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The prediction of the response of a closed system to external perturbations is one of the central

problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in-

depth description of such a response. The LDOS is the distribution of the overlaps squared connecting the

set of eigenfunctions with the perturbed one. Here, we show that in the case of closed systems with

classically chaotic dynamics, the LDOS is a Breit-Wigner distribution under very general perturbations of

arbitrary high intensity. Consequently, we derive a semiclassical expression for the width of the LDOS

which is shown to be very accurate for paradigmatic systems of quantum chaos. This Letter demonstrates

the universal response of quantum systems with classically chaotic dynamics.
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The action of a perturbation on eigenfrequencies and
eigenfunctions of a quantum system has been a subject of
paramount importance since the beginning of quantum
theory. Its understanding is at the heart of fundamental
problems of quantum mechanics like dissipation, phase
transition, or irreversibility. The usual perturbation theory
is a good starting point to describe successfully this effect
when the perturbation is small. However, approximated
theories usually fail for strong perturbations and highly
demanding computational methods are needed to describe
characteristics of the perturbed system.

The local density of states (LDOS) or strength function
is a widely studied magnitude to characterize the effect of
perturbations on quantum systems and has been exten-
sively computed for different systems and perturbations
[1–5]. The LDOS is a distribution of the overlaps squared
between the unperturbed and perturbed eigenstates. Let us
consider a chaotic one parameter dependent Hamiltonian

HðxÞ, and its quantum counterpart ĤðxÞwith eigenfrequen-
cies !jðxÞ and eigenstates jjðxÞi. The LDOS of an eigen-

state jiðx0Þi (that we call unperturbed) is given by

�ið!;�xÞ ¼ X
j

jhjðxÞjiðx0Þij2�ð!�!ijÞ;

with �x ¼ x� x0 and !ij ¼ !jðxÞ �!iðx0Þ.
Furthermore, to avoid a dependence on the particular char-
acteristics of the state jiðx0Þi, an average over n unper-
turbed states in a small frequency window is performed

��ð!;�xÞ ¼ 1

n

X
�ið!;�xÞ: (1)

The LDOS is related with important measures of irre-
versibility and sensitivity to perturbations in quantum sys-
tems as the survival probability and the Loschmidt echo
[6–9]. In fact, the LDOS is the Fourier tranform of the
survival probability [9] and its width gives the decay rate of
the Loschmidt echo for a small enough strength of the

perturbation [7,8]. In this Letter these relations are ex-
ploited to show that LDOS has a Lorentzian shape, usually
called the Breit-Wigner distribution, under very general
perturbations of arbitrary high intensity. Moreover, we
derive a semiclassical expression for the width of the
LDOS, �sc, in chaotic systems. The derived expression
only depends on the perturbation, while the properties of
the system are taken into account through a uniform mea-
sure in phase space. Although �sc is derived for local
perturbations, we show that it also works in the case of
global perturbations as a consequence of the Lorentzian
character of the LDOS, and the requirement of statistical
independence between perturbed and unperturbed eigen-
function sets. Of course, such a requirement imposes re-
strictions on the admitted perturbations and we discuss this
point at the end of the Letter. We test the ability of �sc to
predict the width of the LDOS in perturbed cat maps and
the Bunimovich stadium billiard with boundary deforma-
tions, observing that it works very well in both systems,
even for strong perturbations far away from the Fermi
golden rule regime. These results demonstrate for the first
time the universal response of quantum chaotic systems to
perturbations of a classical nature.
The Fourier transform of Eq. (1) is given by

F ½ ���ðt; �xÞ ¼ 1

n

X
e�i!iðx0Þthiðx0ÞjeiĤðxÞt=@jiðx0Þi; (2)

where the sum runs over the amplitude fidelity of eigen-
states (whose square modulus is the survival probability).
Let us evaluate the previous sum semiclassically. Vanı́cek
has proposed an approximation of the amplitude fidelity,
named the dephasing representation [10], by assuming a
classically small perturbation in such a way that the shad-
owing theorem [11] is valid. Using such an approximation,
Eq. (2) leads to

PRL 104, 254101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
25 JUNE 2010

0031-9007=10=104(25)=254101(4) 254101-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.254101


F ½ ���ðt; �xÞ �
Z

dqdpWðq; pÞ exp½�i�Stðq; p; �xÞ=@�;
(3)

where �Stðq; p; �xÞ is the action difference evaluated
along the unperturbed orbit starting at (q, p) that evolves
at a time t. Moreover, Wðq; pÞ ¼ ð1=nÞPWiðq; pÞ, with
Wiðq; pÞ being the Wigner function of jiðx0Þi. In chaotic
systems, Wðq; pÞ reduces to a uniform distribution.

In the case of local perturbations, the right-hand side of
Eq. (3) has been evaluated on a Poincaré surface of section
by Goussev et al. [12], resulting in

F ½ ���ðt; �xÞ � e��jtj; (4)

with

� ¼ �ð1�<he�i�Sðq;p;�xÞ=@iÞ: (5)

The average is evaluated on the region of surface of section
where the local perturbation acts, and �Sðq; p; �xÞ is the
action difference after one step on the surface of section.
For numerical comparison we consider a rectangular re-
gion,

he�i�Sðq;p;�xÞ=@i ¼ 1

�

Z p2

p1

Z q2

q1

e�i�Sðq;p;�xÞ=@dqdp; (6)

where p1, p2, q1, and q2 are the limits of the perturbed
region with area � ¼ ðp2 � p1Þðq2 � q1Þ. Moreover, �,
named the classical decay rate in Ref. [12], is the proba-
bility to reach the perturbed region per unit time,

� ¼ �

�A
; (7)

whereA is the area of the Poincaré surface of section and
� is the mean mapping time.

The inverse Fourier tranform of Eq. (4) is a Lorentzian
function, the so-called Breit-Wigner distribution,

��ð!;�xÞ � Lð�;!Þ ¼ �

�ð!2 þ �2Þ ; (8)

and we define its width as half the distance around the
mean value that contains the 70% of the probability (ac-
tually, this value is only relevant for the numerical compu-
tation). Then, the semiclassical approximation of the width
results in

�sc ¼ tan

�
0:7

�

2

�
� � 1:963�: (9)

We stress that the semiclassical approximation was de-
rived in the limit of � ! 0. However, our final expression
[Eq. (9)] can be extended to arbitrary values of � as a result
of the Lorentzian character of the LDOS and the property
of short range correlation of chaotic eigenfunctions. To
clarify this point, let us consider the following basis sets:

fjið0Þig is the set of unperturbed eigenfunctions, fjið1Þig is
the set resulting after applying a local perturbation over an

infinitesimal region ��1, and fjið2Þig is the set resulting
after applying the perturbation ��2 to the previous system
(the one with the perturbation ��1). For ��1 and ��2

being perturbations over disjointed regions of phase space,
their corresponding LDOS should be statistically indepen-
dent because chaotic eigenfunctions have correlations of
short range in phase space. Therefore by assuming inde-
pendence, the LDOS connecting the first and third basis
sets is simply derived by convoluting the previous ones,Z

Lð��1; !1ÞLð��2; !�!1Þd!1 ¼ Lð��1 þ ��2; !Þ:
The new LDOS is also a Lorentzian function, with ��1

(��2) being the parameter corresponding to the first (sec-
ond) perturbation. Then, by using Eqs. (5)–(7) it is easy to
see that ��1 þ ��2 is just the parameter resulting from the
perturbation ��1 þ ��2. Following this procedure, we can
now add a perturbation ��3 and so on up to fill a finite
region �. We would like to stress that even though the
property of statistical independence is very reasonable,
there are exceptional perturbations where such a property
is not satisfied; see the end of the Letter for a discussion of
this point.
Let us show the power of the semiclassical approxima-

tion to describe the LDOS in quantum maps, where the
mapping time is fixed to � ¼ 1, the phase space is a torus of
area A ¼ 1, and the Hilbert space has finite dimension N
(with 2�@ ¼ 1=N). We consider the cat map, a canonical
example in classical and quantum chaos studies, perturbed
with a nonlinear shear in momentum,

q0 ¼ 2qþ p; p0 ¼ 3qþ 2pþ "ðq; kÞ; ðmod 1Þ
where "ðq; kÞ ¼ ðk=2�Þ½cosð2�qÞ � cosð4�qÞ�, with k
being the strength of the perturbation. The action differ-
ence for one iteration of the map is given by �Sðq; �kÞ ¼
ð�k=4�2Þ½sinð2�qÞ � sinð4�qÞ=2� [13].
For local perturbations [14], the shear "ðq; kÞ is only

applied to a q window from q0 to q1, with width 	 ¼
q1 � q0 [see left inset in Fig. 1(b)], so � ¼ 	.
Furthermore, we take into account the fact that the spec-
trum of the cat map is periodic because of a compact phase
space. This periodicity changes the form of the LDOS
because the probability that leaves from one border returns
to the other. By assuming no correlation between the
existing and returning probabilities, the LDOS transforms
into a periodized Lorentzian function

LðpÞð�;!Þ ¼ X1
j¼�1

Lð�;!� 2�j=�Þ;

with !� being the variable that specifies the spectrum of
eigenphases. This distribution provides a new relation
between the width of the distribution and �, whose first

correction with respect to Eq. (9) is �ðpÞ
sc ’ �sc½1�

ð�sc=�Þ2Þ�. On the other hand, a numerical computation
reveals a linear term which should be related to correla-
tions between the existing and returning probabilities. We
obtain the following estimate,

�ðpÞ
sc � �sc½1þ 0:24�sc � ð�sc=�Þ2�; (10)

by fitting the linear term to the numerical data.
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Figure 1 shows the width, �, of the LDOS and its

semiclassical approximation, �ðpÞ
sc , for three different win-

dows in positions where the perturbation is applied. We
plot the width as a function of the scaled perturbation
strength, 
 ¼ N�k, in such a way that figures are insensi-
tive to N. As can be seen, the semiclassical approximation
works very well. Moreover, the right inset of Fig. 1(b)
shows that the LDOS is a periodized Lorentzian function
even for strong perturbations far away from the Fermi
golden rule regime, which is identified with the quadratic
behavior close to the origin.

Figure 2 compares the width of the LDOS with �ðpÞ
sc in

the case of global perturbations (� ¼ 1). The perturbation
in the main panel is the one used previously, while in the
inset we use the same shear in momentum plus the follow-
ing shear in position: �"ðp; kÞ ¼ �ðk=2�Þ½sinð6�pÞ=3þ
cosð4�pÞ=2�. In the latter the action difference
is �Sðq; p; �kÞ ¼ ð�k=4�2Þ½sinð2�qÞ � sinð4�qÞ=2þ
cosð6�pÞ � sinð4�pÞ=2�. Differences near the peaks at

 � 20 and 
 � 50 are related to the poor accuracy of
Eq. (10) close to the saturation, which is given by the width
of the uniform distribution, 0:7� � 2:20.

To further demonstrate the power of the proposed semi-
classical approximation in a realistic system, we consider
the desymmetrized Bunimovich stadium billiard with ra-
dius r and straight line of length a. This system is fully
chaotic [15] and has great theoretical and experimental
relevance. The billiard is perturbed by the boundary defor-
mation displayed in the inset of Fig. 3. The area of the
billiard is fixed to the value 1þ �=4, so the boundary only
depends on the shape parameter x ¼ a=r. The boundary
deformations are parametrized by rðq; �xÞ ¼ r0ðqÞ þ
zðq; �xÞn, where q is a coordinate along the unperturbed
boundary C, r0ðqÞ defines C, and n is the outward normal
unit vector to C at r0ðqÞ [an explicit expression for zðq; �xÞ
is provided in Ref. [16]]. We consider the usual Birkhoff
coordinates to describe the classical dynamics of the par-
ticle, that is, the variables q and p ¼ sinð�Þ, with � the
impinging angle with n. To compute �sc, the action differ-
ence between the unperturbed and perturbed orbit results
in [12]

�Sðq; �; �xÞ ¼ jpj�L ¼ 2jpjzðq; �xÞ cosð�Þ;
where�L is the length difference between the unperturbed
and perturbed orbits, and p is the momentum of the parti-
cle. The mean time between bounces with the boundary is
given by � ¼ m�A=ðjpjP Þ [17], with m the mass of the
particle, A the area of the billiard, and P its perimeter.
Then, the decay rate results in � ¼ jpj	=ðm�AÞ, with 	
the width of the perturbed region [12]; for the selected
perturbation,	 ¼ P . Figure 3 compares the numerical and
semiclassical calculations; @ ¼ 1 and m ¼ 1=2 are used.
The width computed with the exact eigenstates is plotted
with filled circles and the semiclassical approximation,
�sc, is plotted in with a solid line. The calculations dis-
played in Fig. 3 were performed around the wave number
200, where the eigenstates of the billiard were computed
using the scaling method [18]. The agreement between the
quantum and the semiclassical calculation is excellent. We
notice that while the full quantum computation of � in
Fig. 3 is very time-consuming [t � 7� 107 sec in a CPU
Intel Core 2 6400], the semiclassical calculation is a simple
two variable integral.
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FIG. 2 (color online). Idem Fig. 1 for global perturbations. The
perturbation in the main plot is the same as in Fig. 1. For the
inset, the perturbation is a shear in momentum and position (see
text for details).
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FIG. 1 (color online). Width � of the LDOS as a function of
the scaled perturbation strength 
 ¼ N�k, for a local perturba-
tion. Solid symbols correspond to the quantum case and solid

lines to the semiclassical calculation �ðpÞ
sc . We use N ¼ 800 and

q0 ¼ 0:01. In panel (a) we use a width 	 ¼ 0:2 (circles) and
	 ¼ 0:4 (squares). In panel (b) 	 ¼ 0:7. Left inset in (b):
Schematic figure showing the used local perturbation. The scaled
shear [fðqÞ � 2�"ðq; kÞ=k (with k the strength of the perturba-
tion)] is plotted as a function of q. The limits of the perturbed
region are indicated with q0 and q1, with 	 ¼ q1 � q0 its width.
Right inset in (b): The LDOS � for 	 ¼ 0:7, with 
 ¼ 78:4 and
89.6. In solid (red) lines we plot periodized Lorentzian functions
with the corresponding widths.
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One final point is to discuss the character of the pertur-
bation in order to satisfy the used property of statistical
independence between the perturbed and unperturbed ei-
genfunction sets. Let us consider as an extreme example a
chaotic Hamiltonian of the form kinetic plus potential
energy, and where the perturbed Hamiltonian is obtained
by a displacement of the potential energy. In this situation,
the two systems have the same spectrum and the corre-
sponding eigenfunctions are connected by the displace-
ment. So the two sets are strongly correlated and the
LDOS does not satisfy the Breit-Wigner distribution; see
for instance Ref. [19], where this type of perturbation is
analyzed. From the classical point of view, we notice that
the dynamics and, in particular, the structure of periodic
orbits are not affected at all by the perturbation. In this
context, the question that immediately arises is how the
perturbation has to modify the dynamics in order to guar-
antee the required independence. We develop the answer
within the short periodic orbit approach [20], where the
eigenfunctions of a chaotic system are described in a scar
function basis set [21]; these wave functions are supported
by the shortest periodic orbits of the system, with periods
up to the Ehrenfest time. On the other hand, each matrix
element in this basis includes a phase depending on the
difference of actions between the corresponding periodic
orbits [22]. So, to get statistical independence between the
perturbed and unperturbed eigenfunction sets, the pertur-
bation has to modify the action of the used periodic orbits
by at least @, in a more or less randomway. Specifically, the
set of numbers [�S�=ð2�@Þ] (mod 1), where � labels

periodic orbits with a period shorter than the Ehrenfest
time has to be distributed uniformly in the interval [0,1];
�S� is the action of the unperturbed periodic orbit, �,

minus the corresponding action in the perturbed case.
In conclusion, our results demonstrate that quantum

systems with classically chaotic dynamics react in a uni-
versal way as a consequence of perturbations of a classical
nature. Specifically, the LDOS is a Breit-Wigner distribu-
tion, even for strong perturbations. Moreover, we derive a
semiclassical expression for its width that is accurate for

paradigmatic systems of quantum chaos as the cat maps
and the stadium billiard. As a final remark, we would like
to notice that our semiclassical result reproduces in part the
old one obtained by Wigner [1] within the random matrix
theory [23]. This fact implies that the connection between
chaotic systems and random matrix theory, uncovered by
the celebrated Bohigas-Giannoni-Schmit conjecture [24],
is stronger than believed.
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200801-01132), UBACyT (X237), ANPCyT, and
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FIG. 3 (color online). � as a function of the perturbation
strength �x for the stadium billiard in the region of wave number
around 200 (solid circles). The semiclassical approximation �sc

using Eq. (9) is plotted with a solid line. Inset: Two Bunimovich
stadium billiards with differently shaped parameters; the per-
turbed system is indicated with a dashed line.
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