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Abstract
In the conventional social productive efficiency measurement, a DEA-based non-parametric method
is typically employed to identify the piece-wise-linear production possibility frontier. Applying the
directional distance-function approach a-la Luenberger (1992) to the production possibility frontier
obtained in this fashion can, however, lead to an underestimation of inefficiency for a DMU with
relatively large undesirable outputs. This underestimation becomes more acute if the sample size is
small or data are clustered. This paper reveals the mechanism behind this underestimation bias, and
then quantifies the degree of underestimation using nine-year panel data of rail and aviation sectors in
Japan. Through a comparative analysis between parametric and non-parametric methods, we find,
among others, that the underestimation of the aviation sector's productive inefficiency is as large as
80%, which the non-parametric method failed to detect.
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1. Introduction

Social efficiency benchmarking, unlike the ordinary benchmarking, deals with the situation where

production of goods and services involves the production of undesirable outputs. These undesirable

outputs include emission pollution, congestion delays, noise, risk of accidents, and so forth. When

measuring the production efficiency by taking into account these undesirable outputs, one cannot

apply the ordinary distance function approach where all outputs are treated symmetrically. Since the

amount of goods and bads can be increased together given the same level of inputs, output-oriented

efficiency is not well-defined in the ordinary distance function approach. Moreover, in the ordinary

distance function approach, the input-oriented efficiency cannot capture the undesirableness of bad

outputs as it merely shrinks the input vector, holding the amount of both good and bad outputs. That is,
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a decision-making unit (DMU) with large amount of undesirable output relative to its desirable output

amount can mark a very high efficiency score if its use of inputs is relatively less than other DMUs.

In the conventional literature of social productive efficiency measurement such as Pathomsiri et al.

(2008) and Ha, Yoshida, and Zhang (2011), it is typical to employ a DEA-based non-parametric

method in identifying the piece-wise-linear production possibility frontier (PPF), and then to apply the

directional distance-function approach a-la Luenberger. However, there can potentially be a severe

underestimation bias of inefficiency measured in this manner for a DMU with relatively large

undesirable outputs, especially when the sample size is small or data are not well-scattered. When the

sample size is small or data are not well-scattered, the estimated piece-wise-linear frontier truncates a

substantial part of the true production possibility set. This results in the underestimation of

inefficiency for those DMUs with relatively large undesirable outputs, as the directional distance-

function approach measures the distance to the frontier in the direction in which desirable outputs are

increasing but the undesirable outputs are decreasing.

To quantitatively measure the significance of this underestimation bias due to the non-parametric

approach in a more practical case, we conduct a social efficiency measurement of air and rail sectors

in Japan through parametric estimation of production technology. Ha, Yoshida, and Zhang (2011;

HYZ hereafter) measured social efficiency of these sectors using the same data via the directional

distance function approach with non-parametric PPF identification, and concluded that aviation

sector's inefficiency is almost negligible. However, taking into account that the aviation sector has

relatively large undesirable output while its desirable output level is just comparable to that of the

major railway companies, this favorable result of aviation sector in Japan would most likely suffer the

above-mentioned underestimation bias. We thus compare our parametric results to the non-parametric

results obtained by HYZ and identify the magnitude of underestimation of social productive

inefficiency in Japan's intercity transport sectors. Our empirical results actually show that the aviation

sector's inefficiency is as large as around 80%, which was not detected in the non-parametric

approach.

We begin, in Section 2, by illustrating the mechanism behind this underestimation bias in the

directional distance function approach coupled with the non-parametric PPF identification. Section 3

then conducts a social efficiency measurement via a parametric estimation of production

transformation function using nine-year panel data of rail and aviation sectors in Japan. Finally,

Section 4 concludes.
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2. Underestimation Mechanism of Social Productive Efficiency via Directional Distance

Function Approach with Non-parametric PPF Identification

In the social efficiency benchmarking, the following axioms for the production technology are

assumed (see for example, Kuosmanen and Podinovski, 2009):

(i) inputs and good outputs are freely disposable;

(ii) desirable and undesirable outputs are weakly disposable, i.e., they can be decreased

proportionally; and

(iii) production possibility set is a convex set.

After specifying the production technology as above, directional distance function approach is

typically used to measure the social efficiency. There the distance from the combination of actual

outputs and inputs to the production frontier is measured in a specific direction, which in turn gives

the inefficiency score of each DMU as the ratio of this distance and the length of the input-output

vector. There are mainly three different ways of defining this direction of measuring the distance to

the production frontier. First is the direction such that the vector of undesirable outputs is shrunk

while the amount of desirable outputs and inputs are held constant; the second is such that the

undesirable outputs are decreased and at the same time desirable outputs are increased while inputs

are held constant; and finally the third is the direction in that undesirable outputs and inputs are

decreased while desirable output is increased.

In the following, we take the second approach (as in HYZ) to show that using the nonparametric

method in empirical identification of the production possibility set can lead to a significant

underestimation of social inefficiency measurement for the DMUs with high level of undesirable

output when the sample size is small or data are not well-scattered.

[ INSERT FIGURE 1 HERE. ]

Figure 1 sketches the mechanism behind this underestimation bias intuitively for the case where there

are three DMUs producing one desirable output and one undesirable output, using the same level of

inputs. As one can see, DMU B and DMU C are very inefficient as they generate much more

undesirable output than the desirable output. The production frontier is formed as a piece-wise linear
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lines connecting the origin and these three DMUs, A, B, and C in this order, when nonparametric

method is used. Then the directional distance function measures the distance from each DMU to this

estimated piece-wise-linear frontier in the direction that desirable output is increasing and undesirable

output is decreasing. Then only C becomes inefficient, and both A and B is measured as completely

efficient DMUs. However, this is clearly not true, as the true production frontier is way outside of the

estimated frontier. DMU B is clearly inefficient, and the inefficiency of DMU C is underestimated as

well. This bias will be exaggerated for the DMUs producing more undesirable outputs (i.e., those on

the right side in the figure) especially when the data set is small or not scattered well so that the large

part (of the upper side in the figure) of the production set is truncated by applying the non-parametric

method.

3. Empirical Measurement of the Underestimation Bias

To quantify the significance of above-mentioned underestimation bias in a practical case, we measure

the social efficiency of rail and air industries in Japan by using parametric identification of the

production technology. Using the same data set as ours, HYZ followed the methodology of

Pathomsiri et al. (2008), i.e., a DEA-based non-parametric method of production frontier

identification coupled with the directional distance function approach to compute the social

inefficiency. After parametrically estimating the production transformation function, we apply the

directional distance function approach in the same way as HYZ. Following sections provide

description of our data set, and then the comparison of the results obtained through parametric

estimation of social productive efficiency with that of non-parametric method by HYZ.

3.1. Data Description

Our data set includes three railway companies namely JR East, JR Central, and JR West, as well as

one aggregated DMU for the aviation sector as a whole, for the years from 1999 to 2007; thus 36

observations for four DMUs. Included variables are labor, capital, other variable costs, and

aggregated users' time costs as inputs; total passenger-and-cargo kilometers as a desirable output; and

the life-cycle CO2 emission (per each year) as an undesirable output. As for rail, labor and capital are

shared between high-speed rail and commuting rail services. Due to this inability of decomposing

inputs into these two different uses, data for JR companies include both inter- and intra-city transport

services. The aviation industry in our analysis refers to the domestic air-transport services provided by

three airlines, Japan Air Lines (JAL), All Nipon Airways (ANA), and Japan Air System (which was
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merged with JAL, and became part of JAL, in 2002) including their subsidiary airlines. The remaining

airlines are excluded from the analysis as these airlines are rather small, covering less than 10 percent

of the domestic air transport market. Airline companies do not assume ownership of airport facilities.

Airports are developed and operated by the central or regional governments under an airport

improvement special account of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT),

and they are included as inputs for the aviation sector in our analysis. Also, international and domestic

air transport services provided are separated according to the passenger volume.

Desirable output in our analysis is the transport volume and distance, which we measure as work-

load-unit kilometers (WLU-km), where one WLU is one passenger or 100 kg of cargo. The data for

passenger-km and cargo ton-km are available from annual financial reports. As for the undesirable

output, CO2 emissions from operations, infrastructure construction, construction of rolling stocks and

aircraft are computed and summed. Unit values are available from Suji de Miru Koku (A Quantitative

Look at Railways) and the input–output table published by the Center for Global Environmental

Research of Japan, and they are:

(i) 113 gram/passenger-km for air transport and 18 gram/passenger-km for railway from their

operations;

(ii) 3.612 ton/million Japanese yen (JPY) for the construction of buildings and other infrastructure

except railway trackage which is 4.791 ton/million JPY excluding land acquisition costs; and

(iii) 1.549 ton/million JPY for aircraft construction and 4.746 ton/million JPY for construction of train

cars.

There are four inputs in our data set. As for the labor input, we use the number of employees found in

the transportation business section of annual financial reports. Since this number includes both

domestic and international operations for the aviation sector, it is separated according to the share of

WLU in domestic services. Capital input is the sum of depreciation found in the balance sheet and the

opportunity cost of capital assuming rental rate of 4%, deflated by the domestic corporate good price

index. Other variable costs capture the rest of all operational costs, excluding labor costs, depreciation,

and lease fees; and its major component is fuel and electricity costs. Other variable costs are

calculated based on financial reports, deflated by the domestic corporate goods price index as well.

We also include the aggregate users' time cost of travel as an input. For air transport it is the sum of

travel time multiplied by the number of passengers on all routes, found in the Koku Yuso Tokei Chosa

(Annual Report of Air Transport Statistics) by MLIT. For rail, we use the average speed of 200

km/hour for high-speed rail and 60 km/hour for local trains to compute the counterpart from the

GRIPS Policy Research Center Discussion Paper : 11-15



transport volume data. Table 1 summarizes the data set.

[ INSERT TABLE 1 HERE. ]

3.2. Estimation and Results

We now turn to the parametric estimation of the production frontier and apply the directional distance

function approach to measure the inefficiency scores. For the production transformation function, we

assume the following specification that satisfies the axioms presented above:

! 

f y jt ,bjt ,x jt( )

="
˜ y 1 jt
˜ b 1 jt
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% % 
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( ( 

)

+ * ˜ b 1 jt
) + X jt

= 0

(1)

for parameters 

! 

",# > 0  and 

! 

" >1, where yjt, bjt, and xjt are, respectively, desirable output, undesirable

output, and input vectors for DMU j in time t; Xjt is the input index consisted of four inputs in our

data; and tilde (~) indicates normalization of the raw data. In our analysis, desirable and undesirable

output vectors yjt and bjt are consisted of one variable each, namely y1jt and b1jt, and input vector xjt

include four variables xijt for i=1,…,4. Due to the limited number of data observations and hence to

minimize the number of parameters, after normalization we compute the geometric average of four

inputs to consist the input index Xjt. The normalization is done as follows:
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where upper bar indicates the mean and s indicates the standard deviation for all t and j. The same

applies to outputs y1jt and b1jt.

In actual estimation we replace the right-hand side of (1) above with an error term 
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Table 2 summarizes the parameter estimates, which satisfy the sign requirements by either 5% or 10%

level of statistical significance.

[ INSERT TABLE 2 HERE. ]

We then find the maximum value of the errors 

! 

" jt
# j,t , denoted by, say, 

! 

ˆ " max , and subtract it from f

to form the production frontier a-la corrected OLS (see for example, Coelli and Perelman (2000)).

That is, production possibility set P = {(x, y, b) : x can produce y and b} is such that

! 

P = y,b,x( ) :" ˜ y 1
˜ b 1
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with some subscripts abbreviated for notational simplicity. Finally, we adopt the directional distance

function approach, as in HYZ, to measure the inefficiency score 

! 

"* as follows:

! 

"* = max " : x,(1+ ")y,(1# ")b( )$ P{ } .

Pathomsiri et al. as well as HYZ carried out the above analysis in one step by using linear

programming. Table 3 presents our inefficiency scores along with the scores obtained via non-

parametric method by HYZ.

[ INSERT TABLE 3 AND FIGURE 2 HERE. ]

Figure 2 compares the inefficiency scores via these two methods diagrammatically. These results

conclude that the inefficiency of the aviation sector is heavily underestimated in the non-parametric

method. Aviation sector, estimated as extremely efficient in the non-parametric method, is actually as

much as 80% inefficient with the use of parametric method. Our data set shows that aviation sector

has its CO2 emission several times greater than rail companies, while its output level is comparable to

JR East. This indicates that the aviation sector corresponds to the DMUs B or C in Figure 2, and thus

that its inefficiency is heavily underestimated due to the above-mentioned limitation of non-

parametric method.
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Time trends of the inefficiency scores via parametric method seem to be highly correlated with those

via non-parametric method. However, for JR Central parametric inefficiency is less volatile than non-

parametric inefficiency. This is partly due to increased (econometric) efficiency of production frontier

estimation via parametric method, while in the non-parametric method JR Central is essentially

benchmarking its inefficiency to itself in year 2007 and not referencing to other DMUs.

It is worth noting that it is not always the case that non-parametric method underestimates

inefficiency. JR West, measured inefficient by almost 50% via non-parametric method turned out to

be rather efficient via parametric approach. This is resulted from the fact that the estimated production

transformation function exhibits, though rather weak, increasing returns to scale, which by

construction cannot be captured in the non-parametric approach.

4. Conclusions

We have shown that applying the directional distance-function approach to the non-parametrically

identified production possibility frontier causes underestimation of social inefficiency for DMUs with

relatively large undesirable outputs, especially when the sample size is small or data are not well-

scattered. This is due to the truncation of the true production possibility set with an assumption of

piece-wise linear PPF. We proceeded to an empirical analysis to quantify the magnitude of this

underestimation in the actual social efficiency benchmarking analysis by parametrically identifying

the production transformation function. We used the same data for Japanese domestic inter-city

transport services as in Ha, Yoshida, and Zhang (2011), where they utilized a DEA-based non-

parametric method of PPF identification instead. We then applied the directional distance function

approach just as in HYZ and compared the results. Our parametric approach showed the result, inter

alia, that the social productive inefficiency of the aviation sector is as large as 80%, which was not

detected by the non-parametric method.

References:

Coelli, T. J. and S. Perelman, 2000, "Technical efficiency of European railways: A distance function
approach,'' Applied Economics, Vol. 32, pp. 1967-1976.

Ha, H. K., Y. Yoshida and A. Zhang, 2011, “Social efficiency benchmarking of Japanese domestic

GRIPS Policy Research Center Discussion Paper : 11-15



transport services: A comparison of rail and air,” Transportation Research Part D, Vol. 16, pp. 554-
561

Kuosmanen, T. and V. Podinovski, 2009, “Weak disposability in nonparametric production analysis:
Reply to Färe and Grosskopf,” American Journal of Agricultural Economics, Vol. 91(2), pp. 539-545.

Luenberger, D. G., 1992, "Benefit functions and duality,'' Journal of Mathematical Economics, Vol.
21, Issue 5, pp. 461-81.

Pathomsiri, S., A. Haghani, M. Dresner and R. J. Windle, 2008, “Impact of undesirable outputs on the
productivity of US airports,” Transportation Research Part E, Vol. 44, pp. 235–259.

GRIPS Policy Research Center Discussion Paper : 11-15



Desirable Output

Undesirable Output

A

B

C

True inefficiency for C

True inefficiency for B
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Figure 1. Smooth curve in thick grey color is the true production frontier for a given input level and mix. In 
the figure there are three DMUs, A, B, and C. Piecewise-linear line represents the production 
frontier obtained via non-parametric method. Arrows are the measures of inefficiencies.

Figure1
GRIPS Policy Research Center Discussion Paper : 11-15



1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

99 00 01 02 03 04 05 06 07  

(a) Aviation

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

99 00 01 02 03 04 05 06 07  

(b) JR Central

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

99 00 01 02 03 04 05 06 07  

(c) JR West

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

99 00 01 02 03 04 05 06 07  

(d) JR East

Figure 2. Lines with circles are inefficiency scores obtained via parametric method while those with triangles are for non-parametric method.
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Labor Variable Capital input Users' time costs WLU-km CO2  
persons mil. JPY mil. JPY 1,000 hours million ton   

Aviation 1999 32,782 1,749,463 563,434 127,230 83,139 9,299,170
Aviation 2000 31,313 1,821,488 580,376 126,880 83,108 9,303,329
Aviation 2001 31,616 1,839,533 632,479 129,289 83,878 9,513,629
Aviation 2002 37,192 1,881,454 659,446 127,259 84,367 9,416,551
Aviation 2003 38,682 1,848,044 713,025 124,324 82,835 9,291,921
Aviation 2004 37,011 1,880,306 699,403 121,480 81,568 9,119,615
Aviation 2005 36,854 2,022,876 714,409 124,014 82,561 9,252,501
Aviation 2006 39,067 2,099,588 734,824 124,675 84,018 9,431,629
Aviation 2007 38,998 1,990,249 783,546 121,131 81,861 9,281,719
JR Central 1999 17,244 305,048 412,997 338,815 47,892 1,901,390
JR Central 2000 16,852 319,675 403,871 342,490 48,674 1,896,969
JR Central 2001 16,228 340,944 408,492 346,137 49,533 1,911,445
JR Central 2002 16,696 370,566 412,811 339,997 48,467 1,883,661
JR Central 2003 16,450 391,305 415,351 344,557 49,273 1,911,276
JR Central 2004 16,385 382,737 429,553 350,272 50,478 2,048,525
JR Central 2005 16,428 388,743 400,646 364,061 52,880 2,012,918
JR Central 2006 16,791 411,707 369,357 366,555 53,533 1,929,866
JR Central 2007 17,174 406,325 373,799 380,280 55,812 2,029,520
JR West 1999 34,532 290,949 165,462 707,236 52,588 1,534,027
JR West 2000 33,060 297,552 159,351 704,360 52,551 1,515,529
JR West 2001 30,803 310,573 158,426 703,507 52,647 1,497,586
JR West 2002 29,528 324,156 157,451 691,398 51,674 1,472,760
JR West 2003 28,359 329,171 160,201 696,225 52,142 1,486,123
JR West 2004 27,371 328,101 156,283 697,942 52,544 1,490,077
JR West 2005 26,708 342,029 151,491 696,011 52,828 1,487,823
JR West 2006 26,390 351,914 149,763 706,272 53,679 1,507,854
JR West 2007 26,408 346,334 162,166 711,837 54,585 1,587,140
JR East 1999 63,597 569,649 447,129 1,894,465 125,998 3,928,715
JR East 2000 62,606 571,350 440,790 1,881,854 125,344 3,907,647
JR East 2001 60,087 593,453 441,365 1,873,999 124,916 3,866,778
JR East 2002 59,510 615,283 442,767 1,872,053 125,176 3,845,295
JR East 2003 58,900 630,085 440,435 1,876,137 125,752 3,869,641
JR East 2004 57,236 622,557 425,894 1,870,632 125,172 3,832,916
JR East 2005 55,616 638,442 412,439 1,881,151 126,142 3,812,684
JR East 2006 54,326 644,658 403,107 1,900,463 127,653 3,829,502
JR East 2007 53,511 658,036 409,133 1,942,432 130,558 3,940,599

Average 35,064 803,176 416,430 766,873 78,217 4,162,454

Table 1. Data.

Table1
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Table 2. Estimation results of the production transformation function.

Table2
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Table 3. Inefficiency scores obtained by parametric and non-parametric methods.Inefficiency scores obtained by parametric and non-parametric methods.Inefficiency scores obtained by parametric and non-parametric methods.Inefficiency scores obtained by parametric and non-parametric methods.

Parametric Non-Parametric 

Aviation 1999 0.7667 0.0000
Aviation 2000 0.7676 0.0000
Aviation 2001 0.7802 0.0000
Aviation 2002 0.7977 0.0000
Aviation 2003 0.8129 0.0160
Aviation 2004 0.8106 0.0244
Aviation 2005 0.8146 0.0179
Aviation 2006 0.8204 0.0000
Aviation 2007 0.8297 0.0298

JR Central 1999 0.3525 0.3507
JR Central 2000 0.3294 0.2686
JR Central 2001 0.3151 0.1692
JR Central 2002 0.3496 0.2621
JR Central 2003 0.3436 0.2021
JR Central 2004 0.3575 0.1597
JR Central 2005 0.2814 0.0470
JR Central 2006 0.2374 0.0451
JR Central 2007 0.2205 0.0000

JR West 1999 0.1379 0.4939
JR West 2000 0.1178 0.4881
JR West 2001 0.0974 0.4799
JR West 2002 0.1065 0.4898
JR West 2003 0.0974 0.4856
JR West 2004 0.0766 0.4792
JR West 2005 0.0628 0.4729
JR West 2006 0.0499 0.4637
JR West 2007 0.0729 0.4744

JR East 1999 0.1025 0.0000
JR East 2000 0.0983 0.0072
JR East 2001 0.0916 0.0229
JR East 2002 0.0896 0.0319
JR East 2003 0.0875 0.0368
JR East 2004 0.0691 0.0355
JR East 2005 0.0439 0.0224
JR East 2006 0.0200 0.0097
JR East 2007 0.0112 0.0000

Table3
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