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Abstract
We clarify the relation between canonical and metric energy–momentum
tensors. In particular, we show that a natural definition arises from Noether’s
theorem which directly leads to a symmetric and gauge invariant tensor for
electromagnetic field theories on an arbitrary spacetime of any dimension.

PACS numbers: 03.50.De, 11.30.−j

For many decades, a suitable definition for the energy–momentum tensor has been under
investigation. This is not a technical point, not only because T ab should provide meaningful
physical conserved quantities, but also because it is the source of Einstein’s gravitational field
equations.

In flat spacetime, the canonical energy–momentum tensor arises from Noether’s theorem
by considering the conserved currents associated with translation invariance. However, only
for scalar fields does the energy–momentum tensor constructed in this way turn out to be
symmetric. Moreover, for Maxwell’s theory, it breaks the gauge symmetry. Of course, it is
possible to correct it by a symmetrization procedure [1], although this looks like an ad hoc
prescription.

On the other hand, a completely different approach leads to the metric energy–momentum
tensor (see for example [2]) which is, by definition, symmetric and gauge invariant.

The aim of this paper is to clarify the relation between these tensors.
Let us consider a field theory where the Lagrangian L is a local function of Fab, the

exterior derivative ∂aAb − ∂bAa, of a one-form field Ab, and the metric tensor gab, defined on
a (semi-) Riemannian manifold of dimension n � 2.

The field equations are obtained by requiring that the action

S =
∫

�

L (Fab, gab)
√

|g| dnx (1)

be stationary under arbitrary variations of the fields δAb in the interior of any compact region
�. Thus, one obtains

∇a

(
∂L

∂Fab

)
= 0 (2)

where ∇a is the covariant derivative associated with the Levi-Civita connection.
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Needless to say, even in flat spacetime we are allowed to use curvilinear coordinates, so
the action (1) must be invariant under general coordinate transformations. This requires L to
be a scalar function. Thus, its Lie derivative with respect to any vector field ξa,LξL , must
satisfy

LξL − ∇a(L )ξa = 0. (3)

Now, taking into account that the Lagrangian L depends on the coordinates only through
the tensor fields Fab and gab, we have

LξL = ∂L

∂Fab

LξFab +
∂L

∂gab

Lξgab. (4)

But, for any tensor field Fab of type (0, 2), it holds that

LξFab = ξc∇cFab + Fcb∇aξ
c + Fac∇bξ

c. (5)

Thus
∂L

∂Fab

LξFab = 2
∂L

∂Fab

(∇aFcbξ
c + Fcb∇aξ

c) = 2
∂L

∂Fab

∇a(Fcbξ
c) (6)

where we have used the identity

∇aFbc + ∇bFca + ∇cFab = 0 (7)

(dF = d(dA) = 0), and the obvious antisymmetry of the (2, 0) tensor field ∂L
∂Fab

.
Now, for fields satisfying the equations of motion (2), (6) reads

∂L

∂Fab

LξFab = 2∇a

(
∂L

∂Fab

Fcbξ
c

)
. (8)

So, from (3), (4) and (8), we get for any vector field ξa

∇a

(
2

∂L

∂Fac

F b
cξb

)
+

∂L

∂gab

Lξgab − ∇a(L )ξa = 0. (9)

Moreover, applying (5) to the metric tensor, we have

Lξgab = ∇aξb + ∇bξa (10)

and so, (9) can be rewritten as

∇a

(
2

∂L

∂Fac

F b
cξb − gabL ξb

)
+

(
∂L

∂gab

+
1

2
gabL

)
Lξgab = 0. (11)

We define the ‘true’ canonical energy–momentum tensor as

T ab
C := −2

∂L

∂Fac

F b
c + gabL (12)

and the metric one as

T ab
M := 2

∂L

∂gab

+ gabL . (13)

Note that, by definition, T ab
M is a symmetric (2, 0) tensor.

In terms of these tensors, (11) reads

∇a

(
T ab

C ξb

) − 1
2T ab

MLξgab = 0. (14)

This last equation, a rewritten form of (3), which holds for any vector field ξa , has several
important consequences. In fact, we shall obtain all the results of this work by using it in four
different ways.
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(i) Let us restrict attention to the case where ξa is a Killing vector field, i.e. a generator of
an infinitesimal isometry, so Lξgab = ∇aξb + ∇bξa = 0. From (14), one directly obtains the
Noether current J a

ξ associated with this symmetry,

∇aJ a
ξ = ∇a

(
T ab

C ξb

) = 0 (15)

for, in this case, the last term in (14) clearly vanishes. But this is just the beginning.
(ii) At any point of the manifold, we can choose Riemannian normal coordinates xα

(i.e. a local inertial coordinate system). Moreover, we can choose for ξb any set of n linear
independent covectors with constant components in this coordinate system; for instance, the
dual basis covectors dxα

b . So, (14) reads

∂α

(
T

αβ

C

)
ξβ + T

αβ

C ∂αξβ − T
αβ

M ∂αξβ = ∂α

(
T

αβ

C

)
ξβ = 0 (16)

because of the vanishing of Christoffel symbols and partial derivatives of ξβ . Hence, we get
∇αT

αβ

C = ∂αT
αβ

C = 0. But this is a tensor relation, then1

∇aT
ab
C = 0. (17)

(iii) Coming back to (14), we rewrite it as

∇a

((
T ab

C − T ab
M

)
ξb

)
+ ∇a

(
T ab

M

)
ξb = 0. (18)

Now, we integrate (18) over any compact region �, taking arbitrary vector fields ξa vanishing
everywhere except in its interior. The first contribution may be transformed into an integral
over the boundary which vanishes, as ξa is zero there. Since the second term must therefore
be zero for arbitrary ξa , it follows that

∇aT
ab
M = 0. (19)

(iv) Now, coming back to (14) written as in (18), we see that the diffeomorphism invariance
of the action yields not only ∇aT

ab
C = ∇aT

ab
M = 0, but also

∇a

((
T ab

C − T ab
M

)
ξb

) = (
T ab

C − T ab
M

)∇aξb = 0 (20)

for any covector field ξb. Therefore, since ∇aξb is arbitrary, we conclude that both tensors
coincide,

T ab
C = T ab

M . (21)

We have thus shown that

∇aT
ab
C = 0 ∇aT

ab
M = 0 and T ab

C = T ab
M (22)

follow as a consequence of the diffeomophism invariance of the action.
Some comments are in order. We want to point out that T ab

C has nothing to do with Killing
vectors. T ab

C depends only on the fields, their derivatives and the metric, and ∇aT
ab
C = 0 is

always true, even when the metric has no isometry at all. But, of course, a tensor by itself
does not give rise to any conserved quantity2 so, in order to construct conserved quantities, it
is necessary to have a Killing vector at hand to construct the current J a

ξ = T ab
C ξb.

The T ab
C we define in (12) arises naturally from Noether’s theorem taking into account

that the Lagrangian is a local function of Fab. It is important to realize that, as shown by
(15), if spacetime admits a Killing vector we obtain from T ab

C a conserved current J a
ξ . Thus,

1 Of course, it also follows directly from the equations of motion (2), for ∇aT
ab
C = 2 ∂L

∂Fac
∇aF

b
c − gab∇aL =

2 ∂L
∂Fac

∇aF
b
c − gab ∂L

∂Fcd
∇aFcd = 2 ∂L

∂Fac
∇aF

b
c − 2 ∂L

∂Fac
∇aF

b
c = 0, where we have used identity (7).

2 For ∇aT
ab = ∂a (

√−gT ab)√−g
+ T ac�b

ca .
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for instance, the n(n + 1)/2 currents in Minkowski spacetime are obtained from T ab
C , by

contracting it with the corresponding Killing vectors.
In Minkowski spacetime, the canonical energy–momentum tensor is defined as (see for

example [3, 4])

T ab
c := − ∂L

∂∇aAc

∇bAc + gabL (23)

perhaps as a simple generalization of its expression for scalar fields. It seems to us that this
definition is in some sense unnatural, for L depends on the n(n − 1)/2 components of dA
and not on the n2 derivatives ∇aAb.

T ab
c defined as in (23) is neither symmetric nor gauge invariant. Of course, in flat

spacetime, ∇aT
ab
c = 0 holds. But, it is worth noting that this is not even true for curved

spacetime, for

∇aT
ab
c = −2

∂L

∂Fac

∇a∇bAc + gab∇aL

= −2
∂L

∂Fac

∇a∇bAc + gab ∂L

∂Fcd

∇aFcd

= −2
∂L

∂Fac

∇a∇cA
b = − ∂L

∂Fac

Rb
dacA

d (24)

where, again, we have used the identity (7), and Rb
dac is the Riemann curvature tensor. So,

T ab
c is neither symmetric nor gauge invariant, and also ∇aT

ab
c vanishes only when spacetime

is flat.
Moreover, in flat spacetime, for a Killing field ξb it holds that ∇a

(
T ab

c ξb

) = T [ab]
c ∇aξb,

so the current T ab
c ξb is conserved only for constant ξb, for T ab

c is not symmetric. Then we get
from T ab

c only n currents associated with the constant Killing vectors (translations). A similar
result holds for curved spacetime, even though ∇aT

ab
c �= 0. In fact, if there exists a constant

Killing vector (∇aξ
b = 0) we have

∇a

(
T ab

c ξb

) = ∇aT
ab
c ξb = ∂L

∂Fac

AdRb
dacξb = 2

∂L

∂Fac

Ad∇c∇aξd = 0 (25)

and so, we get a conserved current for each constant Killing vector ξb.
Note that T ab

C = T ab
M means that for any scalar Lagrangian depending on the tensor fields

Fab and gab

∂L

∂Fac

F b
c = − ∂L

∂gab

. (26)

Moreover, as the right-hand side is a symmetric tensor field, so is the left-hand side. It is
worth bearing in mind that (26) holds off-shell too. In fact, from (3) we have, for any field
configuration,

LξL − ∇b(L )ξb = ∂L

∂Fac

(LξFac − ∇bFacξ
b) +

∂L

∂gab

Lξgab

= 2

(
∂L

∂Fac

F b
c +

∂L

∂gab

)
∇aξb = 0 (27)

and the vector field ξb is completely arbitrary.
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For the sake of clarity, let us consider the translation invariance in flat spacetime. Taking
Cartesian coordinates we compute ∂aL in two different ways. First, thinking of L as a
function of Fab, as it actually is, we get

∂aL = ∂L

∂Fcd

∂aFcd = 2
∂L

∂Fcd

∂cFad = 2∂c

(
∂L

∂Fcd

Fad

)
. (28)

In the second step we used ∂[aFab] = 0 and the field equations in the third. Thus, we get the
conservation law ∂aT

ab
C = 0.

On the other hand, if we consider L as a function of ∂aAb

∂aL = ∂L

∂∂cAd

∂a∂cAd = ∂L

∂∂cAd

∂c∂aAd = ∂c

(
∂L

∂∂cAd

∂aAd

)
(29)

where we have commuted the partial derivatives. And this is the conservation ∂aT
ab
c = 0.

Clearly, the first computation still holds in curved spacetime. But the second one fails,
for covariant derivatives acting on one-forms do not commute, and we get (24).

For scalar fields, our arguments remain valid. The only change to be made is the definition
T ab

C := − ∂L
∂∂aφ

∂bφ + gabL . Equation (14) still holds and all the results follow as above. For
general tensor fields, the dependence of the Lagrangian on the affine connection as well as the
noncommutativity between ∇a and Lξ makes the computation more involved [5].

Summarizing, we have shown that, properly defined as in (12), the canonical energy–
momentum tensor T ab

C is symmetric, gauge invariant and coincides with T ab
M . Moreover, it is

the one which arises naturally from Noether’s theorem when the metric has isometries, and
all the currents are written as J a

ξ = T ab
C ξb. For these reasons, we call T ab

C the ‘true’ canonical
energy–momentum tensor.

Acknowledgments

The author wishes to thank Jorge Solomin for valuable discussions. This work was supported
in part by CONICET, Argentina.

References

[1] Belinfante F J 1940 Physica 7 449
[2] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Spacetime (Cambridge: Cambridge University

Press)
[3] Landau L D and Lifshitz E M 1971 The Classical Theory of Fields (Reading, MA: Addison-Wesley)
[4] Jackson J D 1975 Classical Electrodynamics (New York: Wiley)
[5] Gamboa Saravı́ R E On the energy–momentum tensor in preparation


