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1. INTRODUCTION

In many repeated interactions, repetition is not guaranteed but instead must be

agreed upon. Workers can quit, customers can walk away, and couples can break up.

If it is possible to strategically exit from a repeated interaction, the ordinary repeated-

game framework no longer applies. Ordinary repeated games assume that the same set

of players play the same stage game repeatedly for a fixed (possibly infinite) length of

time. Therefore no player has a choice to exit from the game. At the other extreme,

random matching games1 assume that in every period a player is randomly matched

with a new partner. Therefore no player has a choice to continue the game with the

same partner. However, many economic situations are in an intermediate case where

players can play a game repeatedly, but they can also terminate the interaction. There

is a growing literature of these “endogenously repeated” games.

In this literature, three issues have been mainly analyzed. First, under complete

information, ordinary trigger strategies do not constitute an equilibrium since coop-

eration from the beginning of a relationship is vulnerable to defection and running

away. Instead, gradual cooperation or trust-building strategy becomes an equilibrium.

(Datta, 1996, Kranton, 1996a, Fujiwara-Greve, 2002, and Fujiwara-Greve and Okuno-

Fujiwara, 2009.) Second, gradual cooperation is also useful in incomplete information

models to sort out the types of players. (Ghosh and Ray, 1996, Kranton, 1996a,b,

Watson, 2002, and Furusawa and Kawakami, 2008.) Third, a modified folk theorem

holds with appropriate lower bounds of the equilibrium payoffs. (Yasuda, 2007.)

We add a new angle to the analysis of the endogenously repeated games by looking

at the interaction between in-game behavior and what a player may receive outside of

the game. In game theory, often the outside structure of a game is fixed and the analysis

is focused on in-game strategic outcomes given the outside structure.2 By contrast in

other research fields such as search theory and operations research, the main interest

lies in the effect of outside structural changes on individual behavior/decision-making,

but there is no strategic interaction among decision-makers. In this paper we consider

strategic interaction of two players under varying outside structures of the game.

Specifically, we examine variants of the repeated Prisoner’s Dilemma from which

players can exit by taking an outside option and investigate effects of outside option

1See for example, Kandori (1992), Ellison, (1994), and Okuno-Fujiwara and Postlewaite (1995).
2However, there are some papers that perturb the game structure to see the effect on in-game

behavior. See the discussion below.
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P1 \ P2 C D
C 7, 7 0, 9
D 9, 0 1, 1

Table 1: An Example

structures on the sustainability of cooperation. It turns out that the “locked-in” feature

of ordinary repeated game is a very strong cooperation enforcement system. The

existence of a relevant outside option (greater than the in-game punishment payoff)

increases the necessary level of discount factor to sustain cooperation as compared

to the one in ordinary repeated games, and in some cases for any discount factor

cooperation is not possible. However, within the outside option model, the relative

difficulty of repeated cooperation is dependent on the structure of outside options.

In particular, if the option values are uncertain, in some cases it is easier to sustain

repeated cooperation than when they are certain. Therefore, perturbation of outside

options is not always bad for cooperation.

Let us give an example to explain the logic. In each period, as long as the two

players are in the game, they play the Prisoner’s Dilemma of Table 1. After playing

the Prisoner’s Dilemma, an outside option is available to Player 1. Player 2 has no

such option. The game repeats (Prisoner’s Dilemma and then the outside option to

exit) as long as Player 1 does not take the outside option. Suppose that in any period

the available outside option is the same, and it gives a stationary sequence of payoff

{6, 6, . . .} to Player 1 after exit. Player 2’s payoff after Player 1 ends the game is

normalized to be zero.

Note that if the game is an ordinary repeated game without the outside option, the

infinitely repeated cooperation (C,C), (C,C), . . . (which we call the eternal cooperation)

is sustainable by the grim trigger strategy if

7

1 − δ
= 9 + δ

1

1 − δ
⇐⇒ δ = 1

4
.

However, if the outside option is available, Player 1 can choose D and take the option

{6, 6, . . .}. Therefore, Player 1 may not follow the eternal cooperation (C,C), (C,C), . . .

even if δ is not so small. For example, when δ = 0.6,

7

1 − δ
= 17.5 < 18 = 9 + δ

6

1 − δ
.
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This illustrates that the existence of an outside option greater than the in-game pun-

ishment payoff creates difficulty in achieving cooperation, in the sense that the range

of discount factors that sustain repeated cooperation shrinks.

Next, suppose that Player 1 has two possible outside options of the form {6+ ϵ, 6+

ϵ, . . .} and {6 − ϵ, 6 − ϵ, . . .} (where ϵ > 0), and these arrive with equal probability at

the end of each period. The average outside option is 6. When ϵ is small (i.e., less

than 1), then there is no point of taking any of the outside options if players are to

repeat (C,C). When ϵ is large enough, however, the better outside option exceeds the

payoff from the repeated (C,C) so that the infinitely repeated cooperation becomes

impossible for any δ. However, Player 1 may cooperate until she receives the better

option. Let us compute the total expected discounted payoff of cooperation until the

better option arrives. Let V be the continuation value at the end of a period, before an

option realizes. Then the total expected payoff of repeating (C,C) until {6+ϵ, 6+ϵ, . . .}
arrives is of the form 7 + δV , where the continuation value V satisfies the following

recursive equation.

V =
1

2
· 6 + ϵ

1 − δ
+

1

2
(7 + δV ).

For example, when ϵ = 1.5 and δ = 0.6, then V ≈ 18.39, and the value of the

cooperation is increased to 7 + δV ≈ 18.03 > 17.5 = 7/(1 − δ).

The value of a one-shot deviation also needs to be checked more carefully. The

optimal exit strategy for Player 1 is either to exit immediately by taking any option or

to wait for {6 + ϵ, 6 + ϵ, . . .}. If she deviates and then waits for the good option while

suffering from the punishment payoff of 1 in the stage game, the total expected payoff

is of the form 9 + δW , where the continuation value W satisfies

W =
1

2
· 6 + ϵ

1 − δ
+

1

2
(1 + δW ).

Thus 9 + δW ≈ 17.46 for ϵ = 1.5 and δ = 0.6. If Player 1 defects and then exits

immediately by taking any option, the expected payoff is 9 + δ 6
1−δ

= 18 as before.

Therefore, in this example, it is optimal to exit immediately after a deviation. However,

7+δV > 18 = 9+δ 6
1−δ

implies that Player 1 with δ = 0.6 cooperates on the play path,

until the better outside option arrives. We call this play path stochastic cooperation. It

is better than no cooperation, which is the case if the outside option was deterministic.

The above example shows that deterministic or stochastic structure of outside op-

tions makes a difference in sustaining cooperation for mid-range discount factors. In

GRIPS Policy Information Center Discussion Paper : 09-10

4



addition, given a discount factor, we can investigate how the spread ϵ of the outside

options affects the sustainability of cooperation. In this example, when ϵ is small, no

cooperation is possible, just like in the deterministic case. As ϵ increases, the value

of cooperation while waiting for the good option increases so that stochastic coopera-

tion becomes an equilibrium behavior.3 This can be generalized for a mid-range of δ.

Therefore the perturbation of outside options may enhance cooperation.

Moreover, we can vary the probability of the binary options and show qualita-

tively same results: when the better outside option exceeds the cooperation payoff, the

stochastic cooperation becomes an equilibrium for mid-range discount factors. Hence,

as the probability of the attractive option decreases, the stochastic cooperation lasts

longer on average, and the play path becomes almost the eternal cooperation.

There are a few papers which incorporate perturbations into ordinary repeated

games. Rotemberg and Saloner (1986) perturb payoffs of the stage game, while Baye

and Jansen (1996) and Dal Bó (2007) perturb the discount factor. In these models the

optimal (eternal) cooperation levels are shown to be lower than the one in the absence

of perturbation. In this sense, the perturbations are bad for cooperation. Although

they did not investigate the lower bound of the discount factors by fixing a level of

cooperation, it would be greater than the one under no perturbation. This is clarified

in Yasuda and Fujiwara-Greve (2009).

The key is that the players are locked in the game forever in the infinitely re-

peated games. Therefore, when the perturbation creates difficulty to cooperate (a high

deviation payoff or a low value of the discount factor), the players need to play a non-

cooperative action in that period, which reduces the on-path payoff, i.e., the incentive

to follow the equilibrium strategy. Therefore the players need to be more patient than

in the deterministic case.4

By contrast, in our outside option model, Player 1 can choose between playing

the game forever and stopping. Thus, when the perturbation creates a difficulty to

cooperate (a high outside option), it does not mean that Player 1 must endure the low

payoff of a non-cooperative action. The difficulty to cooperate means that stopping

the game is more beneficial, and hence she can take that option to increase the on-path

payoff, i.e., the incentive to follow the equilibrium strategy. Therefore lower discount

3As ϵ increases more, e.g., ϵ = 2.5, then 9 + δW > 9 + δ 6
1−δ so that after defection, Player 1 wants

to wait for the better option. However, 7 + δV > 9 + δW holds so that the stochastic cooperation
continues to be an equilibrium behavior.

4A similar argument is noted in Mailath and Samuelson (2006), p.176-177.
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factors are sufficient to sustain the equilibrium as compared to the deterministic case.

In summary, we have shown that there are perturbations that can increase the value

of repeated cooperation, and this occurs naturally in the context of outside options in

the endogenously repeated game.

The outline of the paper is as follows. In Section 2, we formulate the basic one-

sided outside option model. In Section 3, we show that the existence of a deterministic

outside option makes it harder to cooperate than in the ordinary repeated Prisoner’s

Dilemma. In Section 4, we consider a one-sided stochastic outside option model and

show that stochastic outside options may enhance cooperation, as compared to the

deterministic options. In Section 5, we give two extensions. One is a two-sided outside

option model, in which the effect of perturbation is weakened because a player may

end up with a bad option when the opponent receives a good option and terminates

the game. This reduces the values of both cooperation and punishment phases and

weakens the perturbation effect. The other is a continuous distribution of (one-sided)

outside options. The results are essentially the same as the ones of binary distributions.

Section 6 gives concluding remarks.

2. A ONE-SIDED OUTSIDE OPTION MODEL

Consider a two-player dynamic game as follows. Time is discrete and denoted

as t = 1, 2, . . . but the game continues endogenously. At the beginning of period

t = 1, 2, . . . as long as the game continues, two players, called Player 1 and Player 2,

simultaneously choose one of the actions from the set {C,D} of the Prisoner’s Dilemma.

The action C is interpreted as a cooperative action and the action D is interpreted

as a defective action. We denote the symmetric payoffs associated with each action

profile as5: u(C,C) = c, u(C,D) = ℓ, u(D,C) = g, u(D,D) = d with the ordering

g > c > d > ℓ and 2c > g + ℓ. See Table 2. The latter inequality implies that (C,C)

is efficient among correlated action profiles.

After observing this period’s action profile, Player 1 can choose whether to take

an outside option and thus terminate the game or not. The game continues to the

next period if and only if Player 1 does not take an outside option. We assume that

all actions are observable to the players. Therefore, in period t = 2, players can base

their actions on the history of past action profiles. The outline of the dynamic game

is depicted in Figure 1.
5The first coordinate is the player’s own action, and the second coordinate is the opponent’s action.
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P1 \ P2 C D
C c, c ℓ, g
D g, ℓ d, d

Table 2: General Prisoner’s Dilemma
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Figure 1: Outline of the Dynamic Game

As the basic setup, let an outside option be a deterministic, stationary stream of

payoffs {v, v, . . .}, such that c > v > d.6 One can alternatively assume that an outside

option is a one-shot payoff of the form v/(1 − δ), where δ is the common discount

factor. Other outside option structures (stochastic, two-sided) are discussed in later

sections.

Player 2 receives payoff only from the Prisoner’s Dilemma as long as the game

continues and Player 2 does not have the ability to end the game, as in the ordinary

repeated games. Let us also assume that d = 0 which implies that Player 2’s “outside

payoff” 0 is not better than the payoff from (D,D). This simplifies our analysis by

making Player 2’s deviation not relevant. (To be precise, the qualitative result does

not change as long as Player 2’s outside payoff is not greater than v.)

There are many economic situations that fit into this model. For example, we can

interpret the model as a buyer-seller model such that Player 1 is a buyer, Player 2 is a

seller, C is an honest action in transactions and D is a dishonest action. We can also

6If v > c, then (C,C) cannot be played at all, and if v < d, then the outside option is never taken
so that the game essentially reduces to an ordinary repeated Prisoner’s Dilemma.
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interpret the model as an employment relationship such that Player 1 is a worker and

Player 2 is a firm.

We assume that both players maximize the discounted sum7 of the payoff stream

with a common discount factor δ ∈ (0, 1). For example, if Player 1 takes the outside

option at the end of T -th period, her total payoff is

T∑
t=1

δt−1u(a(t)) + δT v

1 − δ
,

while Player 2’s total payoff is
T∑

t=1

δt−1u(a(t)),

where a(t) is the action profile in t-th period of the repeated Prisoner’s Dilemma.

As the equilibrium concept, we use subgame perfect equilibrium (SPE henceforth).

The game is of complete information.

Lemma 1. The following strategy combination is a SPE for any v ∈ (d, c) and any

δ ∈ (0, 1): In any period of the game, Player 1 and Player 2 play D and Player 1 takes

the outside option, regardless of the history.

Proof: Given the strategy combination, both players get d in every period if they are

in the game. Therefore, at any exit decision node, taking the outside option is optimal

for Player 1 since v > d. Given Player 1’s exit strategy, it is optimal for both players

to play myopically in every period (if they are still together).

Notice that Player 1 can guarantee herself the total payoff of d + δ v
1−δ

against

any strategy of Player 2 by choosing D and exiting immediately, while Player 2 can

guarantee d + 0 against any strategy of Player 1. Since the above SPE (called the

“myopic SPE” henceforth) achieves exactly these payoffs, it is the maximal equilibrium

punishment.

We investigate the range of δ in which repeated mutual cooperation of (C,C) is

sustained as long as possible. If the maximal equilibrium punishment does not sustain

the on-path action profile, no other punishment would, by the same logic as the op-

timal penal code in Abreu (1988). Hence it is sufficient to consider the myopic SPE

7Alternatively one can assume that the players maximize the average payoffs without changing the
qualitative results.
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as the punishment. Therefore, in general we consider the following type of strategy

combinations, which we call “simple trigger strategy” combinations. Note that Player

1’s optimal exit strategy varies depending on the outside option structure.

Cooperation phase: If the history is empty or does not have D, play (C,C) and

Player 1 uses an optimal exit strategy given that (C,C) is repeated as long as the

game continues.

Punishment phase: If the history contains D, play (D,D) and Player 1 uses an

optimal exit strategy given that (D,D) is repeated as long as the game continues.

3. DETERMINISTIC OUTSIDE OPTION

When the outside option is deterministic, c > v implies that Player 1’s optimal

exit strategy in the cooperation phase is not to take the option, and v > d implies

that the optimal exit strategy in the punishment phase is to take the option at the

first opportunity. Therefore, the play path of the simple trigger strategy combination

is the eternal cooperation. Let us find the lower bound of δ that sustains the eternal

cooperation, that is, that makes the simple trigger strategy combination a SPE.

Recall that in the ordinary repeated Prisoner’s Dilemma with discounting, the

eternal cooperation is sustained by the simple trigger strategy without the exit option

if and only if

c

1 − δ
= g +

δd

1 − δ

⇐⇒ δ = g − c

g − d
=: δ.

In our game, Player 1 does not deviate in the cooperation phase if and only if

c

1 − δ
= g +

δv

1 − δ
(1)

⇐⇒ δ = g − c

g − v
=: δD

1 (v), (2)

and Player 2 does not deviate in the cooperation phase if and only if

c

1 − δ
= g ⇐⇒ δ = g − c

g
=: δD

2 .

Let δD(v) = max{δD
1 (v), δD

2 }. Then the simple trigger strategy combination is

a SPE if and only if δ = δD(v). Moreover, v > d implies that δD
1 (v) > δ, and
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d = 0 implies that δD
2 5 δ. Hence δD(v) = δD

1 (v) > δ. This means that, for any

δ ∈ [δ, δD(v)), the existence of an outside option, greater than the mutual defection

payoff, makes the eternal cooperation impossible, while it was possible if the game

were an ordinary repeated Prisoner’s Dilemma. It is also easy to see that δD(v) is

increasing in v, implying that better outside option makes it harder to cooperate.

Since limv→c δD(v) = 1, the range of δ that sustains the eternal cooperation shrinks to

the empty set, as the outside option approaches to c.

Proposition 1. For any v ∈ (d, c), the eternal cooperation is sustained as the outcome

of a SPE if and only if δ = δD(v) > δ. Hence, for any δ ∈ [δ, δD(v)), the eternal

cooperation cannot be sustained in the outside option model, while it is sustainable in

the ordinary repeated Prisoner’s Dilemma.

Alternatively, given δ ∈ [δ, 1), we can define the highest outside option level v∗(δ)

which makes Player 1 not to deviate in the cooperation phase by

c

1 − δ
= g + δ

v∗

1 − δ

⇒ v∗(δ) :=
1

δ
{c − (1 − δ)g}. (3)

Clearly, v∗ is increasing in δ, v∗(δ) = d, and limδ→1 v∗(δ) = c. Since Player 2 does not

deviate for δ = δ, we have the following corollary.

Corollary 1. Given δ = δ, the eternal cooperation cannot be sustained if and only if

the outside option v exceeds v∗(δ).

Two remarks are in order. First, although we focus on the repeated play of (C,C),

one might wonder that if players play (D,C) occasionally, it may reduce the sufficient

level of the discount factor. Playing (D,C) has two effects. One is that it is possible to

lower the sufficient discount factor for Player 1 to follow the strategy. The other is that

Player 2 must have incentive to play (D,C). Therefore it is not always the case that

playing (D,C) can reduce the sufficient discount factor. In fact, under some parameter

condition, (C,C) is the easiest action profile to sustain. For details see Appendix A.

Second, so far we have assumed that the outside option is a single stationary se-

quence {v, v, . . .}. If different sequences become available over time, the cooperation

may fall apart, even if most of outside options are unattractive, i.e., below v∗(δ).

To see this, fix δ and suppose that at the end of each period t, a sequence {v(t), v(t), . . .}
is the outside option and there exists the smallest integer T < ∞ such that v(T ) >
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v∗(δ). That is, T is the first time that the outside option exceeds v∗(δ). Then at the

end of period T , Player 1 would exit (given that the players play (C,C) as long as they

are in the game), and thus the players would not play (C,C) in T .

Therefore, deterministic fluctuations of outside options do not make cooperation

easier. By contrast, in the next section we consider stochastic outside options such

that in each period the actual outside option is random. Even if the players know that

eventually an attractive option arrives, the uncertainty of the timing can make the

mutual cooperation possible until the realization. This is a striking difference from the

above deterministic and fluctuating option case.

4. STOCHASTIC OUTSIDE OPTIONS

In this section we consider the case that Player 1 receives stochastic outside options

at the end of each period from an i.i.d. distribution. The randomness can be inter-

preted several ways, such as subjective uncertainty, external perturbation, or a draw

from a distribution of options. To make the comparison with the deterministic case,

throughout this section we fix the mean of the distribution equal to v ∈ (d, c).

The stochasticity of the options changes both the value of cooperation phase and

the value of the punishment phase so that in addition to the eternal cooperation and no

cooperation, the stochastic cooperation (cooperation until a stochastic end of the game)

may become the play path. Then it is possible that the volatility of the payoffs changes

the on-path play from no cooperation to the stochastic cooperation, as we discussed

in Introduction. Note that, in the single deterministic outside option model, under

the myopic equilibrium punishment, (C,C) is repeatedly played for a finite number of

periods if and only if the eternal cooperation is sustained. However, in the stochastic

outside option model, this equivalence does not hold.

4.1. Symmetric Binary Distributions

In this subsection we focus on a simple binary distribution of outside options:

{v + ϵ, v + ϵ, . . .} and {v − ϵ, v − ϵ, . . .} for some ϵ > 0, which becomes available with

probability 1/2 each.8 With this formulation we can see the effect of the mean v and

the spread ϵ of the distribution separately.
8Alternatively we can assume that only the next period option becomes known and future option

values are still random. If the one-shot payoff of v + ϵ
1−δ and v − ϵ

1−δ obtain with equal probability
in each period, then taking the option v + ϵ

1−δ (resp. v − ϵ
1−δ ) in a period and receiving the same

random sequence afterwards gives the same expected payoff of v+ϵ
1−δ (resp. v−ϵ

1−δ ).
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Unlike the deterministic outside option cases analyzed so far, it may not be optimal

for Player 1 to exit immediately in the punishment phase under the stochastic options,

even though the average is still v > d. Thus we first clarify the optimal exit strategy

for Player 1 in the cooperation phase and in the punishment phase respectively, and

then we derive the lower bound of δ.

Suppose that repeated (C,C) is expected as long as the game continues. Since

c > v− ϵ, in any period, either taking only the option of v + ϵ or not taking any option

is the optimal strategy. Let V be the continuation payoff, measured at an exit decision

node, when Player 1 takes only the option of v + ϵ. While waiting for the good option

the players play (C,C) repeatedly. Thus V satisfies the following recursive equation:

V =
1

2

(v + ϵ

1 − δ

)
+

1

2
(c + δV ).

To explain, with probability 1/2, Player 1 receives the good option v + ϵ which she

takes and thus the continuation payoff becomes (v + ϵ)/(1− δ). With probability 1/2,

Player 1 receives the bad option v − ϵ in which case she stays in the game and follows

(C,C) in the next period and faces the same distribution of the outside options at the

end of the next period. In this case the continuation payoff is c + δV . Explicitly, we

have

V =
1
2
( v+ϵ

1−δ
) + 1

2
c

1 − δ
2

=
v+ϵ
1−δ

+ c

2 − δ
. (4)

If Player 1 does not take any outside option, the continuation payoff is c/(1 − δ).

Therefore, not taking any option is optimal in the cooperation phase if and only if

c

1 − δ
= V ⇐⇒ (2 − δ)c = v + ϵ + (1 − δ)c from (4)

⇐⇒ c = v + ϵ.

In summary we have the following characterization of the optimal exit strategy in

the cooperation phase.

Lemma 2. When (C,C) is expected as long as the game continues, not taking any

outside option is the optimal exit strategy for Player 1 if c = v + ϵ, and taking only the

good option v + ϵ is optimal otherwise.

Analogously, suppose that repeated (D,D) is expected as long as the game contin-

ues. Since d < v + ϵ, either taking only the option of v + ϵ or taking any option is the
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ϵ 5 v − d v − d < ϵ
δ 5 δP (v, ϵ) δP (v, ϵ) 5 δ

c = v + ϵ cooperation phase No exit No exit
punishment phase Take any option Take only v + ϵ

v + ϵ > c cooperation phase Take only v + ϵ Take only v + ϵ
punishment phase Take any option Take only v + ϵ

Table 3: Player 1’s Optimal Exit Strategy

optimal exit strategy. Let W be the continuation payoff, measured at an exit decision

node, when Player 1 takes only the option of v + ϵ. While waiting for the good option

the players play (D,D) repeatedly. Thus W satisfies

W =
1

2

(v + ϵ

1 − δ

)
+

1

2
(d + δW ),

and hence

W =
v+ϵ
1−δ

+ d

2 − δ
. (5)

If Player 1 exits immediately by taking any outside option, the continuation payoff is
1
2
( v+ϵ

1−δ
) + 1

2
( v−ϵ

1−δ
) = v

1−δ
. Therefore, waiting for the good option v + ϵ in the punishment

phase is optimal if and only if

W = v

1 − δ
⇐⇒

v+ϵ
1−δ

+ d

2 − δ
= v

1 − δ
from (5)

⇐⇒ δ = v − d − ϵ

v − d
. (6)

Let δP (v, ϵ) = max{v−d−ϵ
v−d

, 0}. The superscript P stands for the punishment phase.

Thus, we have the following characterization of the optimal exit strategy in the pun-

ishment phase. The optimal exit strategies are also summarized in Table 3.

Lemma 3. When (D,D) is expected as long as the game continues, taking only the

good outside option of v + ϵ is the optimal exit strategy for Player 1 if δ = δP (v, ϵ), and

taking any outside option is optimal otherwise.

We now find the lower bound of the discount factor δ to sustain repeated mutual

cooperation as long as possible, using the simple trigger strategy combination described

in Section 3. Lemma 2 implies that when c = v + ϵ, the eternal cooperation is possible,

while when v + ϵ > c, only the stochastic cooperation is possible. Therefore we explain
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the intuition of the characterization of the lower bound of δ for two cases separately.

The formal proof is in Appendix B.

First, consider the case that c = v + ϵ so that the optimal value of the cooperation

phase is c
1−δ

. The value of the optimal one-shot deviation is

max{g + δ
v

1 − δ
, g + δW}.

As δ increases from 0 to 1, both of these values increase, but the value of the cooperation

phase is more convex than the optimal one-shot deviation value. (See Figure 2.9) There

are two cases of how c/(1 − δ) intersects with the deviation value.

If δD(v) 5 δP (v, ϵ), that is,

δD(v) 5 δP (v, ϵ) ⇐⇒ ϵ 5 (v − d)(c − v)

g − v
, (7)

then c/(1−δ) intersects with the one-shot deviation value when the latter is g+δv/(1−
δ), as shown in Figure 2(a). In this case, the eternal cooperation is sustained if and

only if

c

1 − δ
= max{g + δW, g + δ

v

1 − δ
} = g + δ

v

1 − δ
⇐⇒ δ = δD(v).

By contrast, if ϵ is large, so that δD(v) > δP (v, ϵ) (but still c = v+ϵ), then c/(1−δ)

intersects with the deviation value when the latter is g + δW , as shown in Figure 2(b).

Let δcW (v, ϵ) be the solution to

c

1 − δ
= g + δW.

Then this δcW (v, ϵ) is the lower bound of the discount factors to sustain the eternal

cooperation in the case of δD(v) > δP (v, ϵ). Since g + δW > g + δ v
1−δ

in this case,

when c
1−δ

intersects with the deviation value, δcW (v, ϵ) is strictly greater than δD(v),

as Figure 2(b) shows. Therefore, when c = v + ϵ, the eternal cooperation is sustained10

if and only if δ is not less than

δE(v, ϵ) := max{δD(v), δcW (v, ϵ)}

and this lower bound is never smaller than δD(v). Note that it is possible to sustain

the stochastic cooperation (to cooperate until v + ϵ realizes) under c = v + ϵ as well,
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Figure 2: Less Cooperation under Stochastic Outside Options (c = v + ϵ)

but higher δ is needed because the value of the stochastic cooperation is smaller than

c/(1 − δ).

Second, consider the case that v+ϵ > c so that the optimal value of the cooperation

phase is c + δV . Note that in this case c + δV is uniformly greater than the eternal

cooperation value c
1−δ

for any δ > 0. Again, there are two possibilities of how the

cooperation value intersects with the deviation value, max{g+δW, g+δ v
1−δ

}. If c+δV

intersects with the deviation value when the latter is g + δ v
1−δ

, let δV (v, ϵ) be the

solution to

c + δV = g + δ
v

1 − δ
.

Then c+δV > c/(1−δ) for all δ > 0 implies that δV (v, ϵ) < δD(v). (See Figure 3(a).11)

If c + δV intersects with the deviation value when the latter is g + δW , the inter-

section is computed as follows:

c + δV = g + δW ⇐⇒ δ(V − W ) = g − c ⇐⇒ δ =
2(g − c)

g − d
. (8)

Notice that v > (g + d)/2 if and only if 2(g−c)
g−d

< δD(v). Let us define

δS(v, ϵ) := max{δV (v, ϵ),
2(g − c)

g − d
}.

9The parameter values are (g, c, d, ℓ, v) = (10, 8, 3, 2, 5) and ϵ = 1 for 2(a) and ϵ = 1.9 for 2(b).
10To be precise, Player 2’s deviations must be checked. This is done in the formal proof of Propo-

sition 2.
11The parameter values are (g, c, d, ℓ, v) = (7, 6, 1, 0.1, 5) and ϵ = 1.5 for 3(a) and ϵ = 3.5 for 3(b).
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Figure 3: More Cooperation under Stochastic Outside Options (v + ϵ > c)

Then the stochastic cooperation is sustained if and only if δ = δS(v, ϵ). Since δV (v, ϵ) <

δD(v), the lower bound δS(v, ϵ) is strictly smaller than δD(v) if and only if v > (g+d)/2.

Therefore, even when one of the options is very attractive, if the one-shot gain g from

defection is not too large, then Player 1 with a mid-range δ who would not cooperate

under the deterministic option would cooperate under the stochastic outside options,

as long as she is in the game. This is because the value of stochastic cooperation,

c + δV , is increased by the outside option more than that of the optimal deviation.

Proposition 2. Case 1: Suppose that c = v + ϵ. Then the eternal cooperation is

sutsained if and only if δ = δE(v, ϵ), where δE(v, ϵ) = δD(v).

Case 2: Suppose that v + ϵ > c. Then the stochastic cooperation is sustained if and

only if δ = δS(v, ϵ). Moreover, δS(v, ϵ) < δD(v) if and only if v > (g + d)/2.

Proof: See Appendix B.

Note, however, that even though δS(v, ϵ) < δD(v) for Case 2, still δS(v, ϵ) = 2(g−c)
g−d

>
g−c
g−d

= δ holds. Therefore, the existence of outside options in any form makes it

more difficult to achieve mutual cooperation than in the ordinary repeated game. The

“locked-in” feature of repeated games is a strong device to enforce mutual cooperation.
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4.2. Mean Effect and Perturbation Effect

Let us consider comparative statics when the mean v or the spread ϵ of the outside

option distribution changes. Essentially, the increase of the mean v increases the option

value of the punishment phase more than that of the cooperation phase. Therefore the

increase of the mean makes cooperation more difficult, just like in the deterministic

option case. By contrast, the change of the spread ϵ is relevant only when Player 1

wants to wait for the good option. Therefore the perturbation effect of ϵ is not apparent

and is in fact quite complex, which we show below.

The increase of the mean v of the outside options is always a bad news for coop-

eration. To see this, let us distinguish two ranges: v + ϵ 5 c and v + ϵ > c, given

an ϵ. When v is small so that v + ϵ 5 c (i.e., the on-path value is c/(1 − δ)), only

the deviation value max{g + δW, g + δ v
1−δ

} increases as v increases. Hence δE(v, ϵ) is

increasing in v.

In the range of v + ϵ > c, the on-path value c + δV also increases as v increases, so

that we need to see the relative change between the on-path value and the punishment

phase. The relationship between c + δV and g + δW does not change when v changes,

since the critical value of δ is 2(g−c)
g−d

and is independent of v. The relationship between

c + δV and g + δ v
1−δ

is seen as follows.

c + δV = g + δ
v

1 − δ

⇐⇒ δ
(1 − δ)(c − v) + ϵ

(2 − δ)(1 − δ)
= g − c. (9)

Notice that the LHS of (9) is increasing in δ and decreasing in v. Therefore, δV (v, ϵ)

is increasing in v. This means that although v increases both the value of stochastic

cooperation c+δV and the deviation value g+δ v
1−δ

, the increase in the latter dominates.

In sum, the increase in the mean of the outside options always makes cooperation more

difficult. This is consistent with the deterministic case.

By contrast, the perturbation effect of ϵ is more complex, since it only affects the

value when Player 1 wants to wait for the good option, i.e., given δ and v, the increase

of ϵ increases V and W only. There are two important thresholds for ϵ. First, ϵ 5 c−v

implies that c
1−δ

is the cooperation value, and ϵ > c − v implies that c + δV is the

cooperation value. Second, recall that

δP (v, ϵ) < δD(v) ⇐⇒ ϵ >
(v − d)(c − v)

g − v
,
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which changes the optimal deviation value. Depending on whether v > (g + d)/2 or

not, the two thresholds are ordered differently:

v >
g + d

2
⇐⇒ 0 < c − v <

(v − d)(c − v)

g − v
;

v 5 g + d

2
⇐⇒ 0 <

(v − d)(c − v)

g − v
5 c − v.

Moreover, as we recall from (8),

v >
g + d

2
⇐⇒ 2(g − c)

g − d
< δD(v).

Therefore, we have two fundamentally different cases depending on whether v > (g +

d)/2 or not.

Case 1: v > (g + d)/2, so that 0 < c − v < (v−d)(c−v)
g−v

.

For any ϵ ∈ [0, c − v], δD(v) < δP (v, ϵ) which implies that

max{g + δW, g + δ
v

1 − δ
} = g + δ

v

1 − δ
.

Hence the lower bound is δD(v).

For any ϵ > c−v, the optimal on-path value is c+δV , which increases as ϵ increases.

Clearly, as long as ϵ 5 (v−d)(c−v)
g−v

, still δD(v) 5 δP (v, ϵ) holds so that the critical δ is

when c+δV intersects with g+δ v
1−δ

, as we have seen in Figure 3(a). Since the on-path

value c + δV is increasing in ϵ but the deviation value is independent of ϵ, this critical

value δV (v, ϵ) is decreasing in ϵ. (This can be also seen from (9).) Thus the lower bound

of the discount factors that sustain the stochastic cooperation decreases as the spread

ϵ increases. When ϵ becomes large enough,12 the relevant lower bound is determined

by c + δV = g + δW , which is a constant, 2(g − c)/(g − d).

This is graphically shown in Figure 4(a).13 It shows that for mid-range δ ∈
(2(g−c)

g−d
, δD(v)), the increase of ϵ changes no cooperation into the stochastic cooper-

ation. Therefore the perturbation enhances cooperation.

Case 2: v 5 (g + d)/2, so that 0 < (v−d)(c−v)
g−v

5 c − v.

In this case, we divide [0, c−v] into two intervals, [0, (v−d)(c−v)
g−v

] and ( (v−d)(c−v)
g−v

, c−v].

For ϵ ∈ [0, (v−d)(c−v)
g−v

], as in Case 1, δD(v) is the lower bound. For ϵ ∈ ( (v−d)(c−v)
g−v

, c− v],

12The critical level is beyond ϵ = (v−d)(c−v)
g−v , because even if δP (v, ϵ) = δD(v), that does not imply

that c + δV intersects with g + δW at that ϵ.
13The parameter values are (g, c, d, ℓ, v) = (8, 6, 1, 0.9, 5)
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Figure 4: Perturbation Effect

δP (v, ϵ) < δD(v) holds so that the critical δ is when c/(1 − δ) intersects with g + δW ,

as in Figure 2(b). This δcW (v, ϵ) is increasing in ϵ since the deviation value g + δW is

increasing in ϵ, while c/(1 − δ) is independent of ϵ.

When ϵ > c−v, then the optimal on-path value is c+δV and the optimal deviation

value is still g + δW . Thus the lower bound is a constant, 2(g − c)/(g − d). This is

graphically shown in Figure 4(b).14 It shows that for any δ, the increase in ϵ does not

enhance cooperation.

To highlight the positive effect of perturbation, we summarize as follows.

Corollary 2. When v > (g+d)/2, for any δ such that 2(g−c)
gd)

< δ < δD(v), there exists

ϵ(δ) (the solution to δV (v, ϵ) = δ) such that for any ϵ = ϵ(δ), stochastic cooperation is

sustained while for any 0 5 ϵ < ϵ(δ) no cooperation is possible.

The ordinary repeated game literature looks only at the vertical axis of Figure 4,

where ϵ = 0, and the case of v = d. By adding the dimension of (v, ϵ), we enlarged the

scope of the analysis and found the positive effect of payoff perturbation.

Our result is different from the effect of stochastic discount factor (Dal Bó, 2007),

which affects both the cooperation phase value and the punishment phase value, and

that of stochastic payoffs in Rotemberg and Saloner (1986). As we discussed in Intro-

duction, their results can be interpreted as the eternal cooperation being more difficult

under volatility. We have provided a third source of volatility via the outside options

14The parameter values are (g, c, d, ℓ, v) = (8, 6, 3, 0.9, 5)
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and expanded the notion of “repeated cooperation” to include not only the eternal

cooperation but also the stochastic cooperation. Then we can show that in some cases

cooperation is enhanced under more volatility.

Yasuda and Fujiwara-Greve (2009) shows a similar result for ordinary repeated

games with perturbed payoffs. Essentially, if the volatility of the payoffs takes the form

that stopping cooperation in that period is beneficial, then players can still selectively

cooperate in some periods, even if they cannot cooperate under no perturbation.

4.3. General Binary Distributions with a Preserved Mean

We extend the analysis to a general binary distribution to incorporate more realistic

situations, as well as to generalize the arrival probability of the attractive option. For

example, in employment relationships, most of the time the outside option is not so

good, but once in a while a very attractive outside option may arrive. If the probability

of the good outside option is very small, there is not much discrepancy between the

stochastic cooperation and the eternal cooperation, and the change in the lower bound

of the discount factor has a significant meaning.

Although there are many ways to formulate a general binary distribution with a

fixed mean v, we use the following formulation. Suppose that there are two outside

options v+ > v−, which obtain with probability p and 1 − p respectively at the end

of each period. As before, the option v+ (resp. v−) indicates that a stationary payoff

sequence {v+, v+, . . .} (resp. {v−, v−, . . .}) is given, or a one-shot payoff of v+

1−δ
(resp.

v−

1−δ
) is given. To keep the mean v = pv+ +(1−p)v− between d and c, we fix15 v− (< v)

and v ∈ (d, c) and let v+(p) = (v − v−)/p + v−. Note that v+(p) becomes a decreasing

function of p > 0. For notational simplicity we often write v+ when there is no danger

of confusion. As before we find conditions for the simple trigger strategy combination

to be a SPE.

Let V (p) (given v and v−) be the value in the cooperation phase, measured at the

end of a period before a stochastic option arrives, when Player 1 takes only the good

outside option v+ in any period during the cooperation phase. It has the following

recursive structure.

V (p) = p
v+

1 − δ
+ (1 − p){c + δV (p)}.

15If we fix v+ instead, then the decrease of lower bound as p increases is rather obvious, since p
increases the value of waiting for the better option in both cooperation phase and punishment phase
in the same way. A more interesting case is the one we analyze here, in which the good option’s value
decreases when its probability increases.
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Therefore

V (p) =
pv+ + (1 − p)(1 − δ)c

(1 − δ){1 − (1 − p)δ}
. (10)

Using this, we characterize the optimal exit strategy in the cooperation phase. The

proof is essentially the same as that of Lemma 2 and is thus omitted.

Lemma 4. When (C,C) is expected as long as the game continues, not taking any

outside option is the optimal exit strategy for Player 1 if c = v+, and taking only v+

(and therefore exiting with probability p) is optimal otherwise.

Therefore, the only condition to determine the optimal exit strategy in the cooper-

ation phase is whether the best option exceeds c, regardless of its probability. This is a

generalization of Lemma 2. In fact, this can be generalized for continuous distributions

as well. See Section 5.2.

If (D,D) is expected forever after, the optimal exit strategy for Player 1 depends

on the outside option distribution as follows. Let W (p) be the value when Player 1

takes only the better outside option v+ during the punishment phase (given v and v−).

It satisfies

W (p) = p
v+

1 − δ
+ (1 − p){d + δW (p)}.

Hence

W (p) =
pv+ + (1 − p)(1 − δ)d

(1 − δ){1 − (1 − p)δ}
. (11)

By the same logic of Lemma 3, the optimal exit strategy in the punishment phase is

to wait for the good option v+ if and only if

W (p) = v

1 − δ
⇐⇒ δv + (1 − δ)d = v−.

Thus we have the following characterization.

Lemma 5. When (D,D) is expected as long as the game continues, waiting for the

better outside option v+ is the optimal exit strategy for Player 1 if

δv + (1 − δ)d = v−, or δ = max{v− − d

v − d
, 0}, (12)

and taking any outside option is optimal otherwise.

Note that (12) does not depend on the probability of the good option p and is a

generalization of (6). As before, we divide the analysis into two cases: v+ 5 c so that
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the eternal cooperation is possible and v+ > c so that only the stochastic cooperation

is possible.

First, suppose that v+ 5 c, i.e., p = (v − v−)/(c− v−). The optimal value function

on the play path is c/(1 − δ). The value of a one-step deviation is g + δW (p) if (12)

holds, and it is g + δv/(1− δ) otherwise. Let δcW (p) be the critical discount factor that

satisfy
c

1 − δ
= g + δW (p).

Then the eternal cooperation is sustained, i.e.,

c

1 − δ
= max{g + δW (p), g + δ

v

1 − δ
} (13)

is satisfied for any δ = max{δcW (p), δD(v)} =: δE(p), which is not smaller than δD(v).

This is a generalization of Proposition 2, Case 1.

Second, suppose that v+ > c, or p < (v − v−)/(c − v−). We investigate the lower

bound of δ that sustains the stochastic cooperation, i.e., that satisfy

c + δV (p) = max{g + δW (p), g + δ
v

1 − δ
}. (14)

For the range of δ such that v/(1−δ) = W (p), the increase in the on-path value implies

that the lower bound of δ is less than δD(v). Formally, let δV (p) be the solution to

c + δV (p) = g + δ
v

1 − δ
.

Then δV (p) < δD(v) since c + δV (p) > c
1−δ

for any δ > 0. For the range of δ such that

W (p) > v/(1−δ), both on-path value and the punishment value increase, as compared

to the deterministic case. Let us find the smallest δ that satisfy

c + δV (p) = g + δW (p).

By computation,

c + δV (p) = g + δW (p),

⇐⇒ δ{V (p) − W (p)} = g − c,

⇐⇒ δ
{pv+ + (1 − p)(1 − δ)c} − {pv+ + (1 − p)(1 − δ)d}

(1 − δ){1 − (1 − p)δ}
= g − c,

⇐⇒ δ(1 − p)(c − d) = {1 − (1 − p)δ}(g − c),

⇐⇒ δ = g − c

(1 − p)(g − d)
=: δV W (p). (15)
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Therefore
g − c

(1 − p)(g − d)
< δD(v) ⇐⇒ v > pg + (1 − p)d. (16)

The condition (16) is a generalization of v > (g + d)/2 in Proposition 2. Since

g > c > v > d, it is easier to be satisfied for small p, namely when p < (v − d)/(g − d).

(Note that this condition is compatible with v+(p) > c.) In summary we have the

following generalization of Proposition 2.

Proposition 3. Case 1: Suppose that c = v+(p). Then the eternal cooperation is

sustained if and only if δ = δE(p) and δE(p) = δD(v).

Case 2: Suppose that v+(p) > c. Then the stochastic cooperation with exit probability p

is sustained if and only if δ = δS(p) := max{δV W (p), δV (p)}. Moreover, δS(p) < δD(v)

if and only if v > pg + (1 − p)d.

Proof: See Appendix B.

Let us investigate the effect of p. Since p changes both the probability of the good

option v+(p) as well as its value, the effect of p is clearly not monotonic. We are most

interested in the case when p is very small so that the stochastic cooperation is almost

the eternal cooperation. Recall that when v+(p) > c, the stochastic cooperation (that

ends with probability p) is sustained if and only if

δ = max{δV W (p), δV (p)} =: δS(p).

From (15), δV W (p) is increasing in p. To check that δV (p) is also increasing, note that

by computation, V (p) is decreasing in p for any δ:

∂V (p)

∂p
=

1

(1 − δ){1 − δ + pδ}2

[
v− − δv − (1 − δ)c

]
< 0.

Since g + δ v
1−δ

does not change as p changes, the intersection with c + δV (p) moves

to the right, i.e., δV (p) is increasing in p. Therefore, δS(p) = max{δV W (p), δV (p)} is

increasing in p, when v+(p) > c. Moreover, if max{v−−d
v−d

, 0} 5 δ, then δS(p) = δV W (p),

and (15) implies that this bound converges to δ as p approaches to 0. Hence we have

the following comparative statics result.

Proposition 4. (i) In the region of p such that v+(p) > c, δS(p) decreases as p

decreases.

(ii) If max{v−−d
v−d

, 0} 5 δ, then limp→0 δS(p) = δ.
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To interpret (i), when the exit probability p becomes very small and v+(p) becomes

very large, cooperation is enhanced in two ways: the duration of the stochastic coop-

eration becomes longer and the lower bound of the discount factors becomes smaller.

The result (ii) means that when p is very small, the outside option has almost no effect.

We are back to the repeated game situation because, under the assumption, in both

cooperation phase and punishment phase Player 1 waits for the good option but it

hardly arrives. This can be also interpreted as robustness of folk theorem in the sense

that even if players are free to exit strategically, if the option is negligible the players

are as if confined in the repeated game and the cooperation is sustained under the

same condition.

5. EXTENSIONS

5.1. Two-Sided Outside Options

We extend the model so that Player 2 also has non-negligible outside options. When

both players can choose to take outside options, the rule of termination of a repeated

game becomes relevant. The unilateral ending rule assumed in the one-sided option

model (Table 4(a)) has a specific meaning in the two-sided option model that the re-

peated game ends if and only if at least one player chooses to exit (Table 4(b)). There

is an intermediate case of two-sided option model in which both players must agree to

end the game, but in that case it is straightforward to prove that any equilibrium out-

come of ordinary repeated game can be sustained.16 Therefore the essentially different

models from ordinary repeated games are the one-sided option model and two-sided

option model with the unilateral ending rule. Moreover, the unilateral ending rule

is the most commonly analyzed rule (e.g., Gosh and Ray, 1996, Kranton, 1996a,b,

Fujiwara-Greve, 2002, and Fujiwara-Greve and Okuno-Fujiwara, 2009) and describes

well situations such as joint ventures and lender-borrower relationships.

First, consider the deterministic option model. Let v1, v2 ∈ (d, c) be the outside

options for Player 1 and Player 2 respectively. By the same argument as in Section 3,

16For example, repeated (C,C) can be achieved by the following strategy combination if two players
must agree to end the game: Play C and do not take outside options as long as no one played D.
If someone played D in the past, play D and do not take outside options. Since one player cannot
unilaterally end the game to escape, the strategy combination is a subgame perfect equilibrium if and
only if the usual grim-trigger strategy combination is a subgame perfect equilibrium in the ordinary
repeated Prisoner’s Dilemma.
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P1 \ P2
Stay Continue
Exit End

P1 \ P2 Stay Exit
Stay Continue End
Exit End End

4(a): One-sided Option 4(b): Two-sided Option
for P1 with Unilateral Ending Rule

Table 4: Game Continuation Patterns

the maximal equilibrium punishment is to exit immediately after the observation of D.

Under this punishment, Player i would not play C if δ < δD
i (vi) =: g−c

g−vi
. The range of

discount factors that sustains mutual cooperation is δ = max{δD
1 (v1), δ

D
2 (v2)}, which

is weakly narrower than the one in the one-sided outside option model, since δD
i (·)

is increasing. Therefore it becomes more difficult to sustain cooperation when both

players have deterministic outside options, since both players must be patient enough

to stay and cooperate.

Second, let us consider the case that both Player 1 and Player 2 have fluctuating

but deterministic outside options. By the same argument as in Section 3, mutual

cooperation falls apart if there is a known time period at which one of the players

receives an outside option greater than v∗(δ). Hence we can interpret that cooperation

becomes more difficult in the sense that there are more cases of fluctuating outside

options that includes v > v∗(δ) for at least one player.

Third, suppose that Player 1 and Player 2 independently draw stochastic outside

options from the same i.i.d. distribution. Since the qualitative results are the same, we

focus on the simple distribution such that v + ϵ obtains with probability 1/2 and v − ϵ

obtains with probability 1/2, independently to each player. Under the independent

draws, a player may take an outside option when the other player does not want to, so

that the game ends with a different probability and the payoff becomes different from

the one in the one-sided outside option case. Specifically, if both players want to take

only v + ϵ in the punishment phase, the continuation value W ′, measured at the end

of a period, satisfies the following recursive structure.

W ′ =
1

2

(v + ϵ

1 − δ

)
+

1

4

(v − ϵ

1 − δ

)
+

1

4
(d + δW ′). (17)

This is because with probability 1/4, one’s option turns out to be v−ϵ but the partner’s

turned out to be v + ϵ, in which case the game ends and one ends up with the low

GRIPS Policy Information Center Discussion Paper : 09-10

25



0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40
c

1−δ

δD(v) = δE(v, ϵ)
= δE2(v, ϵ)

max{g + v
1−δ , g + δW ′}

= g + δ v
1−δ @

@R

δP (v, ϵ)

g + δW¾

δ

g + δW ′@I

5(a): ϵ 5 (v − d)(c − v)/(g − v)

0.1 0.2 0.3 0.4 0.5

10

12

14

16
c

1−δ g + δW

g + δ v
1−δ

max{g + v
1−δ , g + δW ′}

= g + δW ′
@@R

δP (v, ϵ)
¾ δE(v, ϵ)

δ

5(b): (v − d)(c − v)/(g − v) < ϵ

Figure 5: More Cooperation under Two-Sided Outside Options (c = v + ϵ)

option.

Lemma 6. For any (v, ϵ), the one-shot deviation values are ordered as follows.

δ 5 δP (v, ϵ) ⇒ g + δ
v

1 − δ
= g + δW ′ = g + δW ;

δP (v, ϵ) 5 δ ⇒ g + δW = g + δW ′ = g + δ
v

1 − δ
.

Proof: See Appendix B. (See also Figure 5.17)

Since the punishment phase value is now max{g + δW ′, g + δ v
1−δ

}, it is smaller than

the punishment phase value for the one-sided option model. Therefore, when c = v + ϵ

so that the eternal cooperation is to be sustained, the decrease of the punishment phase

value makes the eternal cooperation easier, as Figure 5 shows.

By contrast, when v + ϵ > c, both the value in the cooperation phase and the value

in the punishment phase may decrease. The continuation value in the cooperation

phase, measured at the end of a period, satisfies

V ′ =
1

2

(v + ϵ

1 − δ

)
+

1

4

(v − ϵ

1 − δ

)
+

1

4
(c + δV ′), (18)

17The parameter combination is (g, c, d, ℓ, v, ϵ) = (10, 8, 0.5, 0.1, 5, 0.1) for 5(a) and (g, c, d, ℓ, v, ϵ) =
(10, 8, 0.5, 0.1, 4, 3.4) for 5(b).
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Figure 6: Less Cooperation under Two-Sided Outside Options (v + ϵ > c)

while the one-sided case value can be decomposed as

V =
1

2

(v + ϵ

1 − δ

)
+

1

4
(c + δV ) +

1

4
(c + δV ).

Notice that c > v implies c + δV > (v − ϵ)/(1 − δ), which in turn implies that V > V ′

from the above comparison.

Thus, when the stochastic cooperation is to be sustained, both the on-path value

c + δV ′ and the punishment phase value, max{g + δW ′, g + δ v
1−δ

}, are reduced, as

compared to the one-sided option model. Let δV ′
(v, ϵ) be the solution to

c + δV ′ = g + δ
v

1 − δ
.

Then c + δV > c + δV ′ implies that δV (v, ϵ) < δV ′
(v, ϵ). On the other hand,

c + δV ′ = g + δW ′ ⇐⇒ δ(V ′ − W ′) = g − c ⇐⇒ δ = 4(g − c)

g − d
>

2(g − c)

g − d
.

Therefore, the lower bound δS2(v, ϵ) := max{δV ′
(v, ϵ), 4(g−c)

g−d
} that sustains the stochas-

tic cooperation under the two-sided options is greater than δS(v, ϵ). (See Figure 6.18)

18The parameter combination is (g, c, d, ℓ, v, ϵ) = (7, 6, 0.2, 0.1, 5, 1.5).
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Proposition 5. Case 1: Suppose that c = v+ϵ. Let δE2(v, ϵ) be the lower bound of the

discount factors that sustain the eternal cooperation under two-sided outside options.

Then δE2(v, ϵ) 5 δE(v, ϵ).

Case 2: Suppose that v + ϵ > c. Let δS2(v, ϵ) be the lower bound of the discount

factors that sustain the stochastic cooperation under two-sided outside options. Then

δS2(v, ϵ) > δS(v, ϵ).

For the two-sided option model, we only need to check Player 1’s optimization,

which is analogous to the one in Proposition 2 and is explained above. Therefore the

proof is omitted.

In summary, under two-sided independent stochastic outside options, the effects of

perturbation are weakened relative to the one-sided case, because a player may not be

able to wait for a good option when she wanted to, which reduces the value of options.

However, the weaker effect of perturbation means that the eternal cooperation becomes

less difficult and the stochastic cooperation becomes more difficult than the one-sided

option case. The weaker effect is obtained as long as the option value is reduced, even

if the outside options are not independent.

5.2. Continuum of Outside Options

The binary distribution models illustrate well the essence of the effect of stochastic

outside options on the cooperation within the repeated game. However, it is of some

theoretical interest how the model and results extend to a case with a continuum

of outside options, which is more standard in some economic models such as search

models. We show that the stochastic cooperation is sustained under lower discount

factors than those of the deterministic model even under a continuum of outside options.

Let us go back to the one-sided outside option model and assume that Player 1

has a continuum of outside options with the support [v, v]. That is, at the end of each

period, an option x ∈ [v, v] realizes for Player 1 and if she takes this option, she receives

the payoff x forever after, or a one-shot payoff of x
1−δ

. Let F be the (differentiable)

cumulative distribution function of the outside options and f be its density function.

Assume, as before, that the mean outside option v :=
∫ v

v
xf(x)dx is strictly between d

and c.

If Player 1 takes an option of value x, then she would also take any option greater

than x. Hence the optimal exit strategy is a reservation strategy: Player 1 takes any
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outside option not less than a certain level r, where r is called the reservation level.

Suppose that as long as Player 1 is in the game, she can receive u from the Prisoner’s

Dilemma, where u can be either c or d. Let U(u, r) be the value, at the end of a period

before a stochastic outside option realizes, and when Player 1 takes any option not less

than r ∈ [v, v]. It satisfies the following recursive equation:

U(u, r) =

∫ v

r

x

1 − δ
f(x)dx + F (r){u + δU(u, r)}. (19)

By differentiation of (19) with respect to r, we have

∂U(u, r)

∂r
= − r

1 − δ
f(r) + f(r){u + δU(u, r)} + δF (r)

∂U(u, r)

∂r
,

⇐⇒ ∂U(u, r)

∂r
=

f(r)

1 − δF (r)

[
u − r

1 − δ
+ δU(u, r)

]
.

The optimal reservation level, denoted as r∗(u, δ), is the solution to ∂U(u,r)
∂r

= 0 (since

the second order condition holds), that is,

r∗(u, δ)

1 − δ
= u + δU(u, r∗(u, δ)). (20)

This means that the optimal reservation level of the outside options is exactly where

Player 1 is indifferent between taking it and not taking it. (19) and (20) imply that

r∗(u, δ)

1 − δ
= u + δU(u, r∗(u, δ))

⇐⇒ r∗(u, δ) = (1 − δ)u + δ(1 − δ)
{∫ v

r∗(u,δ)

x

1 − δ
f(x)dx + F (r∗(u, δ))

r∗(u, δ)

1 − δ

}
.

Hence, for any δ ∈ (0, 1) and any u = c, d, the optimal reservation level r∗(u, δ) is the

solution to the following equation:

r = (1 − δ)u + δ

∫ v

r

xf(x)dx + δF (r)r. (21)

By differentiation it is straightforward to show that the RHS of (21) is a monotone

increasing function of r, taking value from (1 − δ)u + δv to (1 − δ)u + δv. Figure 7

illustrates this property. Therefore, in the cooperation phase where u = c, the optimal

reservation level r∗(c, δ) is less than v if and only if (1−δ)c+δv > v, which is equivalent

to v > c.
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Lemma 7. When (C,C) is expected as long as the game continues, the optimal exit

strategy for Player 1 is to not to take any outside option if c = v, and to take any

outside option not less than r∗(c, δ) otherwise.

In the following we focus on the stochastic cooperation, i.e., we assume that v > c

and give a sufficient condition under which the lower bound of the discount factors

that sustain the stochastic cooperation is less than δD(v).

The equation (21) implies that in the punishment phase when u = d, the optimal

reservation level is v (that is, it is optimal to exit by taking any option) if and only if

v = (1 − δ)d + δ

∫ v

v

xf(x)dx + δF (v)v = (1 − δ)d + δv,

which is equivalent to

δ 5 v − d

v − d
.

This corresponds to δ 5 δP (v, ϵ) for the binary case. If

δD(v) 5 v − d

v − d
⇐⇒ (v − d)(g − v) = (g − c)(v − d), (22)

then the on-path value c + δU(c, r∗(c, δ)) (which is strictly greater than c
1−δ

under the

assumption v > c) intersects with the one-shot deviation value when this is g + δ v
1−δ

,

as in Figure 3 (a). Hence the lower bound of the discount factors that deter Player

1’s deviation is strictly less than δD(v). In addition, if we impose an extra condition,

Player 2 does not deviate either.
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Proposition 6. Assume that v > c, (22), and v > {1 − F (c)}g. Let δF be the lower

bound of δ that sustains the stochastic cooperation under the continuum of outside

options. Then δF < δD(v).

Proof: See Appendix B.

We have shown that there is a case of continuum outside options in which the

stochastic cooperation is sustained under lower discount factors than those of the de-

terministic model.

6. CONCLUDING REMARKS

Our result can be summarized in three points. First, payoff perturbation may en-

hance cooperation, which is a new insight. In the literature of ordinary repeated games,

only infinitely-repeated cooperation has been analyzed and thus payoff perturbation

has negative effect, since perturbation increases the temptation to deviate at some

point. However if we extend the notion of “repeated cooperation” to include stochastic

repetition of cooperation and the perturbation of outside options is considered, a player

wants to wait for a high value, which makes him more patient.

Second, in the simple binary outside option model, the effect of the mean and the

spread are quite different. The effect of the mean is monotone and negative in the sense

that the lower bound of the discount factors is increasing in v. By contrast, the effect of

the spread ϵ is more complex, as shown in Figure 4. For mid-range discount factors and

when the deviation gain is not too large, the increase of ϵ enhances cooperation, while

for other parameter combinations, the increase of ϵ makes cooperation more difficult.

Therefore, the option structure is important.

Third, in the general binary outside option model, cooperation is enhanced in two

ways when a very good option arrives with a very small probability. The small proba-

bility implies that the stochastic cooperation is almost the eternal cooperation, and the

high value of the good option implies that the lower bound of the discount factors is

smaller than the one in the deterministic case. For some parameters, as the probability

of the good option converges to 0, the lower bound of the discount factors converges

to the one for the ordinary repeated game. Thus our model naturally connects to the

repeated Prisoner’s Dilemma.
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We also found that one-sided and two-sided outside options have different effects.

If both players have stochastic outside options, the relative difficulty of cooperation

is weakened as compared to the one-sided option case. The reason is as follows. If

both players can end the game unilaterally, the game ends more frequently and the

option value is reduced, since the partner may end the game when one does not want

to. This makes the cooperation easier if the punishment phase payoff is reduced but

more difficult if the cooperation phase payoff is reduced.

Although the main concern in the present paper is to analyze the sustainability of

mutual cooperation under perturbations, it should also be of interest to characterize

the set of equilibrium payoffs. Especially, comparative static of the equilibrium payoff

sets with respect to the mean value and/or the spread of the outside options has great

importance. As we showed in Section 4.2, increased volatility of ϵ can make Player

1’s cooperation easier, which implies that the set of equilibrium payoffs need not be

monotonically decreasing (in the sense of set inclusion) in the value of outside options.

This non-monotonicity of equilibrium payoffs as the outside options change may have

significant implications to applications, for example in policy effects.19

Finally, we would like to point out that there is a wide scope of important appli-

cations from our analysis. An important implication from our result is that specifica-

tions of what players may receive outside of the game, such as potential wage offers or

reservation utilities for workers, can have significant effects on their in-game strategic

incentives. This finding stands in sharp contrast to the traditional modeling approach

in dynamic games and contracting where the outside structure of a game is often as-

sumed to be fixed. We believe that our simple model can provide meaningful insights

and implications for many applications.

19There is a different non-monotonicity result. In a class of games called exhaustible resource games,
Dutta (1995) showed that the first-best outcome is sustainable under a mid-range discount factor but
not under high discount factors.
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APPENDIX A: (C,C) CAN BE THE EASIEST TO SUSTAIN

In this Appendix, we give a sufficient condition under which repetition of (C,C) is

the easiest stationary action profile to sustain.

For a set X, let ∆(X) be the set of all probability distributions over X. The set of

feasible payoff combinations is

F := {(u1, u2) ∈ ℜ2 | ∃σ ∈ ∆({C,D} × {C,D}) such that ui = Eui(σ) ∀i = 1, 2}.

For any feasible payoff combination u = (u1, u2), let δ(u) be the lower bound of δ

such that there exists a correlated action profile σ ∈ ∆({C,D} × {C,D}) such that

u = (Eu1(σ), Eu2(σ)) and the following strategy combination is a SPE:

Play Path: If the history is empty or there was no deviation from σ in the past, play

σ and Player 1 uses an optimal exit strategy given that σ is repeated as long as the

game continues;

Punishment Phase: If there was a deviation from σ, play (D,D) and Player 1 uses

an optimal exit strategy given that (D,D) is repeated as long as the game continues.

Lemma 8. If g − c < d − ℓ and c(g − c) 5 (d − ℓ)(c − v), then δ(c, c) 5 δ(u) for any

u ∈ F such that u1 > v and u2 > 0.

Proof of Lemma 8: Fix any u ∈ F . Depending on how u locates in F , the necessary

action profiles to be played in σ are different. From Figure 8 we can see that:

(i) To attain a payoff combination in Area (i) on average, a correlated action profile

must include (C,D) and (D,D) and either (C,C) or (D,C).

(ii) To attain a payoff combination in Area (ii) on average, a correlated action profile

must include (C,D) and (C,C) and either (D,D) or (D,C).

(iii) To attain a payoff combination in Area (iii) on average, a correlated action profile

must include (C,C) and (D,C) and either (C,D) or (D,D).

(iv) To attain a payoff combination in Area (iv) on average, a correlated action profile

must include (D,D) and (D,C) and either (C,C) or (C,D).

We thus derive sufficient conditions for (C,C), (D,C), and (C,D) to be followed

and then apply them for each Area to determine the minimum sufficient δ.

Let (u1, u2) be the one-shot average payoff of a correlated action profile on the play

path. In each period, one of the pure action profiles in the support gets to be realized.
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Figure 8: Areas in F

If (C,C) is supposed to be played in this period, and if Player 1 deviates to D, her

long-run payoff is g+δv/(1−δ) since they move to the punishment phase. If she follows

(C,C), the long-run payoff is c + δu1/(1 − δ), since the expected one-shot payoff from

tomorrow on is u1. Hence Player 1 does not deviate from (C,C) if and only if

c + δ
u1

1 − δ
= g + δ

v

1 − δ

⇐⇒ δ = g − c

(g − c) + (u1 − v)
=: δCC

1 (u1). (23)

Similarly, Player 2 does not deviate from (C,C) if and only if

c + δ
u2

1 − δ
= g + δ · 0

⇐⇒ δ = g − c

(g − c) + u2

=: δCC
2 (u2). (24)

When (D,C) is supposed to be played, only Player 2 has an incentive to deviate.

He does not deviate from (D,C) if and only if

ℓ + δ
u2

1 − δ
= d + δ · 0

⇐⇒ δ = d − ℓ

(d − ℓ) + u2

=: δDC(u2). (25)
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When (C,D) is supposed to be played, only Player 1 has an incentive to deviate.

She does not deviate from (C,D) if and only if

ℓ + δ
u1

1 − δ
= d + δ

v

1 − δ

⇐⇒ δ = d − ℓ

(d − ℓ) + (u1 − v)
=: δCD(u1). (26)

In order to make these lower bounds less than 1, clearly we need u1 > v and u2 > 0.

Note that in general, f(x) = x/(A + x) is an increasing function of x if and only if

A > 0.20 Therefore, if g − c < d − ℓ, then δCC
1 (u1) < δCD(u1) and δCC

2 (u2) < δDC(u2)

hold simultaneously. Note also that v2 < v1 implies that if u1 = u2, then δCC
1 (u1) >

δCC
2 (u2).

In order to make the players play a pure action profile (C,C), we need

δ = max{δCC
1 (u1), δ

CC
2 (u2)} =: δCC(u). For players to play (D,C) (resp. (C,D)), we

only need δ = δDC(u2) (resp. δ = δCD(u1)). Similarly, for correlated action profiles,

we can classify the lower bound of δ as follows.

(i) In order to sustain (u1, u2) in Area (i) with as small δ as possible, we must have

at least δ = δCD(u1) but also can use either (C,C) or (D,C) in the support of the

correlated action profile. Hence the lowest δ is max{δCD(u1), min{δCC(u), δDC(u2)}}.
Under the assumption of g − c < d − ℓ, this lower bound is equal to δCD(u1).

Now, in order to lower δCD(u1) as much as possible in this area, we must increase

u1 as large as possible, which hits the boundary with all other areas (see Figure

8). From Figure 8 it is easy to see that we cannot increase u1 as much in Area

(i) as in Area (ii), i.e.,

min
u1∈Area (i)

δCD(u1) > min
u1∈Area (ii)

δCD(u1).

(ii) In order to sustain (u1, u2) in Area (ii), we need δ = max{δCD(u1), δ
CC(u)}, since

for this we can ignore (D,C) and use (D,D) instead in the support, which does

not require a high δ. Under the assumption of g − c < d− ℓ, this lower bound is

δCD(u1).

Again, in order to reduce δCD(u1) as much as possible, we hit the boundary,

which is (C,C).

20By differentiation, f ′(x) = A/(A + x)2.
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In summary so far, among the payoff combinations in the Area (i) and (ii), (C,C)

is the easiest to sustain. This is because in these areas, only Player 1’s deviation must

be prevented and (C,C) gives the highest on-path average payoff for Player 1 in these

areas.

By contrast, in Areas (iii) and (iv), we need to prevent Player 2’s deviation so that

the sufficient δs are as follows.

(iii) For (u1, u2) in Area (iii), we need δ = max{δDC(u2), δ
CC(u)} = δDC(u2).

(iv) For (u1, u2) in Area (iv), we need δ = max{δDC(u2), min{δCC(u), δCD(u1)}} =

δDC(u2).

To reduce δDC(u2) as much as possible, we should increase u2. Hence the minimum

δDC(u2) is attained in Area (iii) where u2 = c. Recall that δCC
1 (c) > δCC

2 (c) since

v2 < v1. Hence (C,C) is the easiest to sustain in Area (iii) and (iv) if δDC(c) = δCC
1 (c).

This is equivalent to

d − ℓ

(d − ℓ) + c
= g − c

(g − c) + (c − v)
⇐⇒ (d − ℓ)(c − v) = c(g − c).

Therefore, we have that if g − c < d − ℓ and (d − ℓ)(c − v) = c(g − c), then

δD(c, c) 5 δD(u) for any u ∈ F such that u1 > v and u2 > 0.

APPENDIX B: PROOFS

Proof of Proposition 2: Case 1: Assume that c = v + ϵ. Recall that

c

1 − δ
= g + δ

v

1 − δ
⇐⇒ δ = δD(v) (2)

g + δW = g + δ
v

1 − δ
⇐⇒ δ = δP (v, ϵ) (6)

We also show that the on-path value function c/(1 − δ) exceeds the deviation value

g + δW for any δ above some critical δ. By computation,

c

1 − δ
= g + δW,

c

1 − δ
= g + δ

v+ϵ
1−δ

+ d

2 − δ
,

⇐⇒ (2 − δ)c = (1 − δ)(2 − δ)g + δ(v + ϵ) + δ(1 − δ)d,

⇐⇒ h(δ) := −δ2(g − d) + δ{3g − (v + ϵ) − c − d} − 2(g − c) = 0.
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Notice that h is quadratic in δ, h(0) = −2(g − c) < 0 and h(1) = c − (v + ϵ) = 0.

Therefore there exists δcW (v, ϵ) ∈ (0, 1] such that for any δ = δcW (v, ϵ), h(δ) = 0 holds.

Thus,
c

1 − δ
= g + δW ⇐⇒ δ = δcW (v, ϵ). (27)

Note also that δD(v) 5 δP (v, ϵ) if and only if ϵ 5 (v − d)(c − v)/(g − v). Now we

divide the analysis into two cases.

Case 1-a: 0 < ϵ 5 (v − d)(c − v)/(g − v), i.e., δD(v) 5 δP (v, ϵ).

In this case, the on-path value function c
1−δ

intersects with g + δ v
1−δ

at δD(v) and

at that point v
1−δ

> W . Hence (27) implies that c/(1 − δ) exceeds g + δW for any

δ = δD(v). Therefore c
1−δ

= max{g + δW, g + δ v
1−δ

} if and only if δ = δD(v). See

Figure 2(a).

Player 2’s deviation value changes depending on whether Player 1 exits immediately

or not after seeing a deviation. If Player 1 exits immediately, i.e., if max{W, v
1−δ

} = v
1−δ

,

Player 2’s deviation value is g + δ · 0. In this case δ = δD(v) implies that c/(1− δ) > g

so that Player 2’s deviation is prevented.

If Player 1 waits for the good option in the punishment phase, i.e., if max{W, v
1−δ

} =

W , then Player 2’s deviation value is increased to

g +
δ

2
d + (

δ

2
)2d + · · · = g +

δd

2 − δ
.

In this case Player 2 does not deviate in the cooperation phase if and only if

c

1 − δ
= g +

δd

2 − δ
(28)

⇐⇒ h′(δ) := −δ2(g − c) + δ(3g − c − d) − 2(g − c) = 0.

This h′ has the property that once it exceeds 0 at some δ, h′(δ) = 0 for all larger δ.

Plug in δD(v) and we get

h′(δD(v)) =
(g − c)

(g − v)2
{(c − v)(v − d) + v(g − v)} > 0.

Therefore for any δ = δD(v), (28) is satisfied. Note that this argument for Player 2

does not rely on the assumption that δD(v) 5 δP (v, ϵ).

In sum, when δD(v) 5 δP (v, ϵ), the eternal cooperation is sustained if and only if

δ = δD(v), that is δS(v, ϵ) = δD(v).
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Case 1-b: (v − d)(c − v)/(g − v) < ϵ, i.e., δP (v, ϵ) < δD(v).

In this case, when the on-path value c/(1 − δ) intersects with g + δ v
1−δ

(at δD(v)),

the optimal one-shot deviation value is in fact g+δW . Thus the on-path value function

intersects with the optimal one-shot deviation value max{g + δW, g + δ v
1−δ

} when the

latter is g+δW (see Figure 2(b)), at δcW (v, ϵ). At this point v/(1−δ) < W . Therefore

from (2) and (27),

c

1 − δ
= max{g + δW, g + δ

v

1 − δ
} ⇐⇒ δ = δcW (v, ϵ).

We show that δcW (v, ϵ) > δD(v). As we have seen,

h(δD(v)) =
(g − c)

(g − v)2
{(c − v)(v − d) − ϵ(g − v)}.

Therefore for (v − d)(c − v)/(g − v) < ϵ, h(δD(v)) < 0. This means that δcW (v, ϵ),

above which h(δ) = 0, must be strictly greater than δD(v).

Since Player 2 does not deviate in the cooperation phase if δ = δD(v), we conclude

that when δP (v, ϵ) < δD(v), the eternal cooperation is sustained if and only if δ =
δcW (v, ϵ).

Case 2: Suppose that v + ϵ > c.

First, we show that there exists a unique δV (v, ϵ) ∈ (0, δD(v)) such that for any

δ = δV (v, ϵ) (see Figure 3),

c + δV = g + δ
v

1 − δ
.

Let

h(δ, v, ϵ) := (1 − δ)(2 − δ){c + δV − g − δ
v

1 − δ
}

= −(g − v)δ2 + {3g − 2c − (v − ϵ)}δ − 2(g − c).

Then

c + δV = g + δ
v

1 − δ
⇐⇒ h(δ, v, ϵ) = 0.

Since h(δ, v, ϵ) is a concave, quadratic function of δ, h(0, v, ϵ) = −2(g − c) < 0, and

h(1, v, ϵ) = ϵ > 0, there exists a unique δV (v, ϵ) ∈ (0, 1) such that for any δ = δV (v, ϵ),

h(δ, v, ϵ) = 0 holds. To show that δV (v, ϵ) < δD(v), plug in δ = δD(v) into h and we

get

h(δD(v), v, ϵ) =
(g − c)(v + ϵ − c)

g − v
> 0.
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Thus δD(v) > δV (v, ϵ).

Second, we show that Player 1 does not deviate for any δ = max{δV (v, ϵ), 2(g−c)
g−d

}.
Recall that from (8), we have that

c + δV = g + δW ⇐⇒ δ = 2(g − c)

g − d
.

Note that
2(g − c)

g − d
< δD(v) ⇐⇒ g + d < 2v. (29)

Therefore

c + δV = max{g + δW, g + δ
v

1 − δ
}

for any δ = max{δV , 2(g−c)
g−d

}.
Next, consider Player 2. Let V2 be the continuation payoff during the cooperation

phase for Player 2. Since Player 1 exits with probability 1/2, it satisfies

V2 =
1

2
{c + δV2} +

1

2
· 0.

Thus V2 = c/(2 − δ) and the on-path value for Player 2 is c + δV2 = c
1−δ/2

.

If he deviates, Player 1 exits immediately if v/(1 − δ) = W or equivalently δ 5
δP (v, ϵ), and Player 1 waits for the good option otherwise. Let W2 be the continuation

payoff during the punishment phase for Player 2, when Player 1 waits for the good

option. It satisfies

W2 =
1

2
{d + δW2} +

1

2
· 0,

so that W2 = d/(2 − δ). Hence the one-shot deviation value for Player 2 is{
g + δ · 0 if δ 5 δP (v, ϵ)
g + δW2 if δP (v, ϵ) 5 δ.

Since d = 0, it suffices to show that the lower bound of δ that satisfies

c + δV2 = g + δW2

is less than δD(v). Note that the payoff structure is similar for Player 2 and Player 1;

V2 − W2 =
1

2
{c + δV2} +

1

2
· 0 − 1

2
{d + δW2} −

1

2
· 0,

and

V − W =
1

2
{c + δV } +

1

2
· v + ϵ

1 − δ
− 1

2
{d + δW} − 1

2
· v + ϵ

1 − δ
.
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Hence V2 − W2 = V − W and since

c + δV = g + δW ⇐⇒ δ = 2(g − c)

g − d
,

Player 2 does not deviate if and only if δ = 2(g−c)
g−d

.

Therefore δS(v, ϵ) = max{δV (v, ϵ), 2(g−c)
g−d

} is the lower bound of the discount factor

that sustains the stochastic cooperation. Finally, note that δS(v, ϵ) < δD(v) if and only

if v > (g + d)/2.

Proof of Proposition 3: The proof is essentially analogous to that of Proposition 2.

Case 1: First we show that there exists δcW (p) ∈ (0, 1] such that

c

1 − δ
= g + δW (p) ⇐⇒ δ = δcW (p). (30)

By computation,

c

1 − δ
= g + δW (p)

⇐⇒ {c − g(1 − δ)}{1 − (1 − p)δ} = δpv+ + δ(1 − p)(1 − δ)d

⇐⇒ hp(δ) := −(1 − p)(g − d)δ2 + δ{(1 − p)(g − c) + g − (1 − p)d − pv+} − (g − c) = 0.

Again hp(·) is a concave function of δ, hp(0) = −(g− c) < 0, and hp(1) = p(c−v+) = 0

for any p ∈ (0, 1). Therefore there exists a unique δcW (p) ∈ (0, 1] such that (30) holds.

From (12), we also have

W (p) = v

1 − δ
⇐⇒ δ = v− − d

v − d
.

Thus, depending on whether δD(v) 5 v−−d
v−d

or v−−d
v−d

< δD(v), we have slightly different

arguments. When δD(v) 5 v−−d
v−d

, the on-path value function c/(1 − δ) intersects with

the optimal one-shot deviation value at δD(v), since v/(1− δ) > W (p) at δD(v). Hence

in this case Player 1 does not deviate if and only if δ = δD(v). When v−−d
v−d

< δD(v), the

on-path value function intersects with the optimal one-shot deviation value at δcW (p).

Let us show that δcW (p) > δD(v). Using v = pv+ + (1 − p)v−, we have

hp(δ
D(v)) =

(1 − p)(g − c)

(g − v)2
[(g − v)(v− − d) − (g − c)(v − d)] < 0

since v−−d
v−d

< g−c
g−v

= δD(v). Thus δD(v) < δcW (p).
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For Player 2, his deviation value is either g + δ · 0 when δ < v−−d
v−d

so that Player 1

exits immediately after a deviation or g + δW2(p) where W2(p) satisfies

W2(p) = p · 0 + (1 − p){d + δW2(p)},

when δ = v−−d
v−d

so that Player 1 waits for v+ in the punishment phase. In the former

case, δ = δD(v) implies that c/(1 − δ) > g, hence Player 2 does not deviate. In the

latter case, notice that W (p) > W2(p) since v+ > d = 0. Therefore Player 1’s condition

c/(1 − δ) = g + δW (p) implies that Player 2 does not deviate either.

In summary, the eternal cooperation is sustained if and only if δ = δE(p) :=

max{δD(v), δcW (p)} and δE(p) = δD(v).

Case 2: Let

h′
p(δ) := (1 − δ){1 − (1 − p)δ}{c + δV (p) − g − δ

v

1 − δ
}

= −(1 − p)(g − v)δ2 + {−p(g − v+) + 2g − c − v}δ − (g − c).

Then

c + δV (p) = g + δ
v

1 − δ
⇐⇒ h′

p(δ) = 0.

Since h′
p(δ) is a concave, quadratic function of δ, h′

p(0) = −(g − c) < 0, and h′
p(1) =

p(v+ − v) > 0, there exists a unique δV (p) ∈ (0, 1) such that for any δ = δV (p),

h′
p(δ) = 0 holds. To show that δV (p) < δD(v), plug in δD(v) into h′

p and we obtain

h′
p(δ

D(v)) =
(g − c)(v+ − c)

g − v
> 0.

Hence δV (p) < δD(v).

Recall that c + δV (p) = g + δW (p) if and only if δ = g−c
(1−p)(g−d)

and this is less than

δD(v) under the assumption of (16). Therefore Player 1 does not deviate if and only

if δ = max{δV (p), g−c
(1−p)(g−d)

} =: δS(p) and this bound is less than δD(v) if and only if

p < (v − d)/(g − d).

Next consider Player 2. Let V2(p) be the continuation value during the cooperation

phase for Player 2. Since Player 1 exits with probability p, it satisfies

V2(p) = (1 − p){c + δV2(p)} + p · 0.

The on-path value for Player 2 is c + δV2(p). Similarly, let W2(p) be the continuation

payoff during the punishment phase for Player 2, when Player 1 waits for the good

option. It satisfies

W2(p) = (1 − p){d + δW2(p)} + p · 0.
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Thus the one-shot deviation value for Player 2 is{
g + δ · 0 if v

1−δ
= V (p)

g + δW2(p) if V (p) = v
1−δ

.

Since d = 0, it suffices to show that the lower bound of δ that satisfies

c + δV2(p) = g + δW2(p)

is less than δD(v). As in the case of the 1/2-binary distribution, the payoff structure

is similar for Player 2 and Player 1;

V (p) − W (p) = (1 − p){c + δV (p)} + p
v+

1 − δ
− (1 − p){d + δW (p)} − p

v+

1 − δ

while

V2(p) − W2(p) = (1 − p){c + δV2(p)} − (1 − p){d + δW2(p)}.

Hence

V (p) − W (p) = V2(p) − W2(p)

and thus

c + V2(p) = g + δW2(p) ⇐⇒ δ = g − c

(1 − p)(g − d)
.

In summary, both players do not deviate if and only if δ = δS(p) = max{δV (p), g−c
(1−p)(g−d)

}.
Finally, note that p < (v − d)/(g − d) if and only if δS(p) < δD(v).

Proof of Lemma 6: From (17), we have

W ′ =
2(v + ϵ) + (v − ϵ) + (1 − δ)d

(1 − δ)(4 − δ)
.

By computation

(
v

1 − δ
− W ′)(1 − δ)(4 − δ) = (4 − δ)v − 2(v + ϵ) − (v − ϵ) − (1 − δ)d

= −δ(v − d) + v − d − ϵ,

so that
v

1 − δ
= W ′ ⇐⇒ δ 5 δP (v, ϵ). (31)
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Moreover, by comparing (5) and (17);

W =
1

2
· v + ϵ

1 − δ
+

1

4
(d + δW ) +

1

4
(d + δW )

W ′ =
1

2
· v + ϵ

1 − δ
+

1

4
· v − ϵ

1 − δ
+

1

4
(d + δW ′)

⇒ W − W ′ =
d + δW − v−ϵ

1−δ

4 − δ
.

Therefore W = W ′ if and only if

d + W = v − ϵ

1 − δ

⇐⇒ W =
1

2
· v + ϵ

1 − δ
+

1

2
(d + δW ) = 1

2
· v + ϵ

1 − δ
+

1

2

v − ϵ

1 − δ
=

v

1 − δ

⇐⇒ δ = δP (v, ϵ).

Combined with (31), we have that

δ 5 δP (v, ϵ) ⇒ g + δ
v

1 − δ
= g + δW ′ = g + δW ;

δP (v, ϵ) 5 δ ⇒ g + δW = g + δW ′ = g + δ
v

1 − δ
.

Proof of Proposition 6: It suffices to prove that Player 2 does not deviate under

δ = δF . Recall that Player 1 exits with probability 1 − F (r∗(d, δ)) if the optimal

reservation level is r∗(d, δ). Hence Player 2’s deviation value is{
g + δ · 0 if δ 5 v−d

v−d

g + δ d
1−δF (r∗(d,δ))

if v−d
v−d

5 δ.

Player 2’s total expected payoff in the cooperation phase is

c

1 − δF (r∗(c, δ))
.

Since we have assumed that δD(v) 5 v−d
v−d

, it suffices to show that the smallest δ that

satisfies
c

1 − δF (r∗(c, δ))
= g (32)

is not more than δD(v). By rearrangement, (32) is equivalent to

δF (r∗(c, δ))g = g − c.
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We first prove that c < r∗(c, δ). Notice that v > c is equivalent to∫ v

c

(x − c)f(x)dx > 0

⇐⇒
∫ v

c

xf(x)dx + F (c)c > c

⇐⇒ (1 − δ)c + δ

∫ v

c

xf(x)dx + δF (c)c > c.

This implies that at r = c, the RHS of (21) is above the 45 degree line. Hence the

intersection with the 45 degree line (which is r∗(c, δ)) is greater than c for any δ.

(See Figure 7.) Therefore we also have that F (c) < F (r∗(c, δ)) for any δ, and thus

v > {1 − F (c)}g implies that

δF (r∗(c, δ))g > δF (c)g > δ(g − v).

Second, note that when δ = δD(v), δ(g − v) = g − c. Therefore at δ = δD(v),

δF (r∗(c, δ))g > g − c,

and δF (r∗(c, δ))g is uniformly greater than δF (c)g for any δ ∈ (0, 1). Thus there exists

δF2 < δD(v) such that for any δ = δF2, Player 2 does not deviate. Let δF1 be the bound

for Player 1, then as shown in the text δF1 < δD(v) as well. Let δF = max{δF1, δF2}
then this is the lower bound that sustains the stochastic cooperation and is strictly

smaller than δD(v).
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