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The τ → πππντ decay is driven by the hadronization of the axial-vector current. Within the resonance
chiral theory, and considering the large-NC expansion, this process has been studied in Ref. [1] (D. Gómez
Dumm, A. Pich, J. Portolés, 2004). In the light of later developments we revise here this previous work
by including a new off-shell width for the lightest a1 resonance that provides a good description of the
τ → πππντ spectrum and branching ratio. We also consider the role of the ρ(1450) resonance in these
observables. Thus we bring in an overall description of the τ → πππντ process in excellent agreement
with our present experimental knowledge.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The decays of the τ lepton represent an outstanding laboratory
for the analysis of various topics in particle physics. In particular,
τ decays into hadrons allow to study the hadronization of vec-
tor and axial-vector currents, thus they can be used to determine
intrinsic properties of the hadron resonances that govern the dy-
namics of these processes [1–7].

At very low energies, typically E ¿ Mρ [where Mρ is the mass
of the ρ(770) meson], chiral perturbation theory (χPT) [8,9] is an
appropriate effective theory of QCD. However, in general this ap-
proach cannot be extended to the intermediate energy range, in
which the dynamics of resonant states plays a major role. This
is the case of hadron tau decays: these processes happen to be
driven by hadron resonances, and the corresponding energy spec-
trum extends over a region where these resonances reach their
on-shell peaks. In consequence, χPT is not directly applicable to
the study of the whole spectrum but only to the very low energy
domain [10]. A standard way of dealing with these decays is to use
O(p2) χPT to fix the normalization of the amplitudes in the low
energy region, including the effects of vector and axial-vector me-
son resonances by modulating the amplitudes with ad hoc Breit–
Wigner functions [2,6]. However, it has been shown that in the
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low energy limit this model is not consistent with O(p4) χPT,
a fact that leads to question the outcomes that could arise from
this procedure [1,11].

The significant amount of experimental data on τ decays, in
particular, τ → πππντ branching ratios and spectra [12], encour-
ages an effort to carry out a theoretical analysis within a model-
independent framework capable to provide information on the
hadronization of the involved QCD currents. A step in this direction
has been done in Ref. [1], where we have analyzed τ → πππντ

decays within the resonance chiral theory (RχT) [13,14]. This pro-
cedure amounts to build an effective Lagrangian in which reso-
nance states are treated as active degrees of freedom. Though the
analysis in Ref. [1] allows to reproduce the experimental data on
τ → πππντ by fitting a few free parameters in this effective La-
grangian, it soon would be seen that the results of this fit are
not compatible with theoretical expectations from short-distance
QCD constraints [15]. We believe that the inconsistency can be at-
tributed to the usage of an ansatz for the off-shell width of the
lightest a1 resonance, which was introduced ad hoc in Ref. [1]. The
aim of this work is to reanalyse τ → πππντ processes within
the same general scheme, now considering the energy-dependent
width of the a1 state within a proper RχT framework.

2. Theoretical framework

The construction of the effective Lagrangian in RχT is basically
ruled by the approximate chiral symmetry of QCD, which drives

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:Jorge.Portoles@ific.uv.es
http://dx.doi.org/10.1016/j.physletb.2010.01.059


D. Gómez Dumm et al. / Physics Letters B 685 (2010) 158–164 159
Fig. 1. Diagrams contributing to the hadron axial-vector form factors Fi : (a) and (b) contribute to F χ
1 , (c) and (d) to F R

1 and (e) to F RR
1 .
the interaction of light pseudoscalar mesons, and the SU(3)V as-
signments of the resonance multiplets [13,14]. An additional ingre-
dient to be taken into account is the expansion in 1/NC , where NC

is the number of colors in QCD [16]. At the leading order in this
expansion one should only consider tree-level diagrams given by
a local Lagrangian with a spectrum of infinite zero-width resonant
states. However, since light resonances reach their on-shell peaks
in the energy region spanned by τ → πππντ , the corresponding
resonance widths (that only appear at next-to-leading order in the
large-NC expansion) have to be also included. Moreover, as shown
in Ref. [1], it is possible to obtain an adequate description of the
experimental data by including just the lowest multiplets of vector
and axial-vector resonances in the theory.

We will work out τ → πππντ decays considering exact isospin
symmetry. In this limit the processes are driven only by the axial-
vector current, and appear to be dominated by the contributions
of the lightest ρ and a1 resonances. The corresponding effective
Lagrangian in RχT reads:

LRχT = F 2

4

­
uμuμ + χ+

® + F V

2
√

2

­
Vμν f μν

+
®

+ i
G V√

2

­
Vμνuμuν

® + F A

2
√

2

­
Aμν f μν

−
®

+ LV
kin + L A

kin +
5X

i=1

λi Oi
VAP, (1)

where all coupling constants are real. The notation is that of
Refs. [1,13]. Here F stands for the decay constant of the pion in
the chiral limit, and the operators Oi

VAP are given by:

O1
VAP = ­£

V μν, Aμν

¤
χ−

®
,

O2
VAP = i

­£
V μν, Aνα

¤
hα
μ

®
,

O3
VAP = i

­£∇μVμν, Aνα
¤
uα

®
,

O4
VAP = i

­£∇α Vμν, Aα
ν
¤
uμ

®
,

O5
VAP = i

­£∇α Vμν, Aμν
¤
uα

®
. (2)

Nonets of spin 1 resonances V and A are described here using
the antisymmetric tensor formulation, which is consistent with the
usage of the χPT Lagrangian for light pseudoscalar mesons up to
O(p2) [14].

In the Standard Model, the decay amplitudes for τ− →
π+π−π−ντ and τ− → π−π0π0ντ decays can be written as
M± = − G F√
2

V udūντ γ
μ(1 − γ5)uτ T±μ, (3)

where V ud ' cos θC is an element of the Cabibbo–Kobayashi–
Maskawa matrix, and T±μ is the hadron matrix element of the
axial-vector QCD current Aμ ,

T±μ(p1, p2, p3) = ­
π1(p1)π2(p2)π

±(p3)
¯̄
AμeiLQCD |0i, (4)

as there is no contribution of the vector current to these processes
in the isospin limit. Outgoing states π1,2 correspond here to π−
and π0 for upper and lower signs in T±μ , respectively. The hadron
tensor can be written in terms of three form factors, F1, F2 and F P ,
as [7]:

T μ = V μ
1 F1 + V μ

2 F2 + Q μF P , (5)

where

V μ
1 =

µ
gμν − Q μ Q ν

Q 2

¶
(p1 − p3)ν,

V μ
2 =

µ
gμν − Q μ Q ν

Q 2

¶
(p2 − p3)ν,

Q μ = pμ
1 + pμ

2 + pμ
3 . (6)

In this way, the terms involving the form factors F1 and F2 have
a transverse structure in the total hadron momenta Q μ , and drive
a J P = 1+ transition. Meanwhile F P accounts for a J P = 0− tran-
sition that carries pseudoscalar degrees of freedom and vanishes
with the square of the pion mass. Its contribution to the spec-
tral function of τ → πππντ goes like m4

π/Q 4 and, accordingly,
it is very much suppressed with respect to those coming from F1
and F2. We will not consider it in the following.

The evaluation of the form factors F1 and F2 within in the con-
text of RχT has been carried out in Ref. [1]. One has:

F±i = ±¡
F χ

i + F R
i + F RR

i

¢
, i = 1,2, (7)

where the different contributions correspond to the diagrams in
Fig. 1. In terms of the Lorentz invariants Q 2, s = (p1 + p3)

2, t =
(p2 + p3)

2 and u = (p1 + p2)
2 (notice that u = Q 2 − s − t + 3m2

π )
these contributions are given by [1]
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F RR
1

¡
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where

H
¡

Q 2, x
¢ = −λ0

m2
π

Q 2
+ λ0 x

Q 2
+ λ00, (9)

λ0, λ0 and λ00 being linear combinations of the λi couplings in
Eq. (1) that can be read in Ref. [1]. Bose symmetry under the ex-
change of the two identical pions in the final state implies that the
form factors F1 and F2 are related by F2(Q 2, s, t) = F1(Q 2, t, s).

Besides the pion decay constant F , the above results for the
form factors Fi depend on six combinations of the coupling con-
stants in the Lagrangian LRχT, namely F V , F A , G V , λ0, λ0 and λ00
and the masses MV , M A of the vector and axial-vector nonets. All
of them are in principle unknown parameters. However, it is clear
that LRχT does not represent an effective theory of QCD for ar-
bitrary values of the couplings. Though the determination of the
effective parameters from the underlying theory is still an open
problem, one can get information on the couplings by assuming
that the resonance region — even when one does not include
the full phenomenological spectrum — provides a bridge between
the chiral and perturbative regimes [14]. This is implemented by
matching the high energy behaviour of Green functions (or related
form factors) evaluated within the resonance theory with asymp-
totic results obtained in perturbative QCD [14,15,17–22]. In the
NC → ∞ limit, and within the approximation of only one nonet of
vector and axial-vector resonances, the analysis of the two-point
Green functions ΠV ,A(q2) and the three-point Green function VAP
of QCD currents with only one multiplet of vector and axial-vector
resonances lead to the following constraints [23]:

(i) By demanding that the two-pion vector form factor van-
ishes at high momentum transfer one obtains the condition
F V G V = F 2 [14].

(ii) The first Weinberg sum rule [24] leads to F 2
V − F 2

A = F 2, and
the second Weinberg sum rule gives F 2

V M2
V = F 2

A M2
A [13].

(iii) The analysis of the VAP Green function [15] gives for the cou-
pling combinations λ0, λ0 and λ00 entering the form factors in
Eq. (8) the following results:

λ0 = F 2

2
√

2F A G V
= M A

2
√

2MV
, (10)

λ00 = 2G V − F V

2
√

2F A
= M2

A − 2M2
V

2
√

2MV M A
, (11)

4λ0 = λ0 + λ00 = M2
A − M2

V√
2MV M A

, (12)

where the second equalities in Eqs. (10) and (11) are obtained
using the above relations (i) and (ii).

As mentioned above, MV and M A stand for the masses of the vec-
tor and axial-vector resonance nonets, in the chiral and large-NC

limits. A phenomenological analysis carried out in this limit [20]
shows that MV is well approximated by the ρ(770) mass, whereas
for the axial mass one gets M1/NC

a1 ≡ M A = 998(49) MeV (which
differs appreciably from the presently accepted value of Ma1 ).

In addition, one can require that the J = 1 axial spectral func-
tion in τ → πππντ vanishes for large momentum transfer. This
can be seen from the asymptotic behaviour of the axial-vector
current correlator ΠA(Q 2) [25], taking into account that each in-
termediate state carrying the appropriate quantum numbers yields
a positive contribution to ImΠA(Q 2). In fact, it is found that this
constraint leads to the relations in Eqs. (10) and (11), showing the
consistency of the procedure.

The above constraints allow in principle to fix all six free pa-
rameters entering the form factors Fi in terms of the vector and
axial-vector masses MV , M A . However the form factors in Eq. (8)
include zero-width ρ and a1 propagator poles, which lead to di-
vergent phase-space integrals in the calculation of τ → πππντ

decay widths. As stated above, in order to regularize the integrals
one should take into account the inclusion of resonance widths,
which means to go beyond the leading order in the 1/NC expan-
sion. In order to account for the inclusion of NLO corrections we
perform the substitutions:

1

M2
R j

− q2
−→ 1

M2
j − q2 − iM jΓ j(q2)

. (13)

Here R j = V , A, while the subindex j = ρ,a1 on the right-hand
side stands for the corresponding physical state.

The substitution in Eq. (13) implies the introduction of addi-
tional theoretical inputs, in particular, the behaviour of resonance
widths off the mass shell, to which now we turn.

3. Energy-dependent widths of resonances

In general, it is seen that resonances with wide energy-
dependent widths modify the dynamics of the processes in a
non-trivial manner. Moreover, up to now a definite way to ob-
tain those widths directly from QCD is lacking. The problem has
been addressed in detail in Ref. [26], where off-shell widths of
resonances have been studied in the context of RχT. In that work,
vector meson resonances are analysed through the two-point cor-
relator of the vector current, defining the resonance width as the
imaginary part of the pole generated by the resummation of loop
diagrams that have absorptive contributions in the s-channel. The
widths obtained in this way are shown to satisfy the requirements
of analyticity, unitarity and chiral symmetry prescribed by QCD.
According to this definition, the energy-dependent width of the
ρ(770) resonance is given by [26]:

Γρ(s) = Mρ s

96π F 2

·
σ 3

πθ
¡
s − 4m2

π

¢ + 1

2
σ 3

K θ
¡
s − 4m2

K

¢¸
, (14)

where σP =
q

1 − 4m2
P /s. Incidentally it can be seen that an anal-

ogous calculation for the K ∗(892) state leads to:

ΓK ∗(s) = MK ∗ s

128π F 2

£
λ3/2¡1,m2

K /s,m2
π/s

¢
θ
¡
s − (mK + mπ )2¢

+ λ3/2¡1,m2
K /s,m2

η/s
¢
θ
¡
s − (mK + mη)2¢¤, (15)

where λ(a,b, c) = (a + b − c)2 − 4ab.
In principle, one could apply the same definition in order to

evaluate the energy-dependent width of the a1 resonance. How-
ever, this involves a complex two-loop calculation within the res-
onance theory and this is beyond our present reach. In Ref. [1] we
proposed an oversimplified approach in which the a1 width was
written in terms of three parameters, namely the on-shell width
Γa1 (M2

a1
), the mass Ma1 and an exponent α that rules the asymp-

totic behaviour:

Γ I
a1

¡
Q 2¢ = Γa1

¡
M2

a1

¢ φ(Q 2)

φ(M2 )

µ
M2

a1

Q 2

¶α

θ
¡

Q 2 − 9m2
π

¢
, (16)
a1
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where

φ
¡

Q 2¢ = Q 2
Z

ds dt
©

V 2
1

¯̄
BWρ(s)

¯̄2 + V 2
2

¯̄
BWρ(t)

¯̄2

+ 2(V 1 · V 2)Re
£
BWρ(s)BWρ(t)∗

¤ª
. (17)

Here V 1, V 2, s and t are defined as in the previous section, the in-
tegral extends over the 3π phase space and the function BWρ(Q 2)

is the usual Breit–Wigner for the ρ(770) resonance, with the
energy-dependent width Γρ(q2) given by Eq. (14).

The analysis in Ref. [1], which was previous to the determi-
nation of the short-distance constraints from the three-point VAP
Green function [15], left λ0 unconstrained. In this way, from the
phenomenological analysis of experimental data on τ → πππντ

processes the following set of values was obtained: λ0 ' 12, α '
2.5, Ma1 ' 1.2 GeV and Γa1 (M2

a1
) ' 0.48 GeV. On the other hand, if

one takes into account the relation in Eq. (12), using MV = Mρ(770)

and M A ' 1 GeV one gets λ0 ' 0.09, which differs drastically from
the result quoted above (obtained from the fit). In fact, as com-
mented already in Ref. [1], the determination of λ0 from the fit
was undermined. The reason is that in the τ → πππντ amplitude,
without the constraint in Eq. (12), λ0 appears always together with
a suppression factor m2

π/Q 2 [see Eqs. (8) and (9)], thus the de-
pendence of the amplitude on this parameter should be small. The
result λ0 ' 12 is likely to be an artifact to cure a wrong behaviour
of the amplitude.

In this work we stick to the short-distance constraints ruled by
the VAP Green function, thus we assume λ0 as given by Eq. (12).
In fact, it will be seen that this value of λ0 is perfectly compati-
ble with a proper description of τ → πππντ phenomenology. The
new ingredients are the adoption of an adequate definition for the
energy-dependent width of the a1 resonance, and the inclusion
of a small effect arising from the presence of a vector resonance
ρ(1450) that we will consider in Section 4.

We propose here a new parameterization of the a1 width that
is compatible with the RχT framework used throughout our anal-
ysis. As stated, to proceed as in the ρ meson case, one faces the
problem of dealing with a resummation of two-loop diagrams in
the two-point correlator of axial-vector currents. However, it is still
possible to obtain a definite result by considering the correlator
up to the two-loop order only. The width can be defined in this
way by calculating the imaginary part of the diagrams through the
well-known Cutkosky rules.

Let us focus on the transversal component, ΠT (Q 2), of the two-
point Green function:

Π33
μν = i

Z
d4x ei Q ·xh0|T £

A3
μ(x)A3

ν(0)
¤|0i

= ¡
Q 2 gμν − Q μ Q ν

¢
ΠT

¡
Q 2¢ + Q μ Q νΠL

¡
Q 2¢, (18)

where Ai
μ = qγμγ5

λi

2 q. We will assume that the transversal con-

tribution is dominated by the π0 and the neutral component of
the a1 triplet: ΠT (Q 2) ' Ππ0

(Q 2) + Πa1 (Q 2). Following an anal-
ogous procedure to the one in Ref. [26], we write Πa1 (Q 2) as the
sum

Πa1
¡

Q 2¢ = Π
a1
(0) + Π

a1
(1) + Π

a1
(2) + · · · , (19)

where Π
a1
(0) corresponds to the tree level amplitude, Π

a1
(1) to a two-

loop order contribution, Π
a1
(2) to a four-loop order contribution, etc.

The diagrams to be included are those which have an absorptive
part in the s-channel. The first two terms are represented by di-
agrams (a) and (b) in Fig. 2, respectively, where effective vertices
denoted by a square correspond to the sum of the diagrams in
Fig. 1. Solid lines in the diagram (b) of Fig. 2 correspond to any set
Fig. 2. Diagrams contributing to the transverse part of the correlator of axial-vector
currents in Eq. (19). Diagram (a) gives Π

a1
(0) and diagram (b) provides Π

a1
(1) . The

squared axial-vector current insertion in (b) corresponds to the sum of the dia-
grams in Fig. 1. The double line in (a) indicates the a1 resonance intermediate state.
Solid lines in (b) indicate any Goldstone bosons that carry the appropriate quantum
numbers.

of light pseudoscalar mesons that carry the appropriate quantum
numbers to be an intermediate state.

The first term of the expansion in Eq. (19) arises from the cou-
pling driven by F A in the effective Lagrangian (1). We find

Π
a1
(0) = − F 2

A

M2
a1 − Q 2

. (20)

Thus, if the series in Eq. (19) can be resummed one should get

Πa1
¡

Q 2¢ = − F 2
A

M2
a1 − Q 2 + 1(Q 2)

, (21)

and the energy dependent width of the a1 resonance can be de-
fined by

Ma1Γa1

¡
Q 2¢ = − Im 1

¡
Q 2¢. (22)

Now if we expand Πa1 (Q 2) in powers of 1 and compare term
by term with the expansion in Eq. (19), from the second term we
obtain

1
¡

Q 2¢ = − (M2
a1

− Q 2)

Π
a1
(0)

Π
a1
(1). (23)

The off-shell width of the a1 resonance will be given then by

Γa1

¡
Q 2¢ = (M2

a1
− Q 2)

Ma1Π
a1
(0)

Im Π
a1
(1). (24)

As stated, Π
a1
(1)

receives the contribution of various intermediate
states. These contributions can be calculated within our theoretical
RχT framework from the effective Lagrangian in Eq. (1). In partic-
ular, for the intermediate π+π−π0 state one has

Π
a1
(1)

¡
Q 2¢ = 1

6Q 2

Z
d4 p1

(2π)4

d4 p2

(2π)4
T μ

1+ T ∗
1+μ

×
3Y

i=1

1

p2
i − m2

π + i²
, (25)

where p3 = Q − p1 − p2, and T1+ is the 1+ piece of the hadron
tensor in Eq. (5),

T μ
1+ = V μ

1 F1 + V μ
2 F2. (26)

When extended to the complex plane, the function Π
a1
(1)(z) has a

cut in the real axis for z > 9m2
π , where ImΠ

a1
(1)(z) shows a discon-

tinuity. The value of this imaginary part on each side of the cut
can be calculated according to the Cutkosky rules as:

Im Π
a1
(1)

¡
Q 2 ± i²

¢ = ∓ i

2

1

6Q 2

Z
d4 p1

(2π)4

d4 p2

(2π)4
T μ

1+ T ∗
1+μ

×
3Y

(−2iπ)θ
¡

p0
i

¢
δ
¡

p2
i − m2

π

¢
, (27)
i=1
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with p3 = Q − p1 − p2 and Q 2 > 9m2
π . After integration of the

delta functions one finds

Im Π
a1
(1)

¡
Q 2 ± i²

¢ = ± 1

192Q 4

1

(2π)3

Z
ds dt T μ

1+ T ∗
1+μ, (28)

where the integrals extend over a three-pion phase space with
total momentum squared Q 2. Therefore, the contribution of the
π+π−π0 state to the a1 width will be given by

Γ π
a1

¡
Q 2¢ = −1

192(2π)3 F 2
A Ma1

µ
M2

a1

Q 2
− 1

¶2 Z
ds dt T μ

1+ T ∗
1+μ.

(29)

In the same way one can proceed to calculate the contribu-
tion of the intermediate states K +K −π0, K 0 K̄ 0π0, K −K 0π+ and
K + K̄ 0π− . The corresponding hadron tensors T K

1+ can be obtained
from Ref. [27]. Additionally one could consider the contribution of
ηππ and ηηπ intermediate states. However, these are suppressed
by tiny branching ratios [28,29] and will not be taken into account.

In this way we have1

Γa1

¡
Q 2¢ = Γ π

a1

¡
Q 2¢θ¡

Q 2 − 9m2
π

¢
+ Γ K

a1

¡
Q 2¢θ¡

Q 2 − (2mK + mπ )2¢, (30)

where

Γ π,K
a1

¡
Q 2¢ = −S

192(2π)3 F 2
A Ma1

×
µ

M2
a1

Q 2
− 1

¶2 Z
ds dt T π,Kμ

1+ T π,K∗
1+μ

. (31)

Here Γ π
a1

(Q 2) recalls the three-pion contributions and Γ K
a1

(Q 2)

collects the contributions of the K Kπ channels. In Eq. (31) the
symmetry factor S = 1/n! reminds the case with n identical parti-
cles in the final state. It is also important to point out that, con-
trarily to the width we proposed in Ref. [1] [Γ I

a1
(Q 2), in Eq. (16)],

the on-shell width Γa1 (M2
a1

) is now a prediction and not a free
parameter.

An additional point to be taken into account are the off-shell
widths of the vector meson resonances entering the form factors
in T π,K

1+ . Once again, since these resonances reach their on-shell
peaks in the phase-space integrals, it is necessary to go beyond
the leading 1/NC limit and include the corresponding energy-
dependent widths. The involved resonances for the πππ and
K Kπ intermediate states (always sticking to the approximation of
taking only the lowest nonets) are the ρ(770), K ∗(892), ω(782)

and φ(1020) vector mesons. For the ρ and K ∗ we will consider the
energy-dependent widths in Eqs. (14) and (15). Since resonances
ω(892) and φ(1020) are very narrow, the energy dependence is
irrelevant, and for our purposes we can take the experimental on-
shell widths quoted by the PDG [28].

4. The contribution of the ρ(1450)

It turns out that, though some flexibility is allowed around
the predicted values for the parameters, the region between 1.5–
2.0 GeV2 of the three-pion spectrum is still poorly described by
the scheme we have proposed here. This is not surprising as the
ρ(1450), acknowledgeably rather wide, arises in that energy re-
gion. We find that it is necessary to include, effectively, the role

1 It is important to stress that we do not intend to carry out the resummation of
the series in Eq. (19). In fact, our expression in Eq. (24) would correspond to the
result of the resummation if this series happens to be geometric, which in principle
is not guaranteed [26].
of a ρ 0 ≡ ρ(1450), in order to recover good agreement with the
experimental data. The ρ 0 belongs to a second, heavier, multiplet
of vector resonances that we have not considered in our proce-
dure. Its inclusion would involve a complete new set of analogous
operators to the ones already present in LRχT, Eq. (1), with the
corresponding new couplings. This is beyond the scope of our anal-
ysis. However we propose to proceed by performing the following
substitution in the ρ(770) propagator:

1

M2
ρ − q2 − iMρΓρ(q2)

−→ 1

1 + βρ 0

·
1

M2
ρ − q2 − iMρΓρ(q2)

+ βρ 0

M2
ρ 0 − q2 − iMρ 0Γρ 0(q2)

¸
, (32)

where as a first approximation the ρ 0 width is given by the decay
into two pions:

Γρ 0
¡
q2¢ = Γρ 0

¡
M2

ρ 0
¢ Mρ 0p

q2

µ
p(q2)

p(M2
ρ 0)

¶3

θ
¡
q2 − 4m2

π

¢
,

p(x) = 1

2

q
x − 4m2

π . (33)

For the numerics we use the values Mρ 0 = 1.465 GeV and
Γρ 0 (M2

ρ 0) = 400 MeV as given in Ref. [28]. We find that a good

agreement with the spectrum, dΓ/dQ 2, measured by ALEPH [12]
is reached for the set of values:

F V = 0.180 GeV, F A = 0.149 GeV, βρ 0 = −0.25,

MV = 0.775 GeV, MK ∗ = 0.8953 GeV,

Ma1 = 1.120 GeV, (34)

that we call Set 1. The corresponding width is Γ (τ → πππντ ) =
2.09 × 10−13 GeV, in excellent agreement with the experimental
figure Γ (τ → πππντ )|exp = (2.11 ± 0.02) × 10−13 GeV [28]. From
F V and F A in Eq. (34), and the second Weinberg sum rule we can
also determine the value of M A = F V MV /F A ' 0.94 GeV, a result
consistent with the one obtained in Ref. [20]. If, instead, we do not
include the ρ 0 contribution, the best agreement with experimental
data is reached for the values of Set 2:

F V = 0.206 GeV, F A = 0.145 GeV, βρ 0 = 0,

MV = 0.775 GeV, MK ∗ = 0.8953 GeV,

Ma1 = 1.115 GeV, (35)

though the branching ratio is off by 15%. A comparison between
the results for the τ → πππντ spectra obtained from Sets 1, 2 and
the data provided by ALEPH is shown in Fig. 3. Notice that we have
corrected the results provided by Set 2 by a normalization factor
of 1.15 in order to compare the shapes of the spectra. Though it is
difficult to assign an error to our numerical values, by comparing
Set 1 and Set 2 we consider that a 15% should be on the safe side.
Notice, however, that the error appears to be much smaller in the
case of Ma1 .

The value that we get for Ma1 = 1.120 GeV differs from the
one we got in Ref. [1], namely Ma1 = 1.203(3) GeV (the error only
includes the fit procedure). The disparity is mainly an outcome of
the different off-shell width of the a1 that we introduce in this
Letter and that we consider much more appropriate. It has to be
taken into account that our definition of Ma1 is the one given by
Eq. (13) that constitutes and approach consistent with the features
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Fig. 3. Comparison between the theoretical M2
3π -spectra of the τ− → π+π−π−ντ with ALEPH data [12]. Set 1 corresponds to the values of the parameters: F V = 0.180 GeV,

F A = 0.149 GeV, Ma1 = 1.120 GeV, βρ 0 = −0.25, M A ' 0.94 GeV. Set 2 corresponds to the values of the parameters: F V = 0.206 GeV, F A = 0.145 GeV, Ma1 = 1.150 GeV,
βρ 0 = 0, i.e. without the inclusion of the ρ 0 . In the case of Set 2 the overall normalization of the spectrum has been corrected by a 15% to match the experimental data.
of our scheme. The physical pole mass could show a correction
that, within our procedure, is a next-to-leading effect in the 1/NC

expansion. It is also necessary to point out that masses and on-
shell widths collected in the PDG [28] also rely on models of the
form factors or scattering amplitudes.

For Set 1 the width of the a1 is Γa1 (M2
a1

) = 0.483 GeV, which,
incidentally, is in agreement with the figure we got in Ref. [1]
from a fit to the data. The value of Γa1 (M2

a1
) quoted in the PDG

(2008) [28] goes from 250 MeV up to 600 MeV.
Our preferred set of values in Eq. (34) satisfies reasonably well

all the short distance constraints pointed out in Section 2, with a
deviation from Weinberg sum rules of at most 10%, perfectly com-
patible with deviations due to the single resonance approximation.

5. Conclusions

The data available in τ → πππντ decays provide an excellent
benchmark to study the hadronization of the axial-vector current
and, consequently, the properties of the a1(1260) resonance. In this
Letter we give a description of those decays within the framework
of resonance chiral theory and the large-NC limit of QCD that:
(1) Satisfies all constraints of the asymptotic behaviour, ruled by
QCD, of the relevant two- and three-point Green functions; (2) Pro-
vides an excellent description of the branching ratio and spectrum
of the τ → πππντ decays.

Though this work was started in Ref. [1], later achievements
showed that a deeper comprehension of the dynamics was needed
in order to enforce the available QCD constraints. To achieve a
complete description we have defined a new off-shell width for the
a1 resonance in Eq. (30), which is one of the main results of this
work. Moreover we have seen that the inclusion of the ρ(1450)

improves significantly the description of the observables. In pass-
ing we have also obtained the mass value Ma1 = 1.120 GeV and
the on-shell width Γa1 (M2

a1
) = 0.483 GeV.

With the description of the off-shell width obtained in this
work we can now consider that the hadronization of the axial-
vector current within our scheme is complete and it can be applied
in other hadron channels of tau decays.
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