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Abstract

Quantum-mechanical multiple-well oscillators exhibit curious complex
eigenvalues that resemble resonances in models with continuum spectra. We
discuss a method for the accurate calculation of their real and imaginary parts.

PACS number: 03.65.Ge

1. Introduction

Some time ago, Benassi er al [1] discussed the occurrence of complex eigenvalues, or
‘resonances’, in some quantum—mechanical multiple-well oscillators, and calculated them for
a particular example. Recently Killingbeck [2] showed that the Hill-series method yields quite
accurate results for both the real and imaginary parts of those eigenvalues if one introduces a
complex parameter in the exponential factor of the expansion. In principle, one has to tune up
this parameter in order to obtain an acceptable rate of convergence. Such ‘complexification’
of the well-known Hill-series method had been tried successfully before in perturbation and
matrix approaches [3—5]. Complexification is a term coined to indicate the use of, for example,
a complex frequency in the treatment of a perturbed harmonic oscillator or a complex atomic
number in the case of a perturbed Coulomb problem [2-5].

Moiseyev et al [6] have already stressed the physical significance of tunnelling rates in
bound systems and obtained the corresponding complex eigenvalues by the complex coordinate
method.

The Riccati—-Padé method (RPM) is known to be suitable for the accurate calculation of
bound states and resonances of simple quantum—mechanical models [7-15]. However, it has
only been applied to the most commonplace resonances in the continuum spectrum [11-15].
The purpose of this paper is to investigate if the RPM is also a reasonable alternative to the
calculation of the unusual kind of resonances considered by Benassi ef al [1], Killingbeck [2]
and Moiseyeyv et al [6].
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In section 2 we outline the RPM and in section 3 we apply it to the three-well oscillator
treated explicitly by Benassi et al [1], Killingbeck [2] and Moiseyev et al [6].

2. The Riccati-Padé method (RPM)

In order to make this paper reasonably self-contained, in this section we outline the RPM in a
quite general way. Suppose that a solution to the eigenvalue equation

W'(x)+[E—-V@x)]¥x) =0 (1)
can be expanded in the form
o0
W (x) =x”‘chxﬁj,a,,3 > 0. 2)
j=0

The power-series expansion for the regularized logarithmic derivative

fay =2 T e i fix 3)
Tx o W(kx) i
j=0
converges in a neighbourhood of x = 0 and the coefficients f; depend on the eigenvalue E.
The function f(x) is a solution to the Riccati equation

/ ) 2w ale—1)
fx)—f) +7f(x)+V(x)—E—x—2=0. 4)

Equations (1)—(4) apply to both one-dimensional (—oco < x < o0) and central-field
(0 < x < o0 ) models. If V(x) is a parity—invariant one-dimensional potential, then « = 0
for even states, @ = 1 for odd ones, and 8 = 2 for both cases. If lim,_,o- x>V (x) = V_, > 0,
then (e — 1) = V_, + (I + 1) removes the singularity at origin in the case of a central-field
model, where [ = 0, 1, ... is the angular momentum quantum number. If V_, = 0 then
a=1+1.

The RPM consists of rewriting the partial sums of the power series (3) as Padé
approximants x? '[N + d/N](z), z = x?, in such a way that

ZN+d j 2N+d+1

_ 2uj=0 4jT ] IN+d+2
[N+d/N](z)——Z;v:0ijj = ; fiz +0(z ). (5)

In order to satisfy this condition the Hankel determinant H¢, with matrix elements
fivjeas, 1, j = 0,1,..., N, vanishes, where D = N +1 = 2,3,... is the determinant
dimension, and d = 0, 1, ... is the displacement [7-15]. The main assumption of the RPM is
that there is a sequence of roots E'P+4! of the Hankel determinants H¢ that converges towards
a given eigenvalue of the Schroédinger equation (1) as D increases [7—15]. For brevity we call
it a Hankel sequence.

Note that one obtains the coefficients f; from the expansion of the Schrodinger
equation (1) or the Riccati equation (4) quite easily, and that unlike the Hill-series method [2]
the RPM does not require an adjustable complex parameter. Besides, it is not necessary to
take into account the boundary conditions explicitly in order to apply the RPM, and, for that
reason, the method provides both bound states and resonances simultaneously [7—15].
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Table 1. Convergence of a Hankel sequence E'29 towards the lowest complex eigenvalue of the

oscillator (6) with g = 0.14.

D Re E ImE

2 0.96913474062929793208 0

3 0.96912933030952144688 0

4 0.96912932029284635448 0

5 0.96912932006642961226  3.678122 1743857153252 x 10~10

6 0.96912932002647227146  3.399032 6234127550889 x 1010

7 0.96912932002710973379  3.380103 869 8293392418 x 1010

8  0.96912932002717289039  3.379 807958 678 0234680 x 10~10

9 0.96912932002717518442  3.379809314 3407212241 x 10710
10 0.969129320027 17525409  3.379.809 539728 076 7486 x 10~10
11 0.969129320027 17525622  3.379809 5479442123313 x 10710
12 0969129320027 17525629  3.379809 548 1219295624 x 10~10
13 0.969129320027 17525629  3.379809 548 1219029216 x 10~10
14 0.969129320027 17525629  3.379.809 548 121 658 7093 x 10~10
15 0.969129320027 17525629  3.379809 548 121 6435223 x 10~10

Table 2. Complex eigenvalue of the oscillator (6) for several values of g.

g Re E(g?) Im E(g?) Im E(g*) g exp(1/(28%))
0.08 0.990256 459541506003 14 1.16994 x 10732 0.636 209 4894
0.09 0.987617651 108347304 15 1.28623698 x 10725 0.6700502315
0.10 0.984 641588302858 82643 1.3513930260 x 10720 0.700 657 4893
0.12 0.977634914793 235291 57 4.3530125379031 x 1014 0.753 0467190
0.14 0.969 129320027 17525629 3.379809548 12164 x 10710 0.794 491 3345
0.16 0.958969970461 692078 32 1.061900 1732959989 x 10~/ 0.8253492417
0.18 0.946916040677 459 323 55 5.180776 67159013113 x 10=°¢ 0.845 308 4682
0.20 0.932555715 824774521 80 7.947755 439967 67651 x 1073 0.8530716514
0.22 0.91525354748034208273 5.702530659 14296141 x 10~ 0.846 108 8416
0.24 0.894 420553209914 52496 2.424 632840047 890532 x 1073 0.822215 8493
0.26 0.870 115311574 30539225 7.104 058 338 260953225 x 1073 0.782 871 5436
0.28 0.843334 423923420604 12 1.591 585946 525 0206010 x 102 0.734 313 2667
0.30 0.815607958 14733914293 2.940021 689215348 5663 x 1072 0.684 4475376

3. Results and discussion

In what follows we apply the RPM to calculate the curious complex eigenvalue of the triple-
well oscillator

Vi(x) = x> —2g%x* + g*x® (6)

reported by Benassi et al [1], Killingbeck [2], and Moiseyev et al [6]. In this case f = 2 and
we choose « = 0 for even states as discussed above.

Table 1 shows a Hankel sequence E!P-%! that converges towards the lowest complex
eigenvalue when g = 0.14. We have kept twenty digits in all entries in order to show how
they become stable as D increases. Note the remarkable rate of convergence of the Hankel
sequence for both the real and imaginary parts of the eigenvalue.

Table 2 shows the same complex eigenvalue for a range of g-values somewhat wider than
those chosen by Benassi et al [1] and Killingbeck [2]. We have truncated the results, obtained
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Table 3. Lowest resonance of the oscillator (7) for several values of g.

g Re E(g%) Im E(g?) Im E(g*)g exp(1/(3g%))

0.08 0.990 173 151 545681 050 30 466667951 x 10722 1.554541174

0.09 0.987481 055483085332 16 23014736620 x 10~17 1.543296 673

0.10 0.984 427 669 765 255 400 84 5.109394 8883947 x 10~ 14 1.530566 484

0.12 0.977160201918415512 16 1.106368 021386 1671 x 10~° 1.500354 438

0.14 0.968 164247 842059635 13 4297124100601 175228 x 1077 1.463 074727

0.16 0.957 085006 539 887 060 61 1.960 687 029 3524100682 x 107> 1.417 112487

0.18 0.943282 187993 810381 66 2.569 986483 605 5797687 x 10~ 1.35910675

0.20 0.925942461073 14318252 1.544022 124 320492 5966 x 1073 1.284707 315

0.22 0.904 825085519 85951067 5.539501 705 857 366 0278 x 1073 1.193719284

0.24 0.880930 111973 863 668 07 1.397 847 5279423154843 x 1072 1.093 828 654

0.26 0.856 13353763295142744 2.767004 146 177769213 x 1072 0.996493 9951

0.28 0.832259 899 857 693 637 26 4.630061 197 106 5823176 x 1072 0.9104055713

0.30 0.810527 122179393 64397 6.890 850364 6837670242 x 1072 0.839251556

Table 4. Convergence of a Hankel sequence E!P-%) towards a real eigenvalue of the oscillator (6)

with g = 0.26.
D ELD.0] ELD.1]
10 0.82421738753193440391  0.864 108 603 418 729 767 00

11

0.862935251616532668 46

0.863277048 95478421038

12 0.86337027887545057047  0.863402 783728 829 744 35
13 0.86338849889044805032  0.86338746126545299457
14 0.86338823092039473097  0.863 389276 120953456 65
15 0.86338902249896465299  0.863389071537399 26667
16  0.86338923752314275941  0.863 389093 648338163 63
17 0.86338908980986217846  0.863389091 34979284691
18  0.86338909184016369855  0.863389091580357 75725
19 0.86338909153882366976  0.863389091557979 62168
20 0.863389091562044 62624  0.863389091560086318 82

from Hankel determinants with D < 15 and d = 0, to the apparently last stable digit. The
first digits of our results agree with those given by Benassi et al [1] and Killingbeck [2]. We
note that Im E (g%)g? exp(1/(2g?)) does not seem to approach a constant for those values of
g. It may be that Im E(g?) attains the WKB asymptotics [1] at smaller values of g.

It is interesting to compare the strange resonance of the potential (6) with the more
commonplace one of the potential

Vo(x) = x* — 2g%x* (7

that was treated earlier by means of the RPM [11]. Table 3 shows the lowest resonance for
this model for the same values of g considered before. We appreciate that the imaginary part
of this resonance is considerably greater than the previous one and that it seems to approach
the WKB asymptotics Im EW X5 (g2) = [4/(2m g?)] exp(—1/[3g%]) somewhat faster.

The Hankel determinants are polynomial functions of E and their real roots give rise to
sequences that converge towards bound-state eigenvalues. Table 4 shows a real sequence that
converges towards the bound-state eigenvalue close to the complex one discussed above. The
rate of convergence of the real Hankel sequences decreases as g decreases and the real an
complex eigenvalue approach each other. Our calculations suggest that the rate of convergence
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is always greater for the complex eigenvalue. We calculated the real roots for the same values
of g shown in table 2. For g < 0.16 the Hankel sequences seem to appear at D > 20.

The results of this paper clearly show that the RPM is suitable for the calculation of
both real and complex eigenvalues of simple Hamiltonian operators, even in the case of
quite small imaginary parts. We believe that this approach is a most useful tool in the
numerical investigation of a wide variety of eigenvalue problems. Its main advantages are
as follows: great rate of convergence and simple straightforward application that does not
require adjustable parameters or explicit consideration of boundary conditions. From a purely
practical point of view, we do not believe that the RPM is more efficient than the Hill-series
method [2-5], but in our opinion the former approach is interesting by itself because of its
most singular features, some of which have already been outlined above.

Present method is not restricted to the Schrodinger equation. We have recently applied a
variant of the RPM, which we may call Padé—Hankel method, to nonlinear two-point boundary
value problems, obtaining very accurate results for the unknown parameters in several models
of physical interest [17].

Finally, we mention that the complex rotation of the coordinate [6] is more general than
both the Hill series [2-5] and present RPM which are in principle restricted to separable
models.
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