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Abstract 
This study introduces a new scheme of data envelopment analysis (DEA) named cost 
gradient measure (CGM) to evaluate technical efficiency. In this model, we can obtain 
more cost conscious technical efficiency than those by other traditional DEA models 
such as CCR[7] and slacks-based measure (SBM) [19]. In addition, the CGM can avoid 
shortcomings of these traditional models, i.e. factor inefficiency scores can be measured 
for each input as opposed to CCR and SBM models. In this study, we show the 
generality of CGM that it includes CCR as a special case; and compare the CGM result 
with those of the other DEA models using illustrative data, and clarify favorite features 
of this model. In addition, we also apply these models to Japanese electric utilities and 
explain the characteristics of their results. 
 
Keywords : cost gradient measure, DEA, technical efficiency, input price  
 
1. Introduction 
 

Data envelopment analysis (DEA) is one of representative methods to measure 

managerial efficiency of Decision making units (DMUs). It was originally introduced 

by Charnes, Cooper and Rhodes [7], and the basic model is called the CCR. Up to now, 

considerable number of researchers have developed DEA models, e.g. BCC[4] and 

SBM[19]. In addition, researchers also applied these models to empirical studies 

examining performance of various entities, e.g. business enterprises, hospitals, sports 

players and so forth [9, 2].  

Since basic DEA models can measure technical efficiency using physical input and 

output data with no recourse to cost information, it was considered appropriate to apply 
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to non-profit organizations at first. However, recently, business entities also have 

become the object of DEA studies. They aim profit maximization in competitive 

markets, and thus monetary aspect is critically important for them. In this context, 

researchers should make effective use of cost data if available. This study proposes a 

new model named Cost Gradient Measure (CGM), which enables us to measure 

technical efficiency focusing on input factor costs. Thus we can obtain more cost 

conscious technical efficiency than those by other DEA models.  

The remainder of the paper unfolds as follows. In Section 2, we review the 

representative DEA models, and then the CGM model is introduced in Section 3. In this 

section, we compare CGM with traditional radial and non-radial models such as CCR 

and SBM using illustrative data in order to clarify the favorable features of CGM. In 

addition, units-invariant issue in CGM is also explained. In Section 4, we propose 

several assumptions to conduct CGM without cost information. It is exhibited that CCR 

model can be derived from CGM under a certain assumption. In section 5, we apply 

CGM and the other models to Japanese electric utilities and demonstrate advantages of 

CGM using actual utility data. In the final section, we conclude this paper and mention 

future study subjects.  

 

2. Review of the previous basic models 

The most basic DEA model is called CCR, which was proposed by Charnes, Cooper 

and Rhodes [7]. It is formulated as  
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where X and Y are input and output matrices and xo and yo are input and output vectors 

for DMUO, respectively. λ is the intensity vector and θ∗ is efficiency score of CCR1.  

The basic idea of the input-oriented CCR model is depicted in Figure 1. In this figure, 

while DMUs A, B and C are on the efficient frontier and evaluated as efficient, DMUO 

is located inside the frontier and evaluated as inefficient. In the CCR model, DMUO will 

refer to the mid-point between A and B, where the radial line from the origin (0) to xo 

intersects the frontier. This means DMUo will be on the frontier if it can reduce its input 

(xo) to the intersection ( *
ox ) radially. Its reduction rate is calculated as 
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Figure 1: CCR 

 

The CCR model features the proportional reduction of inputs, and thus, it might 

neglect slacks, e.g. DMU C will be evaluated as efficient in Figure 1 because CCR 

                                                 
1 For details, see [7,10]. 
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neglects the input slack indicated as distance between B and C. Furthermore, the 

assumption of radial reduction might be too strong in some situations, e.g. it is unnatural 

that factor specific efficiency of capital input is equal to that of labor input.  

To date, considerable numbers of extended DEA models have been introduced, and 

many of them are based on CCR. For instance, the BCC model [4] was variable 

returns-to-scale version of CCR, and the assurance region method [18] added 

restrictions to DEA multipliers. Furthermore, super-efficiency model proposed by 

Andersen and Petersen [1], Malmquist index decomposition developed by Färe et al. 

[14] and network DEA model proposed by Färe and Grosskopf [11,12] are developed 

based on the CCR.  

In contrast to these radial models, the slacks-based measure (SBM) model proposed 

by Tone [19] is a representative of the non-radial models. The SBM does not assume 

proportional reduction of all inputs, and thus, for instance, the capital input can be 

reduced independently from labor input reduction. The SBM is formulated as follows:  

  [SBM] 
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where s− and s+ are input and output slack vectors, and i

io

s
x

−

 indicates factor specific 

inefficiency for input i (i = 1,…,m). Consequently, the efficiency score ρ* means the 

average of factor specific inefficiencies.  

In the SBM, the direction of input reduction will be decided in the mathematical 
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model as Figure 2 portrays, i.e. it is the direction in which the average of factor-specific 

efficiency for all inputs will be the minimum.  

In the SBM model, we can obtain non-uniform factor efficiency scores differing 

from CCR. However, due to the nature of the linear programming solution, it tends to 

generate extreme solutions for slacks, e.g., zero and non-zero patterns of slacks.2 This 

will be disadvantageous if we employ SBM to intertemporal analysis. For instance, the 

zero and non-zero patterns of slacks at time period t may significantly differ from those 

of time period t+1.  

 
Figure 2: SBM  

 

The extended SBM models also have been developed similarly to the CCR case, e.g. 

supper SBM [20], network SBM [23], dynamic SBM [24] and so forth. See also Tone 

[21] for variations of SBM models. 

The Weighted SBM model [25] is one extension of SBM models. This applies 

weighted average of factor specific efficiency instead of arithmetic average in the 

objective function in (2) as:  
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2 See Avkiran et al. [3]. 
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where Wi is the weight for input i and satisfies 
1

1
m

i
i

W
=

=∑ . Tsutsui and Goto [25] 

employed cost shares as Wi in the WSBM model, because weighted factor specific 

inefficiency ( i

io

s
x

−

) can be redefined as the ratio of slack value and the total cost as 

follows: 
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where wio is the factor price of input i for DMUO, Co indicates its total cost, and thus, 

the cost share of input i is io io
io

o

w xCS C= . 

The representative non-radial DEA models other than SBM can be enumerated as 

Russell measure [17], the additive models [8], the multi-directional efficiency analysis 

(MEA) model [5] and so forth.  

In this paper, we propose the cost gradient measure (CGM) model which can 

measure cost conscious technical efficiency and overcome the shortcomings of 

traditional radial and non-radial models.  

 

3. Cost Gradient Measure (CGM) 

In this section, we propose a new scheme to measure technical efficiency named 

cost gradient measure (CGM). 

3.1. Introduction of CGM 

In this paper, we assume an input-oriented model, in which possible reduction of 

inputs under given outputs will be measured as inefficiency. As we mentioned in the 

previous section, the direction of inputs reduction of the CCR model is radial from the 

observed input to the origin. The direction of inputs reduction in SBM is non-radial and 

determined by a linear programming solution. Contrary to them, the direction of inputs 
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reduction in the CGM model is based on the values of input factors, i.e. factor prices.  

Figure 3 visually describes the CGM. The direction of inputs reduction is along with 

that of input price wo = (w1o, w2o). Consequently, it is the normal to the cost plane Co 

and is the most cost intensive and steepest descent direction, i.e. DMUO can reduce the 

total cost at a maximum rate.  

 
 

Figure 3: Cost gradient measure 

 

From the managers' point of view, it only takes their private information on their 

input prices to identify the cost gradient. On one hand, input-price information is 

intrinsic and thus readily available to each DMU. On the other, during a given 

production period, managers may not know yet about the shape of the production 

frontier in that specific period, and thus they may not be able to immediately jump to 

the allocation that is both technically and allocatively efficient within the same 

production period. Instead, they will follow the steepest decent on the total cost surface 

which saves the total cost at the maximum rate. This provides the basis for the use of 

CGM. 

 

3.2. CGM formulation 
3.2.1. Notation 

In this paper, we deal with the DMU set D = {j; j=1,…,n} and the input and output 
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sets IN={i; i=1,…,m} and OUT={h; h=1,…,r}, respectively. The amount of input i and 

output h for DMUO (o∈D) are denoted as xio and yho. Its input cost is cio and the total 

cost are measured as o ioi INC c∈= ∑ . The factor price of input i is denoted wio. In the 

actual business world, we may not obtain the factor price data. In such case, we can 

alternatively use the average unit factor cost measured by io
io

io

cw x= . 

 

3.2.2. Formulation 

We assume the production possibility set P as follows:  

 
[Production Possibility Set: P] 

  P = {(x,y)| x ≥ Xλ, y ≤ Yλ, λ ≥ 0}.   (4) 

 

The cost gradient measure (CGM) can be formulated3 as 
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where wo denotes input factor price vector of xo. (s=+s−) and s+ are input and output 

slack vectors. In this formula, input slack is separated into two parts; proportional slack 

s= to wo and remaining slack s−.  

The motivation behind this formulation is that possible reduction of input factors is 
                                                 
3 This formulation can be regarded as the directional distance function model [16, 13] defining the directional vector 
as wo.  
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proportional to its input value (wo). In this case, the gradient direction of input 

reduction is normal to the cost isoquant plane which is expressed as 

 [Cost Isoquant]  

  1 1o o o o mo mo ow x w x C= + + =w x L    (6) 

Let an optimal solution of (5) be (τ*, λ*, s=*, s−*, s+*). Here, s−* may be not unique. 

Hence we solve the second stage LP to obtain s−** after fixing τ = τ* in Equation (5) 

with the objective function as  

  
, , 1
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m
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s s i io

s
xλ − +

−

=
∑ .   (7) 

Then we can obtain the technically efficient input as  

[Technically Efficient Input]  

  * * * **TE
o o oτ −= = − −x λ x w sX .   (8) 

We define the technical efficiency index (TE) for DMUO as weighted sum of 

technical efficient input divided by actual input as 

[Technical Efficiency Index: TE]  

  
* * *

1 1
1

TE TE TEm m
io io io o

io
i iio o o

x w x CTE CS
x C C= =

= ⋅ = = ≤∑ ∑   (9) 

where CSio utilized as a weight is the cost share of input i. This definition is the same as 

that of WSBM.  

In addition, the factor technical efficiency index (TEi) for input i can be measured as 

a portion of TE as  
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[Factor Technical Efficiency Index: TEi ]  

   
*TE

io io
i

o

w xTE
C

= .   (10) 

As we mentioned, CGM provides technical efficiency score based on the input 

reduction that maximizes the total cost savings. In any production period, company 

managers may not know the shape of the production frontier and cannot move to the 

allocatively efficient input mix directly. Therefore, moving to the most 

cost-reduction-intensive direction would be a choice as a midway to the optimal 

allocation. That is the underlying idea of the technical efficiency based on the CGM.  

In addition, the CGM result exhibits favorable features. Compared with the result 

of CCR, CGM can provide non-uniform factor technical efficiency scores defined in 

(10), which enables us to conduct further analysis to clarify causes of inefficiency. In 

addition, CGM can avoid sharp contrast of slacks compared with SBM and it can 

provide more practical factor efficiency scores. Consequently, it may safely be said that 

CGM can overcome shortcomings of traditional models.  

In addition, CGM is general in that it can derive the CCR model as a special case 

by replacing the 3rd constraint in (5) by s= = τ xo. This generality of CGM will be further 

discussed in Section 4. 

 

The dual model of (5) can be expressed as  

  [CGM-dual]  
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where v and u are unknown multiplier vectors. By redefining the objective function as  

   
,

max ov u
−ouy vx ,   (12) 

the dual form of CGM can be regarded as a profit maximization model with virtual 

output price u and input cost v.  

 

3.3. Numerical Example 

Numerical example will clarify the favorable features of the CGM model compared 

with the traditional models. We generate illustrative data of two inputs and one output 

for six DMUs as shown in Table 1. 

 

Table 1: Illustrative data  

 O utput

x1 c1
w 1 (price)

=c1/x1
x2 c2

w 2 (price)

=c2/x2
Y

A 4 12 3 12 60 5 72 100

B 10 60 6 4 40 10 100 100

C 4 40 10 5 10 2 50 50

D 9 18 2 18 90 5 108 150

E 14 70 5 5 10 2 80 100

F 9 63 7 8 16 2 79 100

D M U

Input 1 Input 2
C

(total cost)

 

 

Figure 4 depicts the technical efficiency scores of CCR, SBM, WSBM and CGM.  
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A B C D E F

CCR 1 1 0.839  0.867  0.8  0.867 

SBM 1 1 0.833  0.833  0.757  0.833 

WSBM 1 1 0.75  0.815  0.703  0.823 

CGM 1 1 0.774  0.860  0.725  0.842 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

Figure 4: Comparison of technical efficiency scores  
 

While DMUs A and B are on the frontier and evaluated as efficient in the all models, 

the scores of the remaining DMUs are varying among the models. To clarify the 

characteristics of the models, it will be better to focus on factor inefficiencies, which are 

measured as slack divided by observed input amount (
*

i
io

s
x

−
)4. Figure 5 describes factor 

inefficiencies of inputs 1 and 2 (x1 and x2). In the case of CCR, it is obtained by 1-θ.  

                                                 
4 In the case of CGM, the numerator is si

=*+si
−∗. 
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CCR‐X1 CCR‐X2 SBM‐X1 SBM‐X2 WSBM‐X1WSBM‐X2 CGM‐X1 CGM‐X2

A 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

C 0.161  0.161  0  0.333  0.313  0  0.272  0.043 

D 0.133  0.133  0.333  0  0  0.222  0.116  0.145 

E 0.2  0.2  0.286  0.200  0.339  0  0.286  0.2 

F 0.133  0.133  0  0.333  0.222  0  0.183  0.059 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 
Figure 5: Comparison of factor inefficiency scores 

 

For DMUs A and B, inefficiency scores are zero, since they are efficient as 

explained in Figure 4. In the CCR model, factor inefficiencies are homogeneous 

between x1 and x2, which is caused by the radial model. In the SBM model, DMUs C, D 

and F are scored zero in x1 or x2. This is a typical example of extreme solution (zero or 

positive) of the SBM model. The WSBM model also generates sharp contrast solutions 

for all models. However, inefficiencies are measured in the different side (another input 

factor) from those of SBM. Contrary to these models, CGM provides non-uniform 

inefficiency scores for x1 and x2, and avoids zero or positive solutions. From the view 

point of application to the real world data, it must be unpractical that we assume the 

factor inefficiencies (e.g. capital and labor inefficiencies) are all identical. In addition, it 

is also unrealistic if factor inefficiencies are measured only one side of inputs. We deem 

CGM can provide more reasonable efficiency scores.  

The important feature of CGM, besides the technical advantage mentioned above, is 

that these CGM inefficiency scores are measured based on the direction which enables 

maximum cost saving in a short run. This should be the most significant difference from 
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the traditional models.  

 

3.4. Units-invariant issue 

The efficiency scores provided by CGM formulated in (5) are dependent on the 

units in which the inputs are measured in. If we emphasize the idea to reduce inputs 

along with the cost gradient, failing to units-invariant property is inevitable. However, it 

is problematic to have different results depending on the units, e.g. thousand or million. 

Faced by this difficulty, we propose two countermeasures as technical remedy to 

proceed further. 

3.4.1. Data standardization 

If the original data are standardized by a certain statistics of the dataset, we can 

always obtain the same standardized data even if the original value is multiplied by k. 

For example, when we standardized input data xi by data average ( 1

n

ij
j

i

x
x

n
=

∑
′ = ), we can 

obtain ijx  even in multiplied case as  

   ij ij
ij

i i

x kx
x

x kx
= =

′ ′
.   (13) 

In other words, the standardization process produces “unitless value”. The CGM 

model with the unitless ijx  enables us to obtain the efficiency scores independent from 

units.  

However, in this case, ix′  and ijx  in (13) will be changed when we 

inserted/eliminated a certain DMU into/from dataset. This results in changes of 

efficiency scores for all other DMUs in the dataset. It may be unreasonable to have 

different scores depending on the DMU set.  
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As a statistic data for standardization, we can also use maximum value of the dataset 

( max( )i ijj
x x′′ = ) to obtain the unit-less value in the same manner as (13). When a certain 

DMU is inserted into or removed from the dataset, ix′′  will be changed only if the input 

of this DMU is equal to the max value.  

Generally, in the traditional models such as CCR and SBM, inefficient DMUs do 

not influence shape of the efficiency frontier, i.e. the efficiency scores of all other 

DMUs will not change when inefficient DMUs, which are not on the efficiency frontier, 

are inserted/eliminated from the dataset. In contrast, it may feel strange that the 

efficiency scores change in response to manipulation of the inefficient DMUs in the 

above cases standardized by average or maximum values.  

To overcome these problems, we propose a scheme to standardize dataset in the 

practical manner. Contrary to the above, it is not so strange that the efficiency scores 

change when efficient DMUs on the frontier are manipulated, because the shape of the 

frontier will be changed. Therefore, our recommendation is using the data of the most 

factor-productive DMUs, which are able to be on the efficiency frontier. In the case of 

data in Table 1, the most-factor productive DMUs are A and B, as shown in Table 2. We 

use average input and output of A and B for standardization.  

 

Table 2: Data standardization 
O utput

x1 x2 Y Y /x1 Y /x2

A 4 12 100 25 8.33

B 10 4 100 10 25

C 4 5 50 12.5 10

D 9 18 150 16.67 8.33

E 14 5 100 7.14 20

F 9 8 100 11.11 12.5

Average of

A and B 7 8 100

D M U
Input Factor P roductivity

 
Most factor-productive number 

Most factor-productive DMUs 
and their average 
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We define FP as the most factor-productive DMU set for all factors as  

 max , ( , )hj hk

k
ij ik

y yFP j i h
x x

⎧ ⎫⎛ ⎞⎪ ⎪= = ∀⎨ ⎬⎜ ⎟
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Input and output data for standardization are respectively obtained after making 

average among DMUs belonging to FP as  
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The CGM with standardized data is formulated as follows:  

  [CGM-FP] 
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where 1( ,..., )n= x xX , 1( ,..., )o o mox x=x , io
io FP

i

xx
x

=  (∀i), 1( ,..., )n= y yY , 

1( ,..., )o o roy y=y , ho
ho FP

h

yy
y

=  (∀h), 1( ,..., )o o mow w=w  and FP
io io iw w x=  (∀i).  

In addition, the technical efficient input is redefined as  

 [Technically Efficient Input] 

 ( )* * **TE FP
o o oτ −= − −x x w s x    (17) 



GRIPS Policy Information Center                                Discussion Paper:09-14 

17 
 

The technical efficiency score can be measured by (9). This CGM-FP model 

generates technical efficiency scores independently of both units and manipulation of 

inefficient DMUs. 

 

3.4.2. Units-invariant CGM model 

We formulate the idea of CGM faithfully in the sense that we reduce inputs along 

the cost gradient direction. As we pointed out in the previous section, this model lost 

units-invariant property. However, if we relax the constraint, unit-invariant CGM model 

can be obtained as follows.  

  [CGM-UI] 

   

*

, , ,
max

subject to

, ,

s s

o o

o

τ
τ τ
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− +

−

+

− +

=

= + +
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x λ w s
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s s λ

%X
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   (18) 

where wo in (5) is changed to  

 2 2 2
1 1 2 2 1 1 2 2( , ,..., ) ( , ,..., )o o o o o mo mo o o o o mo mow x w x w x c x c x c x= =w% . (19) 

ow%  implies weighted input by cost or cost share 5 . The CGM-UI model is 

units-invariant, and we are not bothered by units. See Appendix A for a proof. 

 

3.4.3. Comparison of the results 

Figure 6 compares the efficiency scores among the CGM models, i.e. native CGM, 

CGM-FP, CGM-UI and models standardized by the average (CGM-AVE) and the max 

value (CGM-MAX). For comparison, we append the result of CCR.  

                                                 
5 If it is multiplied by inverse of total cost (1/Co), we can consider it is weighted input by cost share.  
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A B C D E F

CGM 1 1 0.7739  0.8599  0.7250  0.8421 

CGM‐ST 1 1 0.7739  0.8599  0.7250  0.8421 

CGM‐UI 1 1 0.8418  0.8824  0.8133  0.8808 

CGM‐AVE 1 1 0.7756  0.8576  0.7250  0.8434 

CGM‐MAX 1 1 0.7864  0.8464  0.7250  0.8515 

CCR 1 1 0.8387  0.8667  0.8000  0.8667 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 
Figure 6 : Comparison of technical efficiency scores of Units-invariant models 

 

In this artificial data, the results of the CGM family are quite similar to that of the 

native CGM6 formulated in (5) except CGM-UI that is relatively close to that of CCR.  

To avoid the units-invariant issue, we can select the model CGM-FP or CGM-UI 

depending on the main concern of analysts themselves, i.e. the idea of CGM or 

units-invariant property.  

 

4. CGM without cost data 

In the CGM model, technical efficiency scores are measured along the direction of 

input values, and thus, the cost information is required. If factor cost ci is available, we 

can obtain the average factor price (unit cost), total input cost and cost share as follows:  

                                                 
6 In other cases, the results may differ from the native one, e.g. in the case that projection on the frontier is located on 
the different facet from the point projected in the native model.  
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 [Average factor price]: i
i

i

cw x=  

  [Total input cost]: i
i IN

C c
∈

= ∑    (20) 

  [Cost share]: i i i
i

c w xCS C C= =  

However, if factor cost ci is not available, wi, C and CSi is also not available. Even in 

such case, we can apply the CGM model under several assumptions. 

 

4.1. Assumption 1: uniform factor cost 

We assume that factor cost ci is uniform for all factors, and thus:  

 [Factor cost] : c1 = … = cm = c = C/m. (c and C are unknown)  

 [Average factor price]: i
i

cw x=  

  [Total input cost]: C mc=    (21) 

  [Cost share]: 1
iCS m=  

In this case, the cost gradient can be assumed as [1/xo] = (1/ x1o,…,1/xmo) for DMUO, 

and consequently, the assumed cost plain is C = [1/xo]x. Figure 7 graphically explains 

this case.  

 
Figure 7: Assumption of proportionality between factor prices and inputs 

 

To solve the CGM model without cost, the 3rd constraint in (5) is replaced by  

O 

C=[1/xo]x

*TE
ox
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   s= = τ [1/xo].    (22) 

In addition, the technical efficiency index is measured as 

  
* *

1 1

1m mTE TE
io io

io
io ioi i

x x
TE CS

x m x= =

= ⋅ =∑ ∑ ,   (23) 

which is interestingly identical to that of SBM7.  

In this assumption, we can obtain the technical efficiency scores without c and C.  

 

4.2. Assumption 2: uniform factor price 

We assume that the average factor price wi is uniform for all factors, and thus:  

 [Average factor price]: w1 = … = wm = w (w is unknown)  

 [Factor cost] : ci = wxi  

 [Total input cost]: i
i IN

C c
∈

= ∑    (24) 

  [Cost share]: i
i

i
i IN

xCS x
∈

= ∑  

In this case, the cost gradient can be assumed as 1 for DMUO, and consequently, the 

assumed cost plain is C = ex, i.e. a line of -45 degrees as shown in Figure 8.  

 
Figure 8: Assumption of uniform factor price 

 

To solve the CGM model without cost, the 3rd constraint in (5) is replaced by  

                                                 
7 Precisely, (23) includes the second input slack s- in (5), which is not generated in the SBM.  

e
r

C=ex 

O 

*TE
oxxo

x2 

-45 degrees 

x1



GRIPS Policy Information Center                                Discussion Paper:09-14 

21 
 

   s= = τe   (25) 

Along with the definition of the technical efficiency index (9), TE can be calculated 

as 

  
* *

*

1 1 1

1TE TEm m m TEio io io
io io

i i iio io io io
i i

x x x
TE CS x

x x x x= = =
= ⋅ = ⋅ =∑ ∑ ∑

∑ ∑
,  (26) 

which is considered as a sort of additive form. On the other hand, if the uniform weight 

is applied to TE definition (9) instead of the cost share, we can obtain TE index same as 

(23).  

 

4.3. Assumption 3: factor prices are proportional to inputs 

We assume that factor price wi is proportional to input xi, and thus:  

 [Average factor price]: wi = αxi (α is unknown)  

 [Factor cost] : ci = αxi
2  

 [Total input cost]: 2
i

i IN
C xα

∈
= ∑    (27) 

  [Cost share]: 
2

2
i

i
i

i IN

xCS x
∈

=
∑

 

In this case, the cost gradient is xo for DMUO, and consequently, the assumed cost 

plain is C = xox. This case can be depicted as Figure 9.  

 

ox
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Figure 9: Assumption of uniform factor cost 
 

Interestingly, we can find that this is the CCR model. To solve the CGM model in 

this case, the 3rd constraint in (5) is replaced by  

   s= = τ xo.    (28) 

The technical efficiency index defined in (9) will be 

  
* 2 *

*
2 21 1 1

1TE TEm m m TEio io io
io io io

i i iio ioio io
i i

x x x
TE CS x x

x xx x= = =
= ⋅ = ⋅ =∑ ∑ ∑

∑ ∑
.  (29) 

However, if we employ uniform weight and ignore the second slack s− in (5), the 

CCR efficiency score θ can be obtained as 

  
* *

1 1 1

1 1 1 (1 )
TEm m mio io io

i i iio io

x x s
TE

m x m x m
τ θ

−

= = =

−
= = = − =∑ ∑ ∑ .  (30) 

 

In summary, CCR can be derived from CGM under this assumption, i.e. factor price 

is proportional to input, and also we can obtain the CCR technical efficiency score 

under the uniform weight.  

 

5. Application to electric utilities in Japan 

In section 3, we explained CGM models with artificial data. In this section, we will 

apply this model to actual data of electric utilities in Japan.  

5.1. Data  

There exist ten vertically integrated electric utilities in Japan and each utility exclusively 

had served electricity to customers in their own territory. In 2000, the industry was 

partially liberalized and a few new entrants became to be able to serve electricity to only 
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large customers. In this study we utilize data before liberalization, i.e. 1992 to 1999, 

when no substantial structural change occurred8. Furthermore, we exclude Okinawa 

electric power company from the analysis, because it is very small and served customers 

in isolated island. Consequently, we utilize data of nine companies as DMUs for eight 

years. In this study, 72 observations for nine DMUs from 1992 to 1999 are pooled 

consisting one efficiency frontier, since we assumed no structural change in this period.  

We suppose that the activity of electric utilities is providing electric power to 

customers utilizing capital, labor and material inputs.9 As a capital input, we made a 

divisia index [6] for representative facilities of generation (total capacity of power 

plants), transmission (line length), transformation (total maximum output of substation), 

distribution (total transformer capacity) and general administration (capital stock). 

Labor input is number of employees including estimated number of outsourcing staff10. 

As a material input, we employed consumed fuel in the power generation division. The 

consumption of fossil and nuclear11 fuel was converted into quantity of heat (calories). 

Electric power sale is divided into two outputs: sales to industrial and domestic 

customers.  

All data are obtained from [15] and the major statistics of three inputs and two 

outputs are listed in Table 3.  

 

                                                 
8 As a first step of liberalization, the generation market was partially opened in 1995 and incumbent utilities started 
to call for bids for new additional fossil power plants. However, the effect of this institutional change was very 
limited.  
9 Vertically integrated power utility operates generation, transmission, distribution and sales divisions inside one 
company. Focusing on these various functions, we would be better off employing network DEA model taking into 
account the interaction among divisions [11, 12 and 23]. It is possible to apply CGM to the network models, however, 
the inside structure of the vertical integration is ignored in this study to simplify the model. 
10 The number of outsourcing staff was estimated from the cost of outsourcing divided by average unit cost of 
regular employees. Unit cost of outsourcing might be lower than regular employees, and thus, the number of 
outsourcing staff might be underestimated.   
11 It is difficult to measure the heat quantity of nuclear fuel. In this study, we estimated it using number of molecule 
and its kinetic energy.  
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Table 3: Major statistics for nine utilities 

 
1992 1993 1994 1995 1996 1997 1998 1999

X 1 A verage 1.362 1.421 1.473 1.515 1.574 1.607 1.649 1.672

C apital Input M ax 3.638 3.742 3.868 3.910 4.044 4.195 4.233 4.319

(D ivisia Index) M in 0.339 0.372 0.404 0.409 0.421 0.429 0.465 0.468

X 2 A verage 24,703 25,541 25,797 26,074 25,357 25,182 24,859 24,592

Labor Input M ax 62,842 64,905 66,753 65,792 64,806 64,481 64,228 63,862

(#) M in 7,437 7,503 7,333 7,824 7,713 7,830 7,919 7,903

X 3 A verage 155,524 154,386 172,135 172,465 175,546 176,995 179,835 184,381

Fuel Input M ax 534,117 528,255 571,883 579,486 584,476 592,846 591,354 611,472

(109kcal) M in 24,716 26,206 32,504 34,638 35,379 35,130 38,769 43,090

Y 1 A verage 54,490 54,392 57,905 58,752 60,303 61,702 61,557 62,746

S ales to Industrial M ax 163,952 164,284 175,369 177,843 180,895 186,467 186,063 190,252

(G W h) M in 13,979 14,062 14,593 14,917 15,527 15,872 16,325 16,574

Y 2 A verage 21,132 21,734 23,705 24,706 25,097 25,556 26,483 27,295

S ales to D om estic M ax 66,100 67,381 73,486 76,508 76,531 78,910 80,984 83,974

(G W h) M in 4,854 5,027 5,431 5,685 5,866 5,968 6,121 6,437  

 

5.2. Comparison of results 

The results of CGM (CGM-FP), CCR, SBM and WSBM models are listed in Table 

4. Figures 10 and 11 focus on the results of two utilities, DMU E and H, as a typical 

example.  
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Table 4: Results of CGM, CCR, SBM and WSBM models 
 1992 1993 1994 1995 1996 1997 1998 1999 1992 1993 1994 1995 1996 1997 1998 1999

A 0.816 0.811 0.847 0.864 0.910 0.924 0.973 1 A 0.816 0.817 0.846 0.863 0.886 0.902 0.947 1

B 0.886 0.880 0.884 0.891 0.912 0.888 0.907 0.934 B 0.866 0.865 0.870 0.878 0.894 0.879 0.908 0.927

C 0.787 0.796 0.809 0.822 0.836 0.843 0.893 0.912 C 0.771 0.784 0.767 0.772 0.782 0.801 0.846 0.866

D 0.892 0.910 0.914 0.951 0.952 0.994 0.913 0.945 D 0.885 0.902 0.903 0.942 0.949 0.986 0.908 0.943

E 0.930 0.876 0.910 0.891 0.958 0.990 0.987 1 E 0.901 0.822 0.877 0.848 0.938 0.985 0.986 1

F 0.955 0.950 0.981 1 0.984 0.988 0.992 1 F 0.928 0.920 0.962 1 0.967 0.983 0.989 1

G 1 1 0.987 0.987 0.946 0.967 0.940 0.956 G 1 1 0.975 0.986 0.962 0.964 0.935 0.939

H 1 0.946 0.950 0.912 0.927 0.935 0.882 0.874 H 1 0.957 0.945 0.925 0.942 0.948 0.889 0.892

I 0.896 0.892 0.918 0.942 1 0.976 0.986 1 I 0.864 0.865 0.890 0.934 1 0.968 0.977 1

A 0.843 0.845 0.874 0.893 0.924 0.942 0.979 1 A 0.800 0.787 0.822 0.832 0.855 0.865 0.914 1

B 0.909 0.885 0.903 0.907 0.916 0.896 0.930 0.950 B 0.858 0.842 0.856 0.861 0.881 0.850 0.880 0.900

C 0.880 0.893 0.854 0.866 0.873 0.882 0.915 0.924 C 0.781 0.784 0.780 0.796 0.810 0.813 0.860 0.880

D 0.916 0.931 0.948 0.949 0.957 0.995 0.927 0.957 D 0.887 0.894 0.903 0.933 0.940 0.978 0.890 0.926

E 0.944 0.900 0.928 0.912 0.964 0.991 0.994 1 E 0.886 0.807 0.859 0.832 0.903 0.977 0.978 1

F 0.978 0.954 0.989 1 0.993 0.997 0.992 1 F 0.942 0.937 0.975 1 0.978 0.987 0.990 1

G 1 1 0.985 0.997 0.998 0.972 0.950 0.961 G 1 1 0.975 0.981 0.943 0.957 0.920 0.922

H 1 0.979 0.982 0.940 0.970 0.977 0.925 0.923 H 1 0.938 0.926 0.909 0.923 0.923 0.850 0.866

I 0.919 0.910 0.938 0.979 1 0.986 0.985 1 I 0.868 0.873 0.895 0.937 1 0.968 0.978 1

C G M S B M

C C R W S B M
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Figure 10: Technical efficiency of DMU E  
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Figure 11: Technical efficiency of DMU H 
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It is known that the results of CCR are not less than SBM and WSBM, while no 

explicit relationship exists between WSBM and SBM [25]. In addition, there are no 

explicit relationship between CGM and the other models. Generally speaking, the 

results of CGM tend to be located between CCR and SBM/WSBM. In Figures 10 and 

11, the results of CGM are almost all between CCR and SBM/WSBM12. However, their 

characteristics are slightly different at every DMU. The results of DMU E are relatively 

near to CCR, while those of DMU H are close to SBM/WSBM. This is caused by the 

difference of cost gradient of DMUs.  

In order to clarify the advantageous of CGM, Figures 12-14 depict the results of 

factor inefficiencies of DMU E calculated as slack divided by observed data in the same 

manner as Figure 5. For the results of CCR in Figure 12, it is obtained by 1-θ, and thus, 

inefficiencies of all input factors are completely same. The results of SBM show the 

various factor inefficiencies, i.e. capital inefficiency (x1) is appeared during the period 

except in 1999, while fuel inefficiencies (x3) are during 92 to 95 in Figure 13. On the 

other hand, no labor inefficiency is observed during the entire study period in the SBM. 

The CGM results shown in Figure 14 are scored between CCR and SBM, i.e. factor 

inefficiencies are impartially measured for all factors unlike SBM, and their scores are 

diverse in contrast to CCR.  

                                                 
12 In this case, we have similar results between SBM and WSBM in contrast to the numerical example with artificial 
data in Figure 5.  
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Figure 12: Factor inefficiency of DMU E (CCR case) 
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Figure 13: Factor inefficiency of DMU E (SBM case) 
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Figure 14: Factor inefficiency of DMU E (CGM case) 

 

We focus on the labor inefficiency in order to verify the practicality of the model, i.e. 

whether labor inefficiency is occurred in DMU E or not. Figures 15 and 16 portray labor 

productivity indices ( 1
2

y
x  and 2

2

y
x ) for DMUs E and F. The DMU F is one who 
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performs best of all in labor productivities. It can be pointed out that labor productivities 

of DMU E do not outperform those of DMU F during the study period, even if their 

scores are very close in Figure 15. And thus, this suggests that labor inefficiency might 

be occurred in DMU E rather than DMU F. However, as Figure 17 indicated, no labor 

inefficiency is measured for DMU E during the whole period in SBM results in spite of 

occurrence of inefficiency for DMU F in several periods. This fact might bring us 

discomfort13. Contrary to the SBM results, CGM labor inefficiencies in DMU F are 

always below those of DMU E except the final period, in which both of them are 

evaluated as efficient. Consequently, it can be said that CGM results is more reasonable 

in this case.  

                                                 
13 It should be noted that the factor inefficiency measured in DEA model is a relative index based on multiple inputs 
and outputs evaluation, while the partial factor productivity is an absolute index based on specific input and output. 
Therefore, it is no wonder that the relative ranking of factor inefficiency does not match to that of partial productivity. 
However, it would be more practical if they are completely matched.  
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Figure 15: Comparison of Labor productivity index ( 1
2

y
x  case) 
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Figure 16: Comparison of Labor productivity index ( 2
2

y
x  case) 
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Figure 17: Comparison of Labor inefficiency index  

 

As we already pointed out, the SBM may generate extreme results such as labor 
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inefficiency of DMU E in Figure 13, and it is likely to lead us unreasonable 

interpretation of results. It would be advantage of CGM to avoid such extremeness.  

 

6. Conclusions 

This study introduced a new scheme named Cost Gradient Measure (CGM) to 

measure DEA technical efficiency using cost information of DMUs. This model 

provides technical efficiency index aiming maximum cost saving in the short run. In 

addition, CGM has several practical features in contrast to the traditional radial and 

non-radial models, e.g. we can conduct further analysis using factor inefficiency indices. 

In addition, this can be employed on a certain assumption even if cost information of 

DMUs cannot be obtained.  

The CGM is a basic model to measure technical efficiency, and thus it can be 

applied to the extended models, e.g. intertemporal analysis such as Malmquist index 

[14], decomposition of overall efficiencies [22], network and dynamic models [11,12,23 

and 24] and so forth. These are our future research subjects. Furthermore, this model 

can be extended to the non-oriented model by employing both input and output prices. 

This is also an important future subject.  
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Appendix A: Proof of units-invariance of CGM-UI model 
Suppose that we change the units of measurement of X by ˆ =X DX  where 

[ ] m m
iid R ×= ∈D  is a diagonal matrix whose element ( 0) ( 1, , )iid i m> = K  represents 

the unit change factor for input i. Thus the unit price ijw of input i changes to  

ˆ / ( 1, , ; 1, , ).ij ij iiw w d i m j n= = =K K  

Between the two measurement units, we have the equality 
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ˆ ˆ ( 1, , ; 1, , ).ij ij ij ijw x w x i m j n= = =K K  

Thus, between the new and old directions we have the relationship: 

 2 2 2 2
1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )T T T
o o o mo mo o o o mo mo mo o o mo mo ow x w x w x x w x x w x w x= = = =w D Dw% %K K K  

Hence the first constraint in (18) becomes, in the new units, 

ˆˆ ˆˆ ˆ ˆo o oτ τ≥ + = +x Xλ w Xλ Dw% %  

Multiplying 1−D from the left, we have the same constraint with (18). Thus we have 

the same solution and score. Q.E.D. 


