) at v ∈ [t, T ] given

the initial condition (t,Ht = H) is denoted by H
(t,H)
v . Similarly, (w

(t,w)
v )v∈[t,T ] denotes

the solution to (3) given the initial condition (t, wt = w). The mainstream of the proof

follows Detemple (2006, Proof of Proposition 31-(ii)) for the case of an American call

option. Let us find two arbitrarily values of human capital as of time t: H and H ′ ≤ H.

Because the case of H ′ = H is trivial, suppose H ′ < H. The comparison theorem

(Karatzas and Shreve 1988, Proposition 5.2.18) guarantees that H
(t,H′)
v ≤ H(t,H)

v , Q-a.s.,

for any v ∈ [t, T ]. Define τ ′ = arg supτ∈St,T E
Q
t

[
Rt,τ (K −H(t,H′)

τ )+
]

as the optimal

exercise time associated with the dynamic evolution of human capital stem from (t,H ′).

9This is the arbitrage opportunity among combinations of assets traded in the market. See Merton (1992,
Chapter 12, 13, 21; 1998, Section 1) for the intuition and a variety of justification.
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Now we have the chain of equalities/inequalities

V (t,H ′)− V (t,H) ≤ EQt

[
Rt,τ ′{(K −H

(t,H′)
τ ′ )+ − (K −H(t,H)

τ ′ )+}
]

≤ EQt

[
Rt,τ ′{H

(t,H)
τ ′ −H(t,H′)

τ ′ }
]

= (H −H ′)− h̄E∗tQ

[∫ τ ′

t
Rt,v(w

(t,w)
v − w(t,w′)

v )dv

]
≤ H −H ′

The sub-optimality of τ ′ for (t,H), namely, V (t,H) ≥ EQt [Rt,τ ′(K −H
(t,H)
τ ′ )+] gives the

first inequality. The general result a+ − b+ ≤ (a− b)+ for the put payoff function imply

the second inequality. The present value expression of Ht in (9) justifies the next equality.

The last inequality stems from the comparison theorem again, applied to w′ < w. Given

(t,H) ∈ E and H ′ ∈ [0, H],

V (t,H ′) ≤ V (t,H) + (H −H ′) = (K −H) + (H −H ′) = K −H ′.

Therefore, (t,H ′) ∈ E if (t,H) ∈ E and H ′ ≤ H. This is the desired result.

�

6.2 Details of the Proof of Proposition 2

Define mt := min{Bt−, Bt+} and Mt := max{Bt−, Bt+}. Suppose Bt > Mt. Then, Mt ∈
E because Bt is the supremum of E and E is down-connected from Proposition 1-(d). Now we

can find an open interval O ⊂ (Mt, Bt) ⊂ E with a positive Lebesgue measure, and a sequence

(tn, Htn , wtn) ∈ C, n ∈ N, such that limn→∞(tn, Htn) = (t,H) ∈ O, Htn = h̄wtnAtn,T (ζ) and

H = h̄wAt,T (ζ). Because (tn, Htn) ∈ C, Proposition 1-(a) guarantees

1

2
VHH(tn, Htn)H2

nσ
2 + VH(tn, Htn)(rHtn − h̄wtn) + Vt(tn, Htn)− rV (tn, Htn) = 0.

By letting n→∞ under the continuity of the left hand side with respect to (tn, Htn),

1

2
VHH(t,H)H2σ2 + VH(t,H)(rH − h̄w) + Vt(t,H)− rV (t,H) = 0

⇔ VHH(t,H) =
2

H2σ2

{
r(K −H)− (−1)(rH − h̄w)− 0

}
=

2

H2σ2

{
rK − h̄w

}
.

The rightest side is non-negative because rK − h̄w ≥ 0 for any (t,H) ∈ E from Proposition

1-(c) and the fact that (t, x) ∈ E . Moreover, it is indeed strictly positive for x in a subset of

O with a positive Lebesgue measure. Therefore,
∫ Bt
Mt

∫ Bt
y VHH(t,H)dHdy > 0. On the other

hand, Bt,Mt ∈ E and a bit of computation give∫ Bt

Mt

∫ Bt

y
VHH(t,H)dHdy = VH(t, Bt)[Bt −Mt]− {V (t, Bt)− V (t,Mt)}

= (−1)[Bt −Mt]− {(H −Bt)− (H −Mt)} = 0,
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which is contradiction. Therefore, the initial assumption of Bt > Mt must be incorrect:

Bt ≤Mt. Beacuse Bt < Mt violates the closedness of E , Bt = Mt is the conclusion. Similarly,

Bt < mt violates the closedness of E so that mt ≤ Bt = Mt. If mt < Bt, we can find an open

interval between mt and Bt and apply the same argument as above. Combining everything,

B is continuous at any time t ∈ [0, T ).

The claim of limt→T Bt = BT− = 0 follows from Bt ≤ K ·min{1, rAt,T (ζ)} and At,T (ζ)→
0 as t → T . BT = K is obvious because V (T,H) = K − H. The claim of limt→T βt =

βT− = rK is shown as follows: from Proposition 1-(c), (t,H) ∈ E implies Bt = βtAt,T (ζ) ≤
rKAt,T (ζ) or βt ≤ rK for any t < T so that limt→T βt = βT− ≤ rK. If βT− < rK, we can find

an open interval between rK and βT−, any point x of which satisfies βT− < x and therefore

βT−At,T (ζ) < xAt,T (ζ). Because Bt is guaranteed to be a function and not a correspondence,

we can find a positive number ε such that V (t, xAt,T (ζ)) > K−xAt,T (ζ) for any t ∈ (T−ε, T )

and therefore limt→T V (t, xAt,T (ζ)) = V (T−, xAT−,T (ζ)) > K. On the other hand, the

continuity of V (t,H) with respect to (t,H) from Proposition 1-(a) and of At,T (ζ) with respect

to t guarantee that V (T−, xAT−,T (ζ)) = V (T, xAT,T (ζ)) = K − xAT,T (ζ) = K. This is a

contradiction. Therefore, limt→T βt = βT− = rK exactly.

�

6.3 Proof of Proposition 3

(16) follows from Detemple (2006, Theorem 21) for the put payoff function (K − Ht)

with the drift −(rHt− h̄wt) upon the immediate exercise. It is immediate to show p(t,H) =

EQt [Rt,T (K −HT )+] = Rt,TK because HT = 0. Because the event {s = τs} is equivalently

stated as {Hs ≤ Bs}, the first integral in the right hand side of (16) has an alternative

expression rK
∫ T
t Rt,sQt(Hs ≤ Bs)ds. Using

Hs = h̄wsAs,T (ζ) = h̄wt exp
(

(r − ζ − (σ(w))2/2)(s− t) + σ(w)(WQ
s −W

Q
t )
)
AsmT (ζ)

and the reparametrization Bs = βsAs,T (ζ) for s < T , a bit of computation gives the desired

expression Qt(Hs ≤ Bs) = N(−d(−)
t,s (h̄wt, βs)).

For the second integral, combine (5) with the Novikov theorem for θ(w) := −σ(w) playing

a role of θ in the stochastic exponential to show that (η
(w)
0,t )t∈[0,T ] is F-martingale under the

risk-neutral probability measure Q with EQt [η
(w)
t,s ] = 1. Now we can use η(w) as the density

to change the probability measure from Q to another equivalent one, say Q(w), such that

Q(w)(·) = EQ[η
(w)
0,T 1{·}] and E

(w)
t [Y ] = EQt [η

(w)
t,T Y ] is the Ft-conditional expectation under the

new measure Q(w) of any FT -measurable variable Y . The Girsanov theorem ensures that

dW
(w)
t = dWQ

t − σ(w)dt is the Q(w)-Brownian increment. Define Q
(w)
t as the Ft-conditional

probability under Q(w). Now that ws = wtR
−1
t,sZt,sη

(w)
t,s from (5), the second integral can

be expressed as h̄wt
∫ T
t Zt,sQ

(w)
t (Hs ≤ Bs)ds. The desired expression Q

(w)
t (Hs ≤ Bs) =
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N(−d(+)
t,s (h̄wt, βs)) is immediate if we recognize

Hs = h̄wt exp
(

(r − ζ + (σ(w))2/2)(s− t) + σ(w)(W (w)
s −W (w)

t )
)
As,T (ζ) under Q(w).

6.4 Proof of Proposition 5

The key trick for that purpose is to introduce a fictitious time-dependent strike price

process Kt and Yt := Ht/Kt = h̄wtAt,T (ζ)/Kt so that the discounted put payoff function

is Rt,TKt(1 − Yt)
+. Using the integration by parts, the Tanaka-Mayer formula and the

martingale nature of the discounted human capital process (Rt,sHs)s∈[t,T ] under Q, as in

Carr, Jarrow and Myneni (1992, p.102), we have

p(t,H) = (K0 −H0)+ +

∫ T

t
Rt,sKsE

Q
t [dΛY (1, s)] +

∫ T

t
EQt [1{Ht<Kt}]d(Rt,TKt) (23)

where ΛY (1, t) is the local time of (Ys)s∈[t,T ] in the vicinity of one. By the Ito’s lemma,

d lnYt = µ
(Y )
t dt+ σ(w)dWQ

t

where µ
(Y )
t = r − ζ − (σ(w))2/2 + αt − κt, αt = ∂ lnAt,T (ζ)/∂t and κt = ∂ lnKt/∂t. Then,

with a bit of calculation as in Carr, Jarrow and Myneni (1992, p.102-103), we can compute

EQt [dΛY (1, s)] as follows:

(σ(w))2/2

σ(w)
√
s− t

· n

(
−

{
ln(Yt) +

∫ s
t µ

(Y )
v dv

σ
√
s− t

})
ds =

σ(w)

2
√
s− t

· n
(
−d(−)

t,s (h̄wtAs,T (ζ),Kt)
)
ds.

Substituting Kt = K and using the identity

KRt,T · n
(
−d(−)

0,t (h̄wtAs,T (ζ),K)
)

= h̄wtAs,T (ζ)Zt,T · n
(
−d(+)

0,t (h̄wtAs,T (ζ),K)
)
,

the second integral in (23) now gives the first component in the first integral of Dt,T . It is

easy to evaluate the second integral in (23), which is similar to the argument in the proof of

Proposition 3. It gives the first component in the second integral of Dt,T .
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Table 1: Values of Parameters.

Risk-free rate r = .02 The total endowment of time h̄ = 1

Market price of risk θ = .3 Average wage growth µ(w) = .01

Stock-market volatility σ = .2 Wage volatility σ(w) = .03
The total horizon T = 60 Working-Age weight f = 1.784
Retirement timing Tr = 40 Discount Rate (Working) g = .0227
Subjective discount rate b = 0 Discount Rate (Retirement) ḡ = .0234
Relative weight η = 2/3 Relative Risk Aversion R = 4

Tr = 40 means that there is no retirement period in this configuration. The simulation result
in Figure 1 relies on the parameter configurations in the first three rows and T = Tr = 40
without retirement period: the end of working life is also the end of life.

Figure 1: The suicide rates per 100 thousands: simulated (red), its average (yellow), actual
(blue) and its average (green). The vertical axis is the number of suicides againt the the
working year and not the actual age in the horizontal axis. If this representative worker
starts working at the age of 20, she/he is keep working by the age of T = Tr = 60, then exits
from the labor market. We do not model the retirement period. The average simulated and
actual values of suicide rate are very similar. The simulated pattern of suicide is under-stating
the number of suicides in the younger ages and over-stating in the older ages.
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Figure 2: The suicide rates per 100 thousands: simulated (red), its average (yellow), ac-
tual (blue) and its average (green). The wealth process implied from the optimal choice of
consumption and leisure as the underlying asset of suicide option. The vertical axis is the
number of suicides againt the the working year and not the actual age in the horizontal axis.
If this representative worker starded working at the age of 20, she/he is keep working by the
age of 60, then exit from the labor market. We do not model the retirement period. The
simulated pattern of suicide is under-stating the number of suicides in the younger ages and
over-stating in the older ages. Overall, the pattern is similar to the previous one in Figure 1.
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