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Abstract

We develop a new distance-based test of localized knowledge spillovers that embeds

the concept of control patents. Using microgeographic data, we identify localization

distance for each technology class while allowing for spillovers across geographic units.

We revisit the debate by Thompson and Fox-Kean (2005a,b) and Henderson, Jaffe and

Trajtenberg (2005) on the existence of localized knowledge spillovers, and find solid ev-

idence supporting localization even when using fine-grained controls. We further relax

the assumption of perfect controls, and show that our distance-based test detects local-

ization for the majority of technology classes unless hidden biases induced by imperfect

controls are extremely large.
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1. Introduction

Jaffe, Trajtenberg and Henderson (1993, henceforth, JTH) developed a matching rate method

to test localized knowledge spillovers (LKS) as evidenced by patent citations. By controlling

for the preexisting geographic distribution of technological activities, they found evidence

supporting LKS at the state and metropolitan statistical area (MSA) levels. However, their

finding was recently challenged by Thompson and Fox-Kean (2005a, henceforth, TFK). The

major difference between these two studies lies in the selection of control patents. In JTH,

control and citing patents share a technology class at the 3-digit level, whereas in TFK, both

patents share a finer technology subclass at the 6-digit level.1 The latter authors further

restricted to control patents that have any subclass code in common with originating patents,

and found no evidence supporting LKS at the state and MSA levels. The existence of LKS is,

thus, still inconclusive (Henderson, Jaffe and Trajtenberg, 2005).

To settle this debate, we start with the question of whether states and MSAs are rele-

vant spatial units for testing LKS. The matching rate approach by JTH and TFK focuses

on within-state or within-MSA localization while abstracting from the relative position of

those spatial units. Put differently, they assume that the extent of LKS to be limited by

administrative boundaries while making the distance from Boston to New Haven equivalent

to that of Boston to Los Angeles.2 To capture cross-boundary knowledge spillovers, we build

on distance-based kernel-density (K-density) tests of localization developed in the context of

establishment agglomeration by Duranton and Overman (2005, henceforth, DO).3

Our distance-based approach addresses whether knowledge spillovers, as evidenced by

patent citations, are localized, and examines to what extent they are localized (if they are).

In doing so, we consider which technology classes are localized, and identify the localization

1The case-control methods have been applied to detect LKS for almost two decades (e.g., Almeida, 1996;
Agrawal, Kapur and McHale, 2008; Agrawal, Cockburn and Rosell, 2010).

2Note also that spatial units often differ in population and area, so that spatial aggregations tend to mix
different spatial scales. For instance, localization tests at the state level involve comparisons between Rhode
Island and California, whose area is more than 150 times as large. Furthermore, such aggregation often leads
to spurious correlations across aggregated variables, which is known as the Modifiable Areal Unit Problem.

3Their basic idea is to generate the distribution of distances between pairs of establishments in an industry
and to compare it with that of hypothetical industries, in which establishments are randomly allocated across
existing establishment sites, in order to assess the significance of departures from randomness. The DO metric
is used for the analysis of determinants of industry coagglomeration in Ellison, Glaeser and Kerr (2010).
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distance that is specific to the technology class of originating patents. Our key idea is to

generate the distribution of actual citation distances using microgeographic data on inven-

tors, and to compare it with that of counterfactual citation distances. To this end, we first

identify, for each observed cited-citing relationship, a set of control patents that could have

cited the originating patent as in JTH and TFK. From that set of patents, we then randomly

draw counterfactual citations as in DO. We finally detect LKS by comparing the actual and

counterfactual distributions of citation distances. Thus, our novelty lies in developing the

K-density tests with case-controls and applying them to observed cited-citing relationships.4

We obtain the following results. First, distance matters. Our distance-based tests find that,

even when we use 6-digit controls, knowledge spillovers are localized significantly for about

one-third of all 360 technology classes in question. This is in sharp contrast to TFK who used

6-digit controls and found no evidence supporting LKS at the state and MSA levels. In the

3-digit case, more than 70% of 384 technology classes in question exhibit localization, thus

confirming the result by JTH. We further show that, in both cases, the majority of technology

classes displaying localization are localized at least once within 200 km, which corresponds

roughly to the distance between Boston and New Haven.

Second, heterogeneity across technology classes also matters. Our 6-digit analysis reveals

that, while about one-third of technology classes exhibit localization, more than 10% of tech-

nology classes display dispersion. This, together with the 6-digit result in TFK, implies that

aggregating different technology classes can offset the tendency toward localization even when

a substantial number of technology classes display localization at the disaggregate level.

The biases from aggregating spatial units and technology classes are shown to be substan-

tial. To explore the difference between the matching rate and distance-based approaches in

detecting LKS, we conduct class-specific matching rate tests, and compare the number of lo-

calized classes with the corresponding number generated by our distance-based tests. It turns

out that, although the numbers are roughly the same for the 3-digit case, the matching rate

4Kerr and Kominers (2012) apply a similar distance-based method to patent data. However, they detect
localization by using pairwise distances among inventors as have been done by DO in the context of estab-
lishment agglomeration. Their K-density tests thus abstract from the concept of control patents and explicit
cited-citing relationships, both of which are at the heart of our analysis.
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tests underestimate the number of localized classes for the 6-digit case. Indeed, the match-

ing rate tests fail to detect LKS for more than 60% of the technology classes that exhibit

localization by the distance-based tests.

These results rely on the premise that both the 3- and 6-digit controls are perfect. However,

TFK argue that 3-digit patent classes are too broad and noisy for the purpose of identify-

ing control patents, whereas Henderson, Jaffe and Trajtenberg (2005) state that there is no

systematic evidence supporting that the 6-digit subclass classification renders “closer” tech-

nologically matched controls. Therefore, we finally conduct Rosenbaum’s (2002) sensitivity

analysis, provided that neither the 3-digit control nor the 6-digit control is perfect due to

unobserved heterogeneity within classes or subclasses. In doing so, we deal with the 3- and

6-digit controls simultaneously by considering that matching on subclasses implies matching

on classes. This specification is general in that it encompasses the cases analyzed by JTH

and TFK as limiting cases, while allowing for imperfect controls. To our knowledge, no such

attempt has been made so far.

In this generalized framework, we finally show that the majority of technology classes

exhibit localization unless hidden biases induced by imperfect controls are extremely large.5 We

further confirm that, even with imperfect controls, the matching rate tests still underestimate

the percentage of localized technology classes when compared with the distance-based tests.

The rest of the paper is organized as follows. Section 2 describes data and methodology.

Section 3 reports our results. Section 4 generalizes our analysis and Section 5 concludes.

2. Data and methodology

Unlike the matching rate tests at the state and MSA levels, we need to combine patent citations

data and microgeographic data to conduct distance-based tests. Concerning methodology, we

first identify, for each cited-citing relationship, a set of control patents that could have cited the

originating patent to control for the existing geographic distribution of technological activities.

From that set of patents, we then randomly draw hypothetical citations. The counterfactual

5In this generalized framework, where the 3- and 6-digit controls are placed on a common ground, the case
analyzed by TFK constitutes a special case where hidden biases are infinitely large, as shown below.
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citations thus obtained, with which we compare the actual citations to detect LKS, share

common features between the matching rate and the distance-based tests. Hence, we can

make a direct comparison between these two tests.

2.1. Patents and patent citations

Our data are based on the NBER U.S. Patent Citations Data File, which is described in detail

by Hall, Jaffe and Trajtenberg (2001). This data set covers all patent applications between

1963 and 1999 and those granted by 1999, as well as cited-citing relationships for patents

granted between 1975 and 1999.6 For each patent, the list of inventors, the addresses of

inventors, and the technological category are recorded, along with other information such as

the year of application, assignees, and the type of assignees. The detailed information of patent

application month and patent class (3-digit) and subclass (6-digit) codes is supplemented with

the United States Patent and Trademark Office (USPTO) Patent BIB database.7

We begin with 142, 245 U.S. nongovernmental patents that were granted between January

1975 and December 1979. The sampling period is chosen to be comparable to those of previous

studies. We identify patents as “U.S.” if the country of the assignee is the United States. We

observe that 115, 905 (81.5%) of them were cited at least once by other U.S. patents, and we

call them the originating patents. We then identify the citing patents that cited the originating

patents by examining all patents that were granted between January 1975 and December 1999.

As in JTH and TFK, we consider both intra- and inter -class knowledge spillovers. Thus,

citing patents need not belong to the same technology class as their originating patent. In

our data intra-class knowledge spillovers account for 49.0% while the remaining 51.0% being

captured by inter-class knowledge spillovers.8

Finally, we exclude “self-citations” by focusing on knowledge flows between different in-

ventors of different assignees. Accordingly, a citing patent is classified as self-citing (i) if it

6Cited-citing relationships need not represent narrowly defined knowledge spillovers as citations might also
capture knowledge flows driven by priced market transactions. However, as in the existing literature, we follow
the convention that citations are proxies for knowledge spillovers throughout this paper.

7We use the patent classification as of December 31, 1999.
8In that sense, our approach is similar to that of Duranton and Overman (2008), where they use distances

between establishments in vertical-linked industries. Yet, they rely on distances between arbitrary pairs of
establishments in different industries, instead of distances obtained from actual cited-citing relationships.
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had the same assignee as the originating patent that it cited; or (ii) if it was invented by the

same inventor as the originating patent that it cited.9 To distinguish unique inventors, we use

the computerized matching procedure (CMP) proposed by Trajtenberg, Shiff and Melamed

(2006).10 The CMP uses the name of inventors, patent citations, and inventors’ addresses,

while allowing for possible errors in names. We find that 15.0% of citing patents are classified

as self-citations. After excluding self-citations, we obtain 647, 983 citing patents.

2.2. Geographic information

Our distance-based approach requires microgeographic data, namely the locations at which

inventions were created. We identify the location of each invention at the census place level.

The U.S. Census Bureau defines a place as a concentration of population. There are 23, 789

places in the 1990 census, which we use below.11 To be more specific, restricting patent

inventors who reside in the contiguous U.S. area, we first match the address of each inventor

to its 1990 census place by name. If the name match fails, we locate it via the populated

place provided by the U.S. Geographic Names Information System (GNIS). We match the

inventor’s address with the GNIS populated place, which is more finely delineated than the

census place, and then find the census place that is nearest to the identified GNIS populated

place by using their spatial coordination information. This procedure allows us to identify

the 18, 139 census places for 97.0% of all inventors in the sample. The average of within-area

distances for census places is 1.7 km, which is far smaller than those for counties (22.6 km),

Consolidated Metropolitan Statistical Areas (CMSAs) (59.9 km), and states (197.9 km).12

9JTH and TFK regard only (i) as self-citations. Criterion (ii) rules out spurious knowledge spillovers
associated with inventor mobility. Furthermore, in response to Henderson, Jaffe and Trajtenberg (2005), we
exclude control patents that share the same inventors or the same assignees with the originating patents. Note
that one assignee can be a subsidiary of the other. We identify a citation between parent and subsidiary
companies as a self-citation by supplementing our data with name matching results of parent and subsidiary
firms that are available from Bronwyn Hall’s website. We also use SDC Platinum, the Worldwide Mergers
and Acquisitions Database. Among all M&As reported therein, we focus on the cases in which the acquiring
company obtains all of the stock of the target company, and then regard those pairs of two companies as to
be in parent-subsidiary relationships.

10See Nakajima, Tamura and Hanaki (2010) for the implementation detail of the CMP.
11Census places are much more finely delineated than counties (there are 3, 141 counties), but not as small

as zip code areas (there are 29, 470 zip code areas). We could use zip code areas. However, the NBER U.S.
Patent Citations Data File reports zip codes for only 15.4% of all U.S. patent records.

12The distances are computed by the formula in Kendall and Moran (1963), which is presented in Section 2.5.

6



2.3. Control patents and counterfactuals

To test LKS, we must control for the existing spatial distribution of technological activities,

regardless of whether or not citations come from the same technology class as their originating

patent.13 To this end, we start with control patents, proposed by JTH and TFK, which satisfy

the following two conditions. First, control patents should belong to the same technological

area as the citing patent under consideration. JTH select a control patent at the 3-digit level,

whereas TFK construct a finer control at the 6-digit level.14 In what follows, we refer to the

former as a 3-digit control, and call the latter a 6-digit control. Second, a control patent should

be in the same cohort as the citing patent. JTH choose a control patent whose application date

is within a one-month window on either side of the citing patent’s application date. Similarly,

TFK set the application date of a control patent within plus-or-minus six month around that

of the citing patent. Following these studies, we use one-month and six-month windows for

the 3-digit and 6-digit controls, respectively.15

Insert Table 1

Table 1 presents the sample sizes. The first column shows the total numbers of the orig-

inating and citing patents. These numbers include patents with and without controls. In

the second and third columns, the numbers of originating and citing patents having at least

one control are reported. It should be noted that citing patents do not always have controls,

and, even if they do, the control is not necessarily unique for each citing patent. As shown,

60.2% of the citing patents have 3-digit controls. The rate of the citing patents having 6-digit

controls is lower, at 18.7%. The citing patents with no controls assigned (and their originating

patents) are dropped out of the samples.16 As a result, 92.6% of the originating patents remain

“in-sample” for the 3-digit controls, and the corresponding number is 51.0% for the 6-digit

13For instance, if 20% of citations for an originating patent in patent class A are from the same class and
10% are from class B, etc., the idea is to construct a control group, where patent class A accounts for 20%,
class B does for 10%, etc.

14The latter also claim that a control should match the originating patent.
15One minor difference is that we use a fixed application date window within which control patents are

searched, while TFK enlarge it in incremental steps from a one-month window, then a three-month window,
and, if necessary, a six-month window until the control patent is found for each citing patent.

16We also drop technology classes in which originating patents are distributed across less than 10 census
places because we estimate the density of distances for each technology class, and a sufficient number of
location points are needed to obtain well-behaved estimated density functions.
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controls. In the analysis that follows, we use these in-sample patents.

Once the relevant control patents are identified, we can construct the counterfactual cita-

tions, with which we compare the actual citations, as follows. For each observed cited-citing

relationship, we define an admissible patent set that consists of the citing and control patents

at the 3- or 6-digit level, i.e., the patents that either actually cited or could have cited the

originating patent.17 We then allocate a counterfactual citation between the originating patent

and a patent that is randomly drawn from the corresponding admissible patent set (see the

Appendix for an example).

2.4. The matching rate approach

The idea of the matching rate approach is to compare the geographic matching rate of the ac-

tual citations with that of the counterfactual citations. Following JTH and TFK, we define the

matching rate of the actual citations as the proportion of the citing patents whose geographic

units such as states and CMSAs are matched with those of the originating patents. We anal-

ogously define the matching rate of the counterfactual citations by matching geographic units

between an originating patent and a patent that is randomly drawn from the corresponding

admissible patent set. We resample patents many times and generate a simulated distribution

of the counterfactual matching rates.18 We now describe the procedure of our matching rate

test in detail.

Let pc and pr be the population probability that a citing patent is in the same geographic

unit as the originating patent, and the corresponding probability for a randomly drawn patent

from the admissible patent set. We test the null hypothesis H0 : pc = pr (no LKS) against

the alternative hypothesis H1 : pc > pr (significant LKS). Let p̂c be the matching rate of the

actual citations that we observe in the data. Under the null hypothesis, it is not statistically

different from a realization of the counterfactual matching rate, which we denote by p̂r. We

17It should be noted that, in the 6-digit case, we use the admissible patent set that consists only of the
citing and control patents sharing a common technology class with the corresponding originating patent. This
is a logical consequence of the additional restriction in the 6-digit case that originating-citing-control triads of
patents must share at least one patent subclass in common.

18TFK propose a similar random sampling method to construct the matching rate of the counterfactual
citations. They randomly select a patent from the admissible patent set once for each actual citation.
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thus reject the null hypothesis of no LKS if the p-value, Prob(p̂c ≤ p̂r), is less than 5%.

We construct the observed matching rate p̂c as follows. First, for each cited-citing rela-

tionship cij, we consider location match mij between originating patent i and citing patent j,

where mij = 1 if i and j fall into the same geographic unit and mij = 0 otherwise. Second,

the total number of citations is given by N =
∑no

i=1 n
c
i , where no is the number of originating

patents and nc
i is the number of patents that cite originating patent i. Finally, the observed

matching rate is given by the total number of location matches divided by the total number

of citations as

p̂c =
1

N

no∑
i=1

nc
i∑

j=1

mij. (1)

We then construct the distribution of the counterfactual matching rate p̂r as follows. For

each cited-citing relationship cij, we identify the admissible patent set that consists of the

citing patent itself and the associated control patents (see the Appendix for an example).

From the admissible patent set thus defined for each cited-citing relationship cij, we randomly

draw a hypothetical patent to construct a counterfactual citation relationship rij. We then

calculate the counterfactual matching rate, using a formula similar to (1) for the same N .

After running 1000 Monte Carlo simulations, we finally obtain the simulated distribution of

the matching rate {p̂rk}1000k=1 and compute the p-value of the matching rate test by using the

standard percentile method.

One should be careful about multiple inventors per patent. To determine whether or not

a pair of cited and citing patents falls into the same geographic unit, we use the following

two matching methods. Consider, for each cited-citing relationship, all possible pairs of an

inventor of the cited patent and an inventor of the citing patent. The locations of the cited

and citing patents are then matched (i) if the majority of all possible inventor pairs fall into

the same geographic unit (median matching); or (ii) if at least one pair of inventors falls into

the same geographic unit (minimum matching). These matching methods are in accordance

with those used in previous studies. For example, JTH employ a similar method as our median

matching. TFK mention the minimum matching as an alternative to their random matching.
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2.5. The K-density approach

The matching rate approach in the previous subsection focuses on within-state or within-

CMSA localization. However, the extent of LKS is unlikely to be limited by administrative

boundaries. To capture cross-boundary localization, we now develop distance-basedK-density

tests. We address whether knowledge spillovers are localized, and examine to what extent they

are localized. As before, we allocate a counterfactual citation between the originating patent

and a patent drawn randomly from the corresponding admissible patent set. Yet, unlike the

matching rate approach, we compare the distribution of distances between the originating

and citing patents with the counterfactual distribution generated by the randomization. We

then consider the deviation from randomness as evidence of LKS. Our distance-based test uses

the same counterfactuals as the matching rate test, so that we can make a direct comparison

between these two tests for localization.

Such an attempt, however, poses two main difficulties. First, patents can have multiple

addresses because their inventors are not necessarily unique. We thus compute, for each cited-

citing relationship, all possible distances between the inventors of the originating patent and

those of the citing patent, and focus on their median or minimum distance. The distance com-

putation is in line with the median or minimum matching method of the matching rate tests,

respectively, as presented above. We do the same for the counterfactual citation relationship.

Second, because of the data limitation, the location of each inventor is identified at the

census place level. However, census places are not spatial points. This poses a “zero distance”

problem, i.e., even when the actual distance between the originating and citing inventors is not

zero, it is measured to be zero if they happen to live in the same census place. To address this

problem, we consider spatial interaction between the two inventors within the same census

place. Assuming that each census place is a circle, we use the distance between the two

randomly chosen points in census place ℓ with area Sℓ, which is given by [128/(45π)]
√
Sℓ/π

(Kendall and Moran, 1963).

It is also noted that, unlike the previous studies on patent citations, we analyze the local-
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ization distance that is specific to each patent class.19 We thus classify all originating patents

into different patent classes by their primary class. The citing patents that cite each originat-

ing patent may or may not belong to the same class as that originating patent. Taking this

into account, we examine whether each patent class – to which originating patents belong –

displays localization.20

We now describe the detailed procedure of our distance-based test for originating technol-

ogy class A. First, for each cited-citing relationship cij, we compute the great-circle distance

dij between originating patent i and citing patent j, where we consider the minimum or me-

dian distance as mentioned above. Note that citing patents need not belong to technology

class A because we allow for both intra- and inter-class knowledge spillovers as in JTH and

TFK. Second, the total number of citations that the originating patents in technology class A

receive is given by NA =
∑no

A
i=1 n

c
i , where n

o
A is the number of originating patents in technology

class A and nc
i is the number of patents that cite originating patent i. Finally, following DO,

the K-density estimator of citation distance for technology class A at any point d is

K̂A(d) =
1

2hNA

no
A∑

i=1

nc
i∑

j=1

f

(
d− dij

h

)
, (2)

where f is a Gaussian kernel function and h is the bandwidth set as in Silverman (1986).21

Interestingly, expression (2) is a natural extension of the matching rate (1), and implies that,

unlike DO, we consider unidirectional relationships from the inventors of originating patents

to those of citing patents.22

The construction of counterfactuals is the same as that of the matching rate test. For

19Since the degree of localization tends to differ across industries (e.g., Ellison and Glaeser, 1997; Duranton
and Overman, 2005), it seems natural to expect that the extent of LKS can also differ across patent classes.

20This procedure is common regardless of whether we use the 3- or 6-digit controls. In the latter case, we
could examine whether each patent subclass exhibits localization. However, the number of subclasses is about
150, 000, which significantly reduces the number of location points where originating patents in each patent
subclass are distributed. In such a case, we would not obtain well-behaved estimated density functions.

21As in DO, we adopt the reflection method in Silverman (1986) to deal with boundary problems associated
with the fact that distances cannot be negative.

22Kerr and Kominers (2012) recently take a regression approach to cited-citing relationships. In contrast,
we take the K-density approach to cited-citing relationships because expression (2) can be readily comparable
to the matching rate (1). Note that both expressions can be used for the actual and counterfactual citations.
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each cited-citing relationship cij that is used in (2), we identify the admissible patent set that

consists of the citing patent itself and the associated control patents (see the Appendix for an

example). From the admissible patent set thus defined for each cited-citing relationship cij,

we randomly draw a hypothetical patent to construct a counterfactual citation relationship

rij. We then estimate the K-density for the distribution of counterfactual citation distances,

using a formula similar to (2). After running 1000 Monte Carlo simulations, we finally rank

the counterfactual densities at each 10 km in ascending order and select the 5-th and the 95-th

percentiles to obtain a lower 5% and an upper 5% confidence interval that we denote KA(d)

and KA(d), respectively.
23

Detecting localization based on KA(d) and KA(d), however, only allows us to make local

statements at a given distance. We thus finally define the global confidence bands that we use

to detect LKS. Let d̄A be the maximum distance for technology class A.24 We look for the

identical upper and lower local confidence intervals such that, when we consider them across

all distances between 0 and d̄A km, only 5% of our randomly generated K-densities hit them.

Let KA(d) be the upper global confidence band of technology class A. When K̂A(d) > KA(d)

for at least one d ∈ [0, d̄A], this technology class is said to exhibit global localization at a 5%

confidence level. Conversely, the lower global confidence band of technology class A, K
A
(d),

is such that it is hit by 5% of the randomly generated K-densities that are not localized. A

technology class is then said to exhibit global dispersion at a 5% confidence level when K̂A(d) <

K
A
(d) for at least one d ∈ [0, d̄A] and the technology class does not exhibit global localization.

The definition of global dispersion requires no global localization because otherwise dispersion

at large distances could be a consequence of localization at smaller distances, given that

our densities must sum to one. Hence, we define an index of global localization as ΓA(d) ≡

max{K̂A(d)−KA(d), 0}, and an index of global dispersion as ΨA(d) ≡ max{K
A
(d)−K̂A(d), 0}

if
∑

d ΓA(d) = 0 and ΨA(d) ≡ 0 otherwise.

23We also repeated our simulations 2000, 5000, and 10, 000 times for several technology classes, and obtained
very similar results.

24Following DO, we define the maximum distance as the median of all distances of all possible counterfactual
citations for technology class A.
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3. Results

The purpose of this section is threefold. Using the matching rate tests at the aggregate level,

we first replicate the same qualitative features as those of JTH and TFK. We then turn to our

K-density tests, and show that a substantial number of technology classes display localization,

even when control patents are selected at the 6-digit level. We finally explore in details why

the discrepancy arises between these two tests by comparing our class-specific distance-based

tests with the matching rate tests at the disaggregate level.

3.1. The matching rate tests

Table 2 reports the results of the matching rate tests for the state, CMSA and county levels.25

Following JTH and TFK, the matching rate tests are implemented at the aggregate level en-

compassing all technology classes. Using the 3- and 6-digit controls, we compare the observed

matching rate with the average of the counterfactual matching rates for each spatial scale.

The standard errors of the counterfactual matching rates are computed by simulation with

1000 replications. In the 3-digit case, the observed matching rates are significantly higher than

the counterfactual ones for all spatial scales. We thus reject the null hypothesis of no LKS at

a 5% significance level, and find solid evidence of LKS. Yet, the null hypothesis is not rejected

for the 6-digit controls. These results replicate the qualitative features in JTH and TFK.

Insert Table 2

3.2. The K-density tests

We now describe the results of the K-density tests. Let A be the set of all technology classes.

For technology class A ∈ A , knowledge spillovers are said to exhibit localization at distance

d if ΓA(d) > 0, whereas they are said to exhibit dispersion at distance d if ΨA(d) > 0. We

define a technology class A as having LKS if ΓA ≡
∑

d ΓA(d) > 0, and as having dispersed

knowledge spillovers if ΨA ≡
∑

dΨA(d) > 0. Finally, we use L1 = {A ∈ A |ΓA > 0} and

D1 = {A ∈ A |ΨA > 0} to denote the sets of technology classes displaying localized and

dispersed knowledge spillovers, respectively. Table 3 presents the results. First, concerning

25As in TFK, we use 16 CMSAs as defined in 1981 by excluding Puerto Rico.
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the 3-digit case, we find LKS for the majority of technology classes, with about 70% being

localized for both the median and minimum distances. These results are in line with those

obtained by JTH. Turning to the 6-digit controls, more than 30% of technology classes exhibit

LKS regardless of whether we use the median or minimum distance. Although fewer classes

exhibit localization in the 6-digit case, we obtain solid evidence for LKS. This is surprising

given that TFK find no evidence supporting localization at the state and CMSA levels.

Insert Table 3

To investigate more closely the scope of LKS, let L1(d) = {A ∈ A |ΓA(d) > 0} be the set of

technology classes that exhibit localization at distance d. Figure 1 illustrates the distributions

of |L1(d)| for the 3- and 6-digit controls. In each case, there is no substantial difference

between the median (solid) and the minimum (dotted) distance methods. The number of

localized technology classes is greater at smaller distances for both the 3- and 6-digit controls.

The degree of localization decreases as the distance from the originating patents increases, thus

suggesting that knowledge spillovers decay with distance. This result is consistent with the

assumption in the recent theory of spatial development (Desmet and Rossi-Hansberg, 2009).26

Insert Figures 1 and 2

We can delineate a boundary within which knowledge spillovers are localized. Figure 2

shows the percentages of technology classes displaying localization at least once within distance

d. There are substantial differences between the 3- and 6-digit cases. However, no matter which

control is used, more than half of the technology classes displaying LKS are localized at least

once within about 200 km, which corresponds roughly to the distance between Boston and

New Haven. We can also consider 1200 km as the widest extent of LKS because more than

95% of all localized classes are localized by this distance, regardless of which controls are used.

Finally, we examine heterogeneity in the patterns of knowledge spillovers across technology

classes (see the working paper version, Murata et al., 2011, for further discussion). Figure 3

illustrates the distributions of ΓA and ΨA for the median distance case.27 Interestingly, for

26There is no clear pattern for dispersed knowledge spillovers, although we observe some significant dispersion
across various distances. Such dispersion of citing inventors may arise, for instance, when the benefits of their
pooling is dominated by the costs of their poaching from firms’ perspectives (Combes and Duranton, 2006).

27The results are fairly robust regardless of the choice between the median and the minimum distances. The
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the 3-digit controls, the fraction of localized technology classes outweighs substantially that

of dispersed technology classes. By contrast, in the 6-digit case, the corresponding difference

between the localized and dispersed technology classes is not so large.28

Insert Figure 3

3.3. Comparison

We have shown that, unlike the matching rate tests, the K-density tests provide solid evidence

for LKS, even for the 6-digit controls. We now highlight the differences between these two

approaches. We argue that the matching rate tests using the 6-digit controls underestimate

localization of knowledge spillovers due to the following two “aggregation” problems.

The first problem is “technological aggregation”. As shown above, the K-density tests

reveal considerable heterogeneity across technology classes in whether knowledge spillovers

are localized or dispersed. This is particularly so, in the 6-digit case, where the distributions

of ΓA and ΨA are roughly similar. Accordingly, if these heterogeneous classes are pooled, as

in the conventional matching rate tests, both localization and dispersion can be cancelled out

with each other, and, thus, may leave no evidence of localization at the aggregate level.

To confirm this idea, we implement class-specific matching rate tests that are analogous

to class-specific distance-based tests. Specifically, we test the hypothesis of no LKS at the 5%

significance level for each technology class. Let L1 = {A ∈ A |pcA > prA} denote the set of

technology classes that exhibit localization by the class-specific matching rate tests, where pc

and pr depend on technology class A. Table 4 shows that, for the 3-digit controls, LKS are

detected for 270 or 266 technology classes, depending on whether the spatial units are states

or CMSAs. Since these numbers are fairly close to the 275 localized classes, obtained from

the K-density tests in Table 3, we conclude that the matching rate and the K-density tests

latter results are available upon request from the authors.
28We can further explore heterogeneity in technology classes. Since originating technology classes have

different ratios of inter-class to intra-class spillovers, we can sort those classes in descending order of the
fraction of inter-class spillovers, and divide them into two – the top 50% and bottom 50% groups of the
distribution. We then find that the distance-based tests with the 6-digit controls are less likely to detect
localization for technology classes with greater inter-class spillovers when compared to those with the 3-digit
controls. The same applies when focusing on the top and bottom 25% technology classes with respect to the
fraction of inter-class spillovers. Both results are available upon request from the authors.
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detect roughly the same number of localized technology classes for the 3-digit controls.29

However, for the 6-digit controls, the class-specific matching rate tests detect a substantially

smaller number of localized technology classes than the K-density tests. More concretely, only

47 to 69 technology classes display localization in the former, depending on the spatial units,

whereas more than 100 technology classes are localized in the latter tests. Yet, even in the

class-specific matching rate tests, the percentages of technology classes with LKS remain in the

range between 13% and 20%. Hence, we find evidence that knowledge spillovers are localized

for nonnegligible technology classes even in the 6-digit case.

Insert Table 4

The second problem of the matching rate tests is “geographic aggregation”. The matching

rate tests allocate inventors to spatial units such as states and CMSAs. As DO pointed out,

this aggregation deals with administrative units symmetrically, so that inventors in neighboring

spatial units are treated in exactly the same way as inventors at the opposite ends of a country.

This creates a downward bias when dealing with cross-border LKS. The distance-based tests

have an advantage in that they do not overlook such knowledge flows.30

To investigate this possibility, we focus on the discrepancy between the matching rate and

the K-density tests for the 6-digit controls. We first implement the matching rate tests for

the two groups of technology classes, that is, the set of localized technology classes by the

K-density tests, L1 = {A ∈ A |ΓA > 0}, and the set of nonlocalized technology classes, L0 =

{A ∈ A |ΓA = 0}. We then define L1
0 = {A ∈ A |pcA = prA and ΓA > 0} as the set of technology

classes where the K-density tests detect significant localization, while the matching rate tests

do not. Thus, L1
0 ⊆ L1. Similarly, we define L0

1 = {A ∈ A |pcA > prA and ΓA = 0} ⊆ L0.

Table 5 provides the results. First, looking at the results of |L1
0| in the first and second

rows, a large number of technology classes that are detected as localized by theK-density tests

are not identified as localized by the matching rate tests. We thus find that the matching rate

29Table 4 shows the results for the median matching case. The results for the minimum matching case are
qualitatively similar, and, thus, are omitted. They are available upon request from the authors.

30In this respect, the regression approach proposed in the recent discussion paper by Singh and Marx (2012)
is similar to our approach. In particular, they have found that knowledge spills over across administrative
boundaries even when country and state borders are controlled for. We thank a referee for bringing our
attention to this related paper.

16



tests underestimate LKS. The number of underestimated technology classes ranges from 67

to 89, depending on the spatial units. These biases are substantial since the percentage of

underestimated classes is as high as 61% to 62% at the state and CMSA levels, respectively,

and it amounts to 81% at the county level. Moving to the results of |L0
1| in the third and fourth

rows, a number of technology classes that are not detected as localized by the K-density tests

are identified as localized by the matching rate tests. Thus, the matching rate tests can also

overestimate LKS. Yet, the numbers of underestimated localized classes, |L1
0|, much outweigh

those of overestimated localized classes, |L0
1|. The difference ranges from 40 to 62, which

explains the difference between |L1| in Table 3 and |L1| in Table 4 for the 6-digit controls.

Insert Table 5

We can investigate where we observe the downward biases of the matching rate tests using

the 6-digit controls in detecting LKS. Figure 4 plots |L1
0(d)| for each distance d, where L1

0(d) =

{A ∈ A |pcA = prA and ΓA(d) > 0}. The downward biases tend to be most substantial around

200 km or 500 km, depending on whether we focus on counties or on CMSAs and states. For

example, the county-level matching rate tests fail to detect localization for about 40 technology

classes at 200 km. This underestimation is inherent in their construction as the matching

rate tests cannot discern knowledge spillovers that travel longer than their predetermined

administrative boundaries. For example, given that the average of within-area distances for

the U.S. states is 197.9 km, LKS whose scope significantly exceeds that distance are unlikely

to be captured by the state-level matching rate test. In this light, the matching rate tests with

smaller spatial units, which have the smaller average of within-area distances, tend to more

severely underestimate LKS that can be detected by the K-density tests.

Insert Figure 4

In order to further elucidate the biases of the matching rate tests from omitting cross-

boundary knowledge spillovers, we conduct augmented matching rate tests in which a pair of

patents are counted as geographically matched if they are either in the same geographic unit,

or in the adjacent units. The results are presented in Figure 5, where we plot in the solid line

the number of technology classes, |L1
0(d)|, for which the K-density tests detect localization at
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each distance d while the augmented matching rate tests do not. For comparison, we draw

the results for the original matching rate tests in the dotted line.31

The downward biases of the original matching rate tests are alleviated as the augmented

matching rate tests partially capture localization across administrative boundaries. The bias

reduction is most significant around 400 km at the state level, and it is around 200 km at the

county level. Yet, the augmented matching rate tests still fail to detect a significant fraction of

localized technology classes. This provides a rationale for employing the distance-based tests,

rather than the matching rate tests, no matter whether to include neighboring units or not,

in order to detect LKS.

Insert Figure 5

In summary, the existing matching rate tests systematically understate LKS. We explain

this by two aggregation problems, namely, technological and geographic aggregations. If we

control for heterogeneity in localization and dispersion by disaggregating technology classes,

the matching rate tests provide evidence of LKS for a fraction of technology classes. Yet, they

still fail to identify a substantial number of localized technology classes that are detected by

the distance-based K-density tests. Our analysis also suggests that the matching rate tests

with smaller administrative units tend to exacerbate the underestimation problem. In view

of this, the geographic aggregation problem with the matching rate tests cannot be resolved,

even when taking smaller administrative units such as counties. Rather, in that case, the

downward biases become more substantial.

4. Sensitivity analysis

We have so far constructed counterfactual citations by drawing patents randomly from the

admissible patent set. This amounts to assuming that citing and control patents are equally

likely to cite the originating patent (see the Appendix for an example of citation probabil-

ities). This assumption relies on the premise that the control patents perfectly mimic the

citing patents, except that the former do not cite the originating patents while the latter do.

31The augmented matching rate tests are performed at the state and county levels, but not at the CMSA
level, because most CMSAs are not adjacent with each other.
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However, TFK argue that the 3-digit patent classes are too broad and noisy for the purpose of

identifying control patents, whereas Henderson, Jaffe and Trajtenberg (2005) state that there

is no systematic evidence supporting that the 6-digit subclass classification renders “closer”

technologically matched controls.

This section generalizes our analysis, provided that neither the 3-digit controls nor the

6-digit controls are perfect. As we will illustrate in Figure 6 below, the generalized framework

relies on the unit simplex regarding citation probabilities. The simplex includes the previous

JTH and TFK cases with perfect controls as a single point (i.e., the point denoted by either

JTH or TFK). Furthermore, we will show that more general cases with imperfect controls

can be depicted as a hexagon, instead of a single point, on the simplex. The goal of this

section is to conduct the distance-based tests for each vertex of the hexagon and to create

the bounds of the percentage of localized technology classes under imperfect controls. We are

particularly interested in whether the lower bound exceeds 50%, i.e., whether the majority of

technology classes are localized.

The assumption that the 3- and 6-digit controls are imperfect is relevant because, as argued

in Henderson, Jaffe and Trajtenberg (2005), it is exceedingly difficult to perfectly identify

anything akin to well-circumscribed technologies by using the USPTO patent classification

system only.32 Thus, the patent classification system, no matter how strict the criteria, can be

used as just a proxy for the true technological environment. Hence, there may exist unobserved

factors in matching between the citing and control patents.

To address how sensitive our localization results are to various magnitudes of unobserved

factors, we perform Rosenbaum’s (2002) sensitivity analysis.33 More specifically, we recon-

struct counterfactual citations in the presence of imperfect controls, and show that citing and

control patents need not be drawn with equal probability. Using these generalized counter-

32Henderson, Jaffe and Trajtenberg (2005) state that “the patent classification system has been morphing
and growing over time in response to the evolving needs of patent examiners faced with fast-changing tech-
nologies ... the subclass classification layer has changed quite rapidly, and it consists by now of about 150, 000
patent subclasses”. Moreover, the USPTO patent classification system is not the unique system for classifying
a myriad of patents. The International Patent Classification (IPC) provides a different classification system.

33See Imbens (2003), Altonji, Elder and Taber (2005) or Ichino, Mealli and Nannicini (2008) for recent
applications of Rosenbaum’s sensitivity analysis to program evaluations.
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factual citations, we conduct both the matching rate and distance-based tests, where we use

the median matching and median distance, respectively. In doing so, we deal with the 3- and

6-digit controls simultaneously by considering that matching on subclasses implies matching

on classes. This approach encompasses our previous analysis as limiting cases, and provides

some robust bounds of localization results. In particular, we obtain the lowest possible per-

centage of localized technology classes for a given magnitude of hidden biases, and show that

the majority of technology classes exhibit localization unless the magnitude of hidden fac-

tors is extremely large. We further confirm that, even with imperfect controls, the matching

rate tests systematically underestimate the percentage of localized technology classes when

compared with the distance-based tests.

To see this, we first restate the tests of LKS in terms of matching estimators.34 Let m

be a dummy variable indicating whether a pair of patents match at the same geographic unit

or not. Denote by t a treatment assignment dummy that takes one if there is a citation

link between a pair of patents. Then, the matching rate test measures the mean difference

of the match variable m between a treatment group (t = 1) and a non-treatment group

(t = 0), conditional on the propensity score. That is, we compare E(m|t = 1, p(x)) with

E(m|t = 0, p(x)), where x is a vector of technology class dummies, and p(x) is the propensity

score defined as the probability that the patent with technology class x receives treatment.

Similarly, letting d be the geographic distance between a pair of patents, the distance-based

test detects any significant difference in the density at distance d between treatment and non-

treatment groups, conditional on the propensity score. That is, we compare K(d|t = 1, p(x))

with K(d|t = 0, p(x)), where K is a conditional density function of citation distance d.

The basic premise of these localization tests is the conditional independence assumption,

i.e., the outcomes, m and d, are independent of treatment assignment t, conditional on the

technology class x. If this assumption holds, then the potential outcome is independent of

treatment, conditional on the propensity score p(x) (see, e.g., Angrist and Pischke, 2009;

Wooldridge, 2010). However, if patent classes fail to control technological activities, the treat-

34A similar idea can be found in Thompson and Fox-Kean (2005b).
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ment assignment is influenced by hidden factors. Then, a pair of patents having the same

technology class x have different probabilities p(x) of receiving treatments. Accordingly, the

outcomes between the treatment and non-treatment groups are not comparable, and the lo-

calization tests will be biased (see, e.g., Imbens, 2004).

4.1. The case with a single control group

Consider an admissible patent set that consists of the citing and control patents that share

the same 3-digit patent class. In general, each citing patent has multiple control patents,

but, for the moment, we assume that the control patent is unique, so that the set is given by

{b, c}, where b denotes the 3-digit control patent corresponding to citing patent c. Following

Rosenbaum (2002), the treatment assignment probability of a patent in the admissible patent

set conditional on technology class xr is given by

pr = Prob(tr = 1|xr) = F (κ(xr) + λur), (3)

where κ is an unknown function of technology class, ur ∈ [0, 1] is an unobserved factor, λ is

the effect of ur on the citation probability, and F is the logistic distribution function. As the

control patent b and the citing patent c share the same technology class, xb = xc = x must

hold. Hence, the assignment probability pr is nothing but the propensity score p(x).

If there is no hidden bias (λ = 0), the treatment assignment probabilities are the same

between citing and control patents, pb = pc = F (κ(x)), because xb = xc = x. This provides

a rationale for why we draw a hypothetical patent randomly from the admissible patent set

with equal chances. However, if hidden bias exists (λ ̸= 0), the difference in unobservables,

ub ̸= uc, implies different assignment probabilities for citing and control patents, pb ̸= pc. We

take this into account in the modified simulation process by drawing citing and control patents

from the admissible patent set with different probabilities, reflecting the magnitudes of hidden

biases.
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4.2. The case with multiple control groups

So far, we have illustrated the effect of hidden biases on the localization tests in the case of

a single control group (either the 3- or 6-digit control). We now turn to a general class of

Rosenbaum’s sensitivity analysis that encompasses multiple control groups (both the 3- and

6-digit controls). Let b3 be the set of 3-digit controls that match the citing patent c at the

3-digit level. We allow the number of controls to be multiple, n3 = |b3|. Note that a pair of

patents that match at the 6-digit level also match at the 3-digit level by construction of the 3-

and 6-digit codes. We thus have b3 = b6∪b3\6, where b6 is the set of 6-digit controls and b3\6

is the set of controls that match the citing patent at the 3-digit level but not at the 6-digit

level.35 Let n6 = |b6| and n3\6 = |b3\6| with n3 = n6 + n3\6, n6 ≥ 1 and n3\6 ≥ 1. Then, the

admissible patent set at the 3-digit level is given by {b6,b3\6, c}.

Let p6, p3\6, and pc be the treatment assignment probabilities for b6, b3\6, and citing

patent c, respectively. Since the originating patent could have been cited by any patent in the

admissible patent set, the treatment assignment probabilities must satisfy the restriction:

n6p6 + n3\6p3\6 + pc = 1. (4)

When the 3-digit control is perfect, p6 = p3\6 = pc holds, whereas we have p6 = pc but p3\6 ̸= pc

when the 6-digit control is perfect. Each control patent is thus comparable to the citing patent

in some ways but need not be in other ways. Rosenbaum (2002, Ch. 7) calls this property

“partial comparability”.

Following Rosenbaum (2002) we express partial comparability as a restriction on hidden

factors in the treatment assignment probabilities (3). Let x6 and x3\6 be 3-digit technology

class dummies for b6 and b3\6, respectively. Since any patent in the admissible patent set

shares the same 3-digit code, the observed factors are perfectly comparable, i.e., x6 = x3\6 = xc.

35In this sensitivity analysis with multiple control groups, we remove the restriction, which is applicable only
to the 6-digit controls, that control patents must share any subclass in common with originating patents. This
allows us to analyze both the 3- and 6-digit controls on a common ground. Alternatively, one could impose
the restriction that the 3-digit controls must also share any subclass in common with originating patents. Yet,
this restriction makes b3 for the sensitivity analysis very different from the set of JTH’s controls. Indeed, b3

contains only about one percent of the original 3-digit controls that we have used in the previous sections.
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In contrast, the unobserved terms are partially comparable. As in Rosenbaum (2002), ur is

given by a weighted sum of unobserved factors, vr ∈ [0, 1] and wr ∈ [0, 1], as ur = (1− ϕ)vr +

ϕwr, where ϕ ∈ [0, 1]. We impose the restriction w6 = wc, while allowing for w3\6 ̸= wc. In

words, the 6-digit controls and the citing patent share some unobserved similarities that are

not shared by the 3-digit controls.

The partial comparability parameter ϕ plays a role in reducing uncertainty in hidden

factors. To see this, letting qr ≡ pr/(1 − pr) and using (3), we compute the odds ratios:

q6/qc = exp [λ(1− ϕ)(v6 − vc)]; q3\6/qc = exp [λ(u3\6 − uc)]; and q6/q3\6 = exp [λ(u6 − u3\6)].

Since 0 ≤ u, v ≤ 1, the bounds of the odds ratios are given by

Λϕ−1 ≤ q6
qc

≤ Λ1−ϕ (5)

Λ−1 ≤ q3\6
qc

≤ Λ (6)

Λ−1 ≤ q3\6
q6

≤ Λ, (7)

where Λ = exp(λ). Since Λ1−ϕ ≤ Λ for 0 ≤ ϕ ≤ 1, the bounds of q6/qc are narrower than the

others due to the restriction w6 = wc.

Figure 6 depicts feasible probability distributions (p3\6, p6, pc) implied by the bounds of

the odds ratios (5)–(7) on the simplices for different values of parameters (Λ, ϕ), where we set

n6 = n3\6 = 1 for illustrative purposes. When Λ = 1, only p3\6 = p6 = pc = 1/3 — the centroid

of the equilateral triangle — is feasible regardless of the value of ϕ. As denoted by JTH in

Figure 6 (a), this point corresponds to the JTH case, where the 3-digit control and citing

patent are equally likely to cite the originating patent. In contrast, when ϕ = 1 and Λ = ∞,

the feasible probability set is given by the line segment such that {(p3\6, p6, pc)|p6 = pc}, i.e.,

the 6-digit control and citing patent cite the originating patent with equal likelihood. Indeed,

TFK explore the admissible patent set corresponding to one of the end points of the segment.

As denoted by TFK in Figure 6 (d), this point implies p3\6 = 0 and p6 = pc = 1/2.

Insert Figure 6

We consider a more general case where 1 ≤ Λ ≤ ∞ and 0 ≤ ϕ ≤ 1 to examine how sensitive
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our results of LKS are to various values of parameters (Λ, ϕ). Then, as seen in Figures 6 (b)

and (c), the set of feasible probability distributions can be depicted as a hexagon with six

vertices, each of which is characterized by a pair of bounds given by (5)–(7). For each vertex,

we can obtain the treatment assignment probabilities by noting that (4) can be rewritten as

n6

(
q6

1 + q6

)
+ n3\6

(
q3\6

1 + q3\6

)
+

qc
1 + qc

= 1. (8)

First, to obtain vertex 1⃝ in Figures 6 (b), consider the upper bounds of (5) and (6), i.e.,

q6/qc = Λ1−ϕ and q3\6/qc = Λ. Plugging these expressions into (8) and rearranging the terms

yield the cubic equation for qc: A3(qc)
3 + A2(qc)

2 + A1(qc) + A0 = 0, where the coefficients

are given by: A3 > 0; A2 > 0; A1 > 0; and A0 < 0. We can show that the equation has the

unique solution for qc ≥ 0. Given the solution qc, we find q6 = Λqc and q3\6 = Λ1−ϕqc. The

assignment probability pr is then computed by pr = qr/(1+ qr). The assignment probabilities

for the other five vertices are analogously obtained.36 To obtain the bounds of the percentage

of localized technology classes, we finally conduct the matching rate and distance-based tests

of localization for each set of assignment probabilities associated with each vertex.

4.3. Results

Figure 7 presents the sensitivity analysis for the K-density tests. Each panel illustrates, for a

fixed value of Λ, the estimated percentages of localized technology classes with different values

of ϕ. The six lines in each panel correspond to the vertices of the hexagon in Figure 6. As Λ

increases, the difference between the upper and lower bounds of localized technology classes

gets larger, reflecting increasing uncertainty in the admissible patent set. If there were no

hidden bias (Λ = 1), localization would be observed for about 70% of technology classes (not

graphed), which is comparable to the previous localization result for the 3-digit controls.

Insert Figures 7 and 8

Figure 8 presents the sensitivity analysis for the matching rate tests at the state level. The

overall patterns are roughly similar to those for the K-density tests. However, for a given

36See the working paper version of our paper, Murata et al. (2011).

24



set of parameter values, (Λ, ϕ), the matching rate tests yield lower percentages of localized

technology classes than the K-density tests. In particular, we find that the underestimation is

more noticeable for larger hidden biases. For example, when Λ = 16, the lower bound for the

matching rate tests is 50%, whereas that for the K-density tests is 56%.37 This confirms our

previous finding that, with the 6-digit controls, the matching rate tests understate LKS. Our

underestimation result thus remains true, even with a more general choice of control patents.

Figures 7 and 8 show that the lower bound of the percentage of localized technology classes

decreases as the magnitude of hidden biases, Λ, increases. Figure 9 further investigates this

relationship. For a given value of Λ, the worst-case scenario bound is computed as the lowest

percentage of localized technology classes within the range of ϕ ∈ [0, 1].38 As shown, the worst-

case scenario bound for the matching rate tests is uniformly lower than that for the K-density

tests. Again, the matching rate tests understate LKS. Focusing on the K-density tests, the

worst-case scenario bound exceeds 50% even at Λ = 25. Thus, even if we allow for significant

unobserved factors that make the odds of receiving a citation differ by a factor of 25 between

the actual citing patents and the control patents – an extreme departure from no hidden factor

– LKS remain dominant. In this light, the K-density tests with the 6-digit controls, which

show that only about 30% of technology classes are localized, are rather extreme because they

constitute a limiting case of the worst-case scenario bound when Λ → ∞. In a nutshell, our

sensitivity analysis provides solid evidence of localization unless hidden biases are extremely

large.

Insert Figure 9

5. Conclusion

We have proposed a distance-based approach to LKS and revisited the recent debate by

Thompson and Fox-Kean (2005a,b) and Henderson, Jaffe and Trajtenberg (2005) on the ex-

istence of LKS. Our concern has been two aggregation problems, namely technological and

37We also conduct the sensitivity analysis at the CMSA and county levels. The results are qualitatively
similar to those at the state level, although the percentages of localized technology classes are somewhat
smaller for more disaggregated geographic units: 47% at the CMSA level; and 46% at the county level. The
more detailed results are available from the authors upon request.

38Our worst-case scenario bound is related to the bounding approach proposed by Manski (2007).
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geographic aggregations, both of which are ignored in that literature. Overcoming these two

problems, our distance-based tests have found solid evidence supporting LKS for a substantial

number of technology classes, even when the 6-digit controls are used. At the same time,

nonnegligible technology classes exhibit dispersion, thus implying considerable heterogeneity

across classes. We show that the class-specific matching rate tests for the 6-digit controls

understate the number of localized technology classes that are detected by the distance-based

tests. These aggregation biases may thus explain why the matching rate tests, implemented

by TFK, could not find any significant evidence for intranational knowledge spillovers.

To compare our distance-based tests with the conventional matching rate tests by JTH and

TFK, we have relied on typical case-control methods by specifying the technology level at which

control patents are selected. However, as discussed by Thompson and Fox-Kean (2005a,b) and

Henderson, Jaffe and Trajtenberg (2005), neither the 3-digit control nor the 6-digit control

is perfect due to unobserved heterogeneity within classes or subclasses. Therefore, we have

developed a new framework to detect localization even when these controls are imperfect. It

is worth emphasizing that, even with imperfect controls, our sensitivity analysis shows that

the majority of technology classes exhibit localization. Since our approach does not require

additional data such as the information on examiner added citations, it can be readily used to

settle the debate over the existence of LKS between JTH and TFK who rely on the 1975-1999

data for which that information is not available.39

Finally, following JTH and TFK, we have abstracted from underlying forces that generate

LKS. Kerr and Kominers (2012) have recently made an important attempt to provide a micro-

foundation capturing benefits and costs of interactions that determine the extent of knowledge

flows and the resulting shapes of agglomeration clusters. Developing theoretical frameworks

that can account for LKS is left for future research.

39To cope with imperfect controls, Thompson (2006) develops an alternative way that does not involve case
controls. However, this requires more recent data that can distinguish citations added by inventors from those
added by examiners. Although Thompson (2006) shows that inventor citations are more likely to match the
state or CMSA of their originating patents than examiner citations, this result may be biased as well, given
our result that the matching rate tests are subject to the two aggregation problems.
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Appendix. The admissible patent set: An example

Consider originating patent 4164057 (Food casing stuffing sizing control method) applied in October

1977 for technology class 452 (Butchering) and subclass 38 (Sizing ring). It received a citation from

patent 4649602 (Stuffing method, apparatus and article for use therewith) applied in July 1986 for

technology class 452 and subclass 38.

For this citing patent, we find two patents that share the same 3-digit code but do not cite the

originating patent, namely, patent 4662028 (Apparatus for splitting animal heads) applied in July

1986 for technology class 452 and subclass 160 (Cutting longitudinally through body or body portion)

and patent 4683617 (Disposable tension sleeve for a stuffing machine) applied in August 1986 for

technology class 452 and subclass 38.

For the cited-citing relationship 4164057-4649602, the admissible patent set can be defined as

follows. In the 3-digit case, the set includes citing patent 4649602 itself and control patents 4662028

and 4683617 because they share the same technology class 452. These patents in the admissible patent

set {4649602, 4662028, 4683617} are equally likely to cite the originating patent with probabilities

being (1/3, 1/3, 1/3).
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In the 6-digit case, the admissible patent set includes citing patent 4649602 and control patent

4683617. However, the set does not include patent 4662028 because it does not belong to subclass

38. The two patents in the admissible patent set {4649602, 4683617} are equally likely to cite the

originating patent with probabilities being (1/2, 1/2). In both the 3- and 6-digit cases, we draw

hypothetical patents randomly from the respective admissible patent set with equal probability.

The admissible patent set for the sensitivity analysis in Section 4 consists of patents 4649602,

4662028, and 4683617 as we encompass the 3- and 6-digit cases. Unlike the previous cases, however,

our sensitivity analysis allows for different probabilities across {4649602, 4662028, 4683617} to be

drawn as hypothetical patents. The probabilities depend on the parameter for the magnitude of

hidden biases Λ and the partial comparability parameter ϕ as explained in Section 4.2.

Tables and figures.

Table 1: Sample Patent Sizes

Total 3-digit 6-digit
Originatings 115,905 107,561 59,168
Percent (100.00) (92.64) (51.04)

Citings 647,983 390,104 120,876
Percent (100.00) (60.20) (18.65)

Controls — 33,472,826 941,532
Notes: The first column reports the total numbers of the
originating and citing patents, whereas the second and
third columns report the numbers of the originating and
citing patents having at least one control.

Table 2: Matching Rate Test Results

3-digit Control 6-digit Control
Median Minimum Median Minimum

State Observed Rate (%) 12.53* 13.54* 13.38 14.31
Counterfactual Rate (%) 9.33 10.16 13.45 14.49
Std. Error (0.04) (0.04) (0.07) (0.06)

CMSA Observed Rate (%) 9.24* 10.29* 10.12 11.18
Counterfactual Rate (%) 6.54 7.32 10.33 11.37
Std. Error (0.03) (0.03) (0.06) (0.06)

County Observed Rate (%) 4.08* 5.27* 4.34 5.62
Counterfactual Rate (%) 2.54 3.31 4.63 5.88
Std. Error (0.02) (0.02) (0.04) (0.05)

Notes: ∗ denotes statistically significant at 5% level.
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Table 3: K-density Test Results

3-digit Control 6-digit Control
Median Minimum Median Minimum

All Classes |A | 384 384 360 360
Localized Classes |L1| 275 273 109 109
Dispersed Classes |D1| 39 40 41 51
|L1|/|A | × 100 (percent) (71.61%) (71.09%) (30.28%) (30.28%)
Notes: |L1| is the number of technology classes that exhibit localized knowledge spillovers,
and |D1| is the number of technology classes that exhibit dispersed knowledge spillovers.

Table 4: Matching Rate Test Results for Disaggregated Technology Classes

3-digit Control 6-digit Control
State CMSA County State CMSA County

All Classes |A | 384 384 384 360 360 360
Localized Classes |L1| 270 266 247 68 69 47
|L1|/|A | × 100 (percent) (70.31%) (69.27%) (64.32%) (18.89%) (19.17%) (13.06%)
Notes: |L1| is the number of technology classes that exhibit localized knowledge spillovers.
All the tests are based on the median distance.

Table 5: Matching Rate Tests Conditional on K-density Tests for 6-digit Controls

State CMSA County
|L1

0|: pcA = prA and ΓA > 0 67 68 89
|L1

0|/|L1| × 100 (percent) (61.47%) (62.39%) (81.65%)
|L0

1|: pcA > prA and ΓA = 0 26 28 27
|L0

1|/|L0| × 100 (percent) (10.36%) (11.16%) (10.76%)

Notes: |L1| is the number of technology classes that the K-density tests detect
localization while |L0| is the number of technology classes that the K-density
tests do not detect localization. |L1

0| is the number of technological classes for
which the K-density tests detect localization while the matching rate tests do
not. |L0

1| is the number of technology classes for which the matching rate tests
detect localization while the K-density tests do not. All the tests are based on
the median distance.
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Figure 1: Distance Distribution of the Numbers of Localized Technology Classes. The solid and
dotted lines represent the results for the median and minimum distance methods, respectively.
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Figure 2: Percentage of Localized Technology Classes within Each Distance. The solid and
dotted lines represent the results for the median and minimum distance methods, respectively.
The 50% and 95% levels of localized technology classes are depicted by the thin horizontal
lines.
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Figure 3: Distributions of Localization and Dispersion Indices. The distributions of localiza-
tion indices (ΓA) for the 3- and 6-digit controls are shown in (a) and (b). The distributions of
dispersion indices (ΨA) for the 3- and 6-digit controls are shown in (c) and (d). All the tests
are based on the median distance.
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Figure 4: Distance Distribution of |L1
0(d)| for 6-digit Controls. |L1

0(d)| is the number of
technology classes for which the K-density tests detect localization at distance d while the
matching rate tests do not. All the tests are based on the median distance.
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Figure 5: Distance Distribution of |L1
0(d)| for the Neighboring Region Augmented Tests. All

the tests are based on the median distance with 6-digit controls.
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Figure 6: Feasible Probability Sets for Various Sensitivity Parameters. The probability sim-
plices of (p3\6, p6, pc) are depicted, where the vertices are given by P3\6 = (1, 0, 0), P6 = (0, 1, 0),
and Pc = (0, 0, 1). The sets of feasible probability distributions are given by the shaded
hexagons, and each of the six vertices is characterized by a pair of bounds given by Eq. (5)-
(7). The point denoted by JTH in (a) is the centroid (1/3, 1/3, 1/3) of the probability sim-
plex, which is the case analyzed by JTH. The point denoted by TFK in (d) corresponds to
(0, 1/2, 1/2), which is the case analyzed by TFK.
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(d) Λ = 16

Figure 7: Sensitivity Analysis: K-density Tests. The upper and lower bounds for the percent-
ages of localized technology classes are plotted for various sensitivity parameters. Cases 1-6
refer to the corresponding vertices of the hexagon in Figure 6.
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Figure 8: Sensitivity Analysis: Matching Rate Tests. The upper and lower bounds for the
percentages of localized technology classes are plotted for various sensitivity parameters. The
geographic units are chosen at the state level. Cases 1-6 refer to the corresponding vertices of
the hexagon in Figure 6.
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Figure 9: Worst-case Scenario Bounds. The lowest percentages of localized technology classes
within the range of ϕ ∈ [0, 1] are plotted for various values of Λ. The geographic units for the
matching rate tests are chosen at the state level.
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