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Abstract
We study the hydrogen atom confined to a spherical box with impenetrable
walls but, unlike earlier pedagogical articles on the subject, we assume that
the nucleus also moves. We obtain the ground-state energy approximately
by means of first-order perturbation theory and show that it is greater than
that for the case in which the nucleus is clamped at the centre of the box. The
present approach is valid for strong confinement and resembles the well-known
treatment of the helium atom with clamped nucleus.

1. Introduction

Confined quantum-mechanical models have proved to be suitable first approximations for
estimating the effect of pressure on the spectral lines of atoms and molecules or the effect of
their neighbours in condensed media. Several such models have been proposed for pedagogical
purposes in introductory courses on quantum mechanics [1–20]. Among them we mention
the quantum bouncer [2, 3, 6], the harmonic oscillator [8, 13, 12, 16, 18, 20] and the hydrogen
atom [7, 9, 11, 12, 14, 15, 17, 19]. Such models have also been useful for the discussion of
semiclassical approaches [6, 7], the variational method [12, 15, 20] and perturbation theory
[3, 18, 20]. Regarding the latter approach we mention that the sum over states is impractical
for the calculation of corrections of order greater than the first one [3, 18, 20]. It is preferable
either to integrate the perturbation equations directly [21] or to make use of the hypervirial
and Hellmann–Feynman theorems [21, 22].

In the case of the harmonic oscillator, most studies refer to the case of a particle that moves
in a box under the effect of a potential of the form V (x) = k(x − x0)

2/2 as if it were tied to
the point x0 by means of a spring of force constant k [8, 12, 16, 18, 20]. If we assume that
Hooke’s force is due to the interaction between two particles, then we have a model similar to
the one discussed by Tanner [13] who showed that it is not possible to separate the centre of
mass and internal degrees of freedom in the usual way because of the effect of the boundary
conditions. Amore and Fernández [23] have recently discussed this problem in greater detail.
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The usual model for the confined hydrogen atom suffers from the same limitation: the
nucleus is considered to be clamped somewhere inside the box [7, 9, 11, 12, 14, 15]. It appears
to be most interesting to assume that not only the electron but also the nucleus moves inside it.
The purpose of this paper is to discuss such a model in the simplest possible way. In section 2
we outline the model and write the Schrödinger equation in a dimensionless form. In section 3
we obtain the ground-state energy approximately by means of first-order perturbation theory
and compare it with the one for the clamped-nucleus case. Finally, in section 4 we summarize
and discuss the results and suggest an approach for improving them systematically.

2. The model

The Hamiltonian operator for a nonrelativistic hydrogen-like atom is

Ĥ = T̂ + V̂

T̂ = − h̄2

2me

∇2
e − h̄2

2mn

∇2
n (1)

V (r) = − Ze2

4π²0r

where me and mn are the masses of the electron and nucleus located at re and rn with charges
−e and Ze, respectively, r = |r|, r = re − rn, ²0 is the vacuum permittivity and ∇2 denotes
the Laplacian in the coordinates indicated by the subscript.

In the case of the free atom we separate the motion of the centre of mass from the internal
one by means of a well-known change of variables and obtain

Ĥ = Ĥ CM + Ĥ int

Ĥ CM = − h̄2

2M
∇2

CM, M = me + mn (2)

Ĥ int = − h̄2

2m
∇2 + V (r), m = memn

M

where ∇2 and ∇2
CM are the Laplacians for the variables r and rCM = (mere + mnrn)/M ,

respectively, and m is the reduced mass. Thus, we can factor the energy states of the free
hydrogen atom as ψ(re, rn) = ψCM(rCM)ψint(r) and solve the Schrödinger equation for Ĥ int

in the usual way [24, 25]. The eigenfunctions and eigenvalues of Ĥ int provide all the physical
properties of the isolated atom, such as, for example, the spectral lines, selection rules, etc
[24, 25].

If the atom is confined to a spherical box of radius R with impenetrable walls, then the
states should vanish when either re = R or rn = R and, consequently, the above separation
is not possible as discussed by Tanner [13] and Amore and Fernández [23] for the harmonic
oscillator. The reason is that the variables rCM and r are unsuitable for the boundary conditions
that are naturally given in terms of re and rn.

The positions of the electron and nucleus in the box are completely determined by six
variables. We conveniently choose re, rn and r (the sides of a triangle) plus three angles
for the orientation of the triangle in space. The rotationless states (those with zero angular
momentum) depend only on the three radial variables: ψ(re, rn, r)̇. In fact, if we take into
account that

∇eψ = re

re

∂ψ

∂re

+
r
r

∂ψ

∂r
, ∇nψ = rn

rn

∂ψ

∂rn

− r
r

∂ψ

∂r
, (3)
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then we realize that ψ(re, rn, r)̇ has zero angular momentum:

(re × ∇e + rn × ∇n) ψ = (re − rn) × r
r

∂ψ

∂r
= 0 (4)

In order to simplify the calculation we first make the change of variables r0
e = re/R and

r0
n = rn/R that leads to the dimensionless Hamiltonian operator

Ĥ d = meR
2

h̄2 Ĥ = −1

2
∇02

e − β

2
∇02

n − λ

r 0

β = me

mn

, λ = meZe2R

4π²0h̄
2 .

(5)

The states of this dimensionless system vanish when either r 0
e = 1 or r 0

n = 1. From now on
we omit the primes on the dimensionless quantities but keep in mind that lengths, masses and
energies are measured in units of R,me and h̄2/(meR

2), respectively. For example, 1/β is the
nuclear mass in such units.

3. Results

For simplicity we restrict ourselves to the ground state and a small box radius. If λ is a
small parameter, then we can try perturbation theory in terms of the unperturbed or reference
Hamiltonian Ĥ 0

d = Ĥ d (λ = 0). The perturbation is therefore given by the interaction between
the particles Ĥ 0

d = −1/r . The unperturbed ground state is

ϕ(re, rn) = 2
sin(πre) sin(πrn)

rern

. (6)

Therefore, the expectation value of Ĥ d with this function gives us the energy of the ground
state corrected through first order of perturbation theory. Besides, according to the variation
principle such approximate energy will be an upper bound to the exact one [24, 25].

The calculation is reminiscent of that for the helium atom under the clamped-nucleus
approximation and we may therefore profit from well-known results. The calculation of
the expectation value of the kinetic energy is straightforward, and there are various ways of
calculating the expectation value of 1/r [24, 25]. Here, we resort to the expansion of 1/r in
terms of Legendre polynomials that leads to the simple integral [24]:Z

ϕ(re, rn)
2

r
dτe dτn = 16π2

·Z 1

0

Z re

0
ϕ(re, rn)

2rer
2
n drn dre

+
Z 1

0

Z 1

re

ϕ(re, rn)
2r2

e rn drn dre

¸
. (7)

Since the analytical expression is rather cumbersome, we just show the numerical result:

²(λ) = π2(β + 1)

2
− 1.786 073 167λ

= 4.934 802 200(β + 1) − 1.786 073 167λ. (8)

Computer algebra systems are nowadays available in the science departments of most
universities because they are invaluable teaching tools. This problem may be useful for
motivating the students to resort to such software.

We can obtain simple analytical expressions by means of the even simpler trial function

ϕ(re, rn) = 30(1 − re)(1 − rn) (9)
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Figure 1. Results from equations (8) (circles), (10) (solid line), (12) (dashed line), (14) (squares)
and power series (filled circles).

that leads to a quite similar result

²(λ) = 5(β + 1) − 25λ

14
= 5(β + 1) − 1.785 714 285λ. (10)

It is interesting to compare the results for this model with those for the hydrogen atom
with the nucleus clamped at the centre of the box. If we calculate the expectation value of the
dimensionless Hamiltonian operator (note that we use the same units as before)

Ĥ dH = −1

2
∇2 − λ

r
(11)

with the approximate trial function ϕ(r) = √
30(1 − r), we obtain

²H (λ) = 5 − 5λ

2
. (12)

For comparison we also consider the unperturbed ground state

ϕ(r) =
√

2
sin(πr)

r
(13)

that leads to the first-order dimensionless energy

²H (λ) = π2

2
− 2.437 653 392λ

= 4.934 802 200 − 2.437 653 392λ. (14)

Obviously, these results are valid for sufficiently small values of λ. After contrasting
equations (12) and (14) with more accurate results [21] we conclude that present first-order
estimates are acceptable for λ < 1. In principle, we may assume that the accuracy of present
moving-nucleus results is as accurate as the clamped-nucleus ones for λ < 1. If this is true,
then our results suggest that the energy of the moving-nucleus model is larger than the clamped-
nucleus one (²(λ) > ²H (λ)), at least for sufficiently small box radii. The difference does not
come mainly from the kinetic energy of the nucleus that is proportional to β ≈ 1/1836 but
from the electron–nucleus interaction. This conclusion is consistent with earlier variational
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results that show that the smallest energy takes place when the nucleus is clamped at the centre
of the sphere and increases as it approaches the wall [15]. Figure 1 shows the approximate
energies given by equations (8), (10), (12) and (14) for λ 6 5 as well as accurate numerical
energies for the clamped nucleus model calculated by a straightforward power-series method
[21].

The critical value of λ defined by ²H (λc) = 0 estimated from the first-order perturbation
energy (14) λc ≈ 2 is about 9% larger than the actual value λc = 1.835 246 330 that one
easily obtains by means of the method already mentioned above or from perturbation theory
of greater order [21]. For the moving-nucleus model our approximate expressions (8) and (10)
predict λc ≈ 2.8 and we expect that its error is of comparable magnitude.

4. Conclusions

Tanner [13] proposed a pedagogical discussion of the effect of the boundary conditions on the
separability of the degrees of freedom of a confined system. However, he did not show any
result for the one-dimensional harmonic oscillator that he chose as an illustrative example.
Later Amore and Fernández [23] discussed that model in more detail. In this paper we extended
those arguments to the hydrogen atom and carried out simple approximate calculations for
the ground state by means of straightforward first-order perturbation theory. It has been our
purpose to show how to do the calculation using well-known techniques already applied to
the helium atom with the clamped-nucleus approximation. Our analysis shows that it is not
possible to separate the Schrödinger equation in the usual way in terms of internal and centre-
of-mass coordinates r and rCM, respectively, because the boundary conditions are given in
terms of the electron and nucleus coordinates re and rn, respectively. Our approximate results
suggest that the energy is greater when the nucleus moves than when it is clamped at the centre
of the spherical box and that the difference does not come mainly from the kinetic energy of
the moving nucleus that is considerably smaller that the electronic one. Present results are
limited to a small box radius or strong confinement because they are based on perturbation
theory. Although it is relatively easy to carry out perturbation calculations of large order for
the clamped-nucleus model [21], the treatment of the moving-nucleus case is considerably
more complicated. The variational method appears to be a better choice.

We may conjecture how to carry out more accurate calculations systematically using
the techniques already developed for two-electron atoms. We may, for example, write
ϕ(re, rn, r) = (1 − re)(1 − rn)f (re, rn, r) and then try a Hylleraas-like expansion [26] for the
function f (re, rn, r). A reasonable first approximation appears to be f (re, rn, r) = e−ar where
a is a variational parameter. This choice is motivated by the fact that the simple trial function
ϕ(r) = (1−r) e−ar is suitable for the ground state of the clamped-nucleus model (11) yielding
the exact result for λ = 2 (2s state of the free atom) and the exact limit λ → ∞ (1s state
of the free atom) [15, 27]. It also yields the remarkably accurate critical value λc = 1.8354.
The main difficulty with the Hylleraas-like expansion for the confined moving-nucleus model
seems to be that r, equivalent to the electron distance r12 in the two-electron atoms [24–26],
appears in the exponential factor.
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