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Abstract

A symmetrical binary mixture AB that exhibits a critical temperature Tcb of phase separation
into an A- and a B-rich phase in the bulk is considered in a geometry con�ned between two
parallel plates a distance D apart. It is assumed that one wall preferentially attracts A while
the other wall preferentially attracts B with the same strength (“competing walls”). In the limit
D→ ∞, one then may have a wetting transition of �rst-order at a temperature Tw, from which
prewetting lines extend into the one phase region both of the A- and the B-rich phase. It is
discussed how this phase diagram gets distorted due to the �niteness of D: the phase transition
at Tcb immediately disappears for D¡∞ due to �nite size rounding, and the phase diagram
instead exhibit two two-phase coexistence regions in a temperature range Ttrip¡T ¡Tc1=Tc2. In
the limit D→ ∞ Tc1; Tc2 become the prewetting critical points and Ttrip → Tw. For small enough
D it may occur that at a tricritical value Dt the temperatures Tc1 = Tc2 and Ttrip merge, and then
for D¡Dt there is a single unmixing critical point as in the bulk but with Tc(D) near Tw. As
an example, for the experimentally relevant case of a polymer mixture a phase diagram with
two unmixing critical points is calculated explicitly from self-consistent �eld methods. c© 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

Although the �nite size e�ects on phase transitions in thin �lms have been studied
since a long time [1–14], only during the last decade it was discovered [15–23] that in
ferromagnetic Ising �lms with surface �elds of di�erent sign but of the same strength
±H1 (“competing walls”) novel types of phase transitions occur: namely, a phase
transition occurs for zero bulk �eld H from a state with an interface freely 
uctuating
in the center of the thin �lm to a state where the interface is bound either to the lower
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or to the upper wall con�ning the �lm, which then acquires a nonzero (positive or
negative) magnetization. This interface localization–delocalization transition at Tc(D)
may be either second [16–22] or �rst-order [17,22,23], and for �lm thicknesses D→ ∞
the transition temperature Tc(D) does not converge towards the bulk critical temperature
Tcb as usual [1–8,12–14], but rather towards the wetting transition temperature Tw(H1)
[16–23].
Now it is well known that, in general, wetting transitions [24] can be second or

�rst-order [25]. Thus it is plausible that also the interface localization–delocalization
transition can be either second or �rst-order. However, recently it was shown [22]
that also in cases where the wetting transition is �rst-order, the transition Tc(D) may
be second order for small enough thickness (D¡Dt) and become �rst-order only
for D¿Dt . Thus the transition at Tc(Dt) is the �nite-thickness analog of a wetting
tricritical point [17–22].
All this work [15–23] has only considered the case H = 0, however. It is well

known of course, that for D → ∞, in the case of a �rst-order wetting transition at
Tw(H1¡ 0) there exists at T = Tpre(H;H1) a prewetting transition [24,25], where the
distance of the interface bound to the wall discontinuously jumps from a smaller value
to a larger value. While the analog of this prewetting transition in thin �lms has been
studied occasionally for the case of “capillary condensation” (where on both walls
�elds act that have the same sign) [11,14], it is only in the present work that the
e�ect of prewetting phenomena on the interface localization–delocalization transition
is considered (for a much more detailed account of our calculations, see M�uller et al.
[26]). The physical systems that we have in mind are not magnets, of course, but rather
binary (A,B) mixtures: as is well known, in an Ising model context the “magnetization”
simply translates into the relative concentration � if one component (A, say), and the
�eld H translates into the chemical potential di�erence �� between the species (for
simplicity we deal here with perfectly symmetric mixtures for which the bulk critical
concentration is �cb = 0:5).
However, one important aspect of binary mixtures is that physically it is a density

of an extensive thermodynamic variable (namely �) that is the �xed independent ther-
modynamic variable, rather than the intensive variable ��. As we shall see below, this
fact has important consequences for the phase diagram of con�ned mixtures: the typical
situation is that one encounters two successive lateral phase separation transitions!
In Section 2 we elaborate these ideas by a qualitative discussion of the phase dia-

grams {both in the space of intensive variables (��; T ) and in the space (�; T )} and
of the corresponding physical state of the con�ned mixture. Section 3 exempli�es these
considerations by presenting a speci�c calculation for a symmetric polymer mixture,
treated within a self-consistent �eld framework [26]. There are numerous experimental
studies of con�ned polymer mixtures [27,28] and these systems might be convenient
for testing our predictions. Finally Section 4 summarizes our conclusions.
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Fig. 1. Qualitative phase diagrams of a bulk system (thickness D =∞) con�ned by two walls at which com-
peting “�elds” act, as well as corresponding phase diagrams of thin �lms of various thicknesses D : D¡Dt
(left part), D.Dt (middle part) and D¿Dt (right part). Upper part of the panel presents the phase dia-
grams in the space of two intensive variables, lower part chooses as abscissa instead the concentration �,
a density of an extensive variable. Characteristic temperatures shown are the bulk critical (Tcb), wetting
(Tw) and prewetting critical (Tcp) temperatures, while in the thin �lm critical temperatures Tc(D) occur at
�� = 0 and � = �cb =

1
2 only for D¡Dt , while for D¿Dt one has for �� = 0 and �trip =

1
2 rather a

triple point of three phase coexistence. However, two critical points Tc1 = Tc2 = Tc(D) still occur, but at
concentrations �1c; �2c that move towards the concentrations of the prewetting critical points as D → ∞.
For further explanations cf. text.

2. Qualitative phase diagrams of con�ned binary mixtures

We assume here a binary mixture con�ned by “competing” walls in the sense that
one wall attracts species A with the same strength as the opposite wall attracts species
B, and consider the case of �rst-order wetting. Then the phase diagram is qualitatively
as shown in the left part of Fig. 1: In the space (T;��), bulk (D → ∞) phase
separation occurs for �� = 0, and the walls are incompletely wet for T ¡Tw but
wet for Tw ¡T ¡Tcb. From the point T = Tw; �� = 0 there extend two (�rst-order)
prewetting lines, which end at the prewetting critical points Tcp. These prewetting
transitions correspond to singularities of the surface free energies associated with the
lower and upper wall con�ning the mixture (Fig. 2). Due to the special symmetries
chosen for our model, both the wetting transitions for the lower and upper wall coincide,
and the prewetting critical temperatures are also the same. There is a mirror symmetry
of the phase diagrams around the line �� = 0 (upper part) or � = 0:5 (lower part),
respectively.
For �nite thickness D it may happen, as demonstrated by Monte Carlo simulations for

Ising models with enhanced exchange interactions near the walls [22], that a tricritical
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Fig. 2. Qualitative explanation of the di�erent phases that occur in a binary mixture con�ned between
competing walls. Already at T ¿Tcb there are A- and B-rich enrichment layers at the respective walls,
having a �nite thickness �b (the bulk correlation length of concentration 
uctuations), so for D/2�b the
system is still disordered in the center, while in the region of temperatures where D and �b are compara-
ble a rounded transition to a layered structure with one A–B interface at T . Tcb occurs. For � = �trip
the position of this interface is just in the middle of the thin �lm, while for �1¡�¡�trip the location of
the interface re
ects the asymmetry of composition. For � = �trip one encounters a single transition at
T =Ttrip, where the localization of the interface at the walls requires lateral phase separation between A- and
B-rich phases of equal amounts. For �1¡�¡�trip one encounters two lateral phase separations: the �rst
one is a coexistence between the phase with delocalized interface (in the center of the �lm as T → T+trip)
with a phase where the interface is localized at the upper wall (the B-rich phase). In a second transition
at T ¡Ttrip the phase with delocalized interface disappears in favor of the phase with the interface bound
to the lower wall (the A-rich phase). Note that the amount of this phase must be less, to comply with the
lever rule.

point at D=Dt , Tc(Dt), ��= 0 (and �= 0:5) occurs. For D¡Dt then there exists a
single critical point at T = Tc(D), �� = 0 (and � = 1=2), there is no remnant of the
prewetting phenomena left, and the phase diagram both in the (T;��) plane as well as
in the (T; �) plane looks qualitatively exactly like in the bulk three-dimensional case. Of
course, we do expect a 
atter shape near the critical point due to the occurence of the
two-dimensional Ising exponents {�coex−1=2˙(1−T=Tc(D))1=8 rather than �coex−1=2˙
(1− T=Tcb)� with � ≈ 0:325 in the bulk [1–8,13]}. But the situation di�ers very much
for D¿Dt (middle and right part of Fig. 1). In the semi-grand-canonical ensemble
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(�� �xed), one experiences a single �rst-order transition for −��c(D)¡��¡��c(D)
where ±��c(D) is the chemical potential reached for T = Tc(D) along the remnants
of the prewetting lines. In the canonical ensemble (� �xed), we encounter a single
�rst-order phase transition only if � = �trip = 1

2 , which corresponds to �� = 0, while
for �1¡�trip or for �trip¡�2 = 1 − �1 one encounters two successive �rst-order
transitions when one lowers the temperature. Only if one chooses �=�c1, (the critical
concentration corresponding to the critical point Tc1) or �=�c2=1−�c1 (corresponding
to Tc2) one still encounters a (two-dimensional) critical behavior of phase separation,
�coex − �c1˙ (1 − T=Tc1)1=8, and similarly �coex − �c2˙ (1 − T=Tc2)1=8. While �1
as well as �2 merge at �trip = 1

2 as D → Dt; �1 and �2 move outwards towards
the prewetting critical concentration when D → ∞. In this limit, the width of the
two-phase coexistence regions for T ¿Ttrip must shrink and ultimately vanish, since
the di�erence in concentration on both sides of the pseudo-prewetting �rst-order lines
with respect to the average concentration � of the �lm is an e�ect of order 1=D, and
therefore for D → ∞ the prewetting transitions are lines in the (T; �) phase diagram
and not split up in two-phase coexistence regions.
From this description it already is clear that the approach to the phase diagram of

the bulk (D=∞) as D→ ∞ is very nonuniform: for any �nite D the bulk transition
is still rounded, and (for �1¡�trip or �trip¿�1) the �rst transition is a lateral phase
separation corresponding to the prewetting transition and the second transition is another
lateral phase separation at Ttrip (Fig. 2). For D→ ∞ the phase diagram, hence, contains
prewetting lines (as in the left part of Fig. 1) and a horizontal line at Tw (to which
the triple line in the middle part of Fig. 1 has converged). Of course, the pictures
explaining the various phases in Fig. 2 are highly schematic, and in reality one expects
the interface to turn around rather smoothly and avoid the 90◦ kinks. Such smooth
interfaces (which also have an intrinsic width which need not be negligibly small
in comparison with D) have in fact been observed in two-phase coexistence states
associated with capillary condensation [14].

3. A quantitative example: a con�ned polymer mixture

Thin polymeric �lms con�ned between walls may have interesting applications and
can also be studied conveniently by a variety of experimental tools [27,28]. In fact, the
“soft mode” – phase [18] with a single 
uctuating interface in the middle of the �lm (as
shown in the upper part of Fig. 2) has been experimentally observed [29,30], and we
consider it likely that by �ne-tuning of experimental control parameters it should also
be possible to observe some of the transitions predicted in Figs. 1 and 2. In fact, for
polymers one need not have special interactions to get a �rst-order wetting transition
as in the Ising model [22], rather one �nds always �rst-order wetting behavior except
close to the critical point of the bulk [14].
As in our previous work [14,23] we consider a situation where the wetting transition

temperature Tw lies in the strong segregation regime, for which the self-consistent �eld
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Fig. 3. Phase diagram of a symmetric polymer mixture in a thin �lm with antisymmetric boundary �elds
calculated in the framework of the self-consistent �eld theory for Gaussian chain molecules. Three �lm
thicknesses D = 0:5Re; 0:9Re and 2:6Re are shown (Re: end-to-end distance of the molecules). The ratio of
D=Re is denoted as �0 in the �gure. The smallest �lm thickness corresponds to the situation D¡Dt while
�lms of thickness D= 0:9Re and 2:6Re exhibit two critical points. Panel (a) displays the phase diagrams in
the (T ∼ 1=�N;��=kT ) plane, while (b) shows the results as a function of temperature 1=�N and composition
�. Note that the critical temperature of the bulk is at 1=�N = 0:5.

theory is accurate. The technical aspects of this approach are explained in detail else-
where [14,26,31]. Fig. 3 shows that for a typical choice of parameters indeed a phase
diagram of the type of Fig. 1, right part, is reproduced. Note that the self-consistent
�eld theory near the critical points Tc1(D), Tc2(D) implies mean-�eld like behavior,
�coex−�c1˙(1−T=Tc1(D))1=2, rather than yielding the expected two-dimensional Ising
exponent [10]. But for large molecular weight this Ising like critical region is expected
to be rather narrow [27,28], and thus we consider Fig. 3 as a useful hint for the phase
diagram to be searched for in the experiments.

4. Conclusions

In this paper we have considered the problem of phase-separating binary mixtures
con�ned between “competing walls” and have shown that the phase diagram has ei-
ther critical points and �rst-order regions coexisting at a triple line or a single critical
point resulting from the merging of these two critical points at the tricritical thick-
ness Dt . In previous work treating the case D¿Dt , only the case �� = 0 in the
semi-grandcanonical ensemble was studied [22,23], which in the (T; �) plane means
that one cools the system at � = �trip = 0:5 and then a single �rst-order transition
(Fig. 2, left part) occurs: thus the existence of the two critical points was not previ-
ously discussed.
Of course, in reality one will have to abandon the special symmetry assumptions

used in Figs. 1–3, allowing for asymmetric mixtures, di�erences in strength of the
wall forces, etc, and thus the space of parameters to be considered gets much en-
larged. However, as long as one works in the subspace where the wetting transition
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temperatures Tw of both walls are the same, the phase diagrams still should have the
topology of Fig. 1, only the mirror symmetry around �� = ��coex(T ) or � = �cb is
lost, and thus in general �trip will di�er from �cb. Also Tc1 and Tc2 will di�er. Of
course, in the most general case one must allow also for Tw1 6= Tw2, di�erent wetting
transition temperatures of both walls. One can also consider �rst-order wetting at one
wall and second order wetting at the other. A description of the phase diagrams for
these more complicated cases is a challenging task for future work.
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