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Extension of the momentum transfer model to time-dependent pipe turbulence
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We analyze a possible extension of Gioia and Chakraborty’s momentum transfer model of friction in steady
turbulent pipe flows [Phys. Rev. Lett. 96, 044502 (2006)] to the case of time- and/or space-dependent turbulent
flows. The end result is an expression for the stress at the wall as the sum of a steady and a dynamic component.
The steady part is obtained by using the instantaneous velocity in the expression for the stress at the wall of a
stationary flow. The unsteady part is a weighted average over the history of the flow acceleration, with a weighting
function similar to that proposed by Vardy and Brown [J. Sound Vibr. 259, 1011 (2003); 270, 233 (2004)], but
naturally including the effect of spatial derivatives of the mean flow, as in the Brunone model [Brunone et al.,
J. Water Res. Plan. Manage. 126, 236 (2000)].
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I. INTRODUCTION

When a fluid flows through a pipe of circular section and
radius R, it experiences a pressure drop per unit length of pipe
dp/dx = −2τ/R, where τ is the stress at the wall. τ has units
of energy density. For time-independent flows, it is commonly
parametrized as in the Darcy-Weisbach formula

τ ≡ f

8
ρ U 2, (1)

where ρ is the density of the fluid and U the average flow
velocity across a given transverse section of the pipe. The
coefficient f in Eq. (1) is the so-called friction factor [1–5].

For a given pipe, the friction factor is a function of Reynolds
number

Re = 2RU

ν
, (2)

where ν is the kinematic viscosity of the fluid (as distinct from
the dynamic viscosity μ = ρν). f presents three power-law-
like regimes separated by transition regions. For laminar flows
(Re < 103), we have the Poiseuille law

f = 64 Re−1; (3)

for developed turbulent flows (103 < Re < 106), it obeys the
Blasius law

f = 0.3164 Re−1/4; (4)

and for larger values of the Reynolds number, it converges
to an asymptotic value determined by the pipe roughness ε

according to the Strickler law

f = 0.142 ε1/3. (5)

ε is defined as the characteristic ratio of wall protrusion height
to pipe radius.

Gioia and Chakraborty [6] have presented a theoretical
model whereby the three power-law regimes of the steady
flow friction factor are easily derived from the Kolmogorov
spectrum of homogeneous, isotropic turbulence. See also
[7–14]. We shall refer to this as the momentum transfer model
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(MTM). The original presentation of the MTM made contact
with the Blasius and Strickler (for rough pipes) asymptotic
regimes, while the transition from the Blasius to the Poiseuille
regimes [6,14] was discussed in Ref. [15]. The connection
between wall friction and turbulent spectrum can be used in
two directions. If the turbulent spectrum can be found, then it
can be used to derive properties of the wall friction. This has
been the spirit of the original presentation [6]. In Ref. [11],
this approach was used to explore friction in two-dimensional
flows, and in Ref. [15] to investigate drag reduction by polymer
additives.

Alternatively, we may use properties of friction to derive
certain features of the turbulent spectrum. For example, in
Ref. [10] the scaling properties of the friction coefficient are
used to investigate intermittency in the turbulent part of the
flow.

In this paper, we aim to combine both approaches to
study friction in time-dependent and nonhomogeneous tur-
bulent pipe flow. We shall show that a relatively simple
generalization of the MTM yields a reasonable expression
for the unsteady friction in the somewhat academic case
of inhomogeneous, time-independent flows [16]. However,
the same generalization fails to describe correctly unsteady
friction for time-dependent, homogeneous flows. We shall
consider on a phenomenological basis how the MTM should
be modified to capture at least some basic elements of unsteady
friction in this second case. If the philosophy of the MTM is
upheld, this sheds light on the way a time-dependent mean
flow excites turbulent fluctuations.

The subject matter of time-dependent turbulent pipe flows
has drawn considerable interest, both theoretical and practical
[17–21]. The basic framework of analysis depends upon the
separation of the flow velocity and pressure into a mean
component and a turbulent fluctuation. The action of the
turbulent fluctuations on the smooth part of the flow is encoded
into the stress at the wall by a suitable constitutive relation.
To make things simpler, in most cases of interest the turbulent
part of the flow may be regarded as incompressible, since
characteristic velocities are much lower than the speed of
sound. This allows one to bring the extensive lore on friction
in incompressible pipe flow to bear on the problem. We shall
also assume that the mean part of the flow is parallel. For an
incompressible flow, this means the mean flow is independent
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of position along the pipe. We shall relax the incompressibility
assumption when discussing inhomogeneous flows.

Another important simplification is available at very high
Reynolds number Re. In this case, mean flow may be regarded
as essentially one-dimensional, and is determined by the
equation of state for the fluid and the conservation laws for
mass and linear momentum, namely

∂ρ

∂t
+ ∂(ρU )

∂z
= 0, (6)

∂(ρU )

∂t
+ ∂(ρU 2)

∂z
= −∂p

∂z
− 2τ

R
, (7)

where τ is the stress at the wall. It is convenient to build in the
known friction factor for steady flow by writing τ = τs + τt .
Here τs is the steady part of the friction factor given by Eqs. (1).
τt is the dynamic contribution to friction.

Most work on time-dependent turbulent pipe flows simply
neglects τt [22]. This approach is sensible at low frequencies,
but it is bound to fail eventually [23–25]. That is indeed the case
in time-dependent laminar flows, where the time-dependent
friction may be computed with great accuracy [26].

In the literature [27–32], it is common to group the different
approaches to friction in time-dependent, inhomogeneous
flows under two broad headings, namely the convolution
method (CM) [26,33–35] and the instantaneous acceleration
method (IAM) [36], which in turn may be derived form
extended irreversible thermodynamics (EIT) [37]. These ap-
proaches are described in the next section.

To apply the MTM under unsteady conditions, we shall
follow the same strategy we have used successfully to study
drag reduction from polymer additives in Ref. [15]. Namely,
we shall substitute the turbulent dynamics in the stationary case
by a linear stochastic equation that reproduces the Kolmogorov
spectrum. Then we shall write down a generalization of this
equation to include a nontrivial background velocity. We
shall solve the generalized Langevin equation to compute the
spectrum under the new conditions, and thereby derive the
friction by following the MTM prescription.

The fact that the correlations of turbulent fluctuations
may be cast as stochastic averages over a suitable Langevin
dynamics is just a particular application of a basic theorem in
nonequilibrium field theory [38–40]. The problem is that to
really derive this stochastic dynamics from the Schwinger-
Dyson equations, we need a detailed knowledge of the
fluctuation self-correlations that is presently unavailable, even
for steady flows. Therefore, the best we can do is to motivate
a particular ansatz for the Langevin equation by using the few
known facts about the spectrum, physical common sense, and
Occam’s razor.

As a matter of fact, this approach works well for time-
independent, inhomogeneous flows. Generally speaking, the
MTM understands wall friction in steady flows as the inco-
herent sum of contributions from turbulent eddies of different
sizes. The contribution from each eddy is proportional to its
characteristic velocity, which in turn is proportional to the
mean flow velocity. A natural generalization of this scenario to
inhomogeneous flows is to assume that the eddies contributing
to friction at a given position have been created at different
points upstream, and then advected by the mean flow (being

slowly dissipated in the process) [41–43]. Following this line
of argument, it is natural to assume that the relevant eddy
velocity is proportional to the mean velocity at the point of
creation, rather than at the point where wall friction is being
computed. With just this setup we shall be able to arrive at a
Brunone-like formula for the unsteady friction.

However, the same approach fails to reproduce the Vardy
and Brown CM model of turbulent friction in fully rough
flows, which we shall take as paradigmatic, in the case in
which the mean flow is homogeneous but time-dependent.
Consider, for example, the case of a uniformly accelerating
flow [44], and let us call “now” the time when we want to
compute wall friction. At any time in the past, mean velocities
are lower than now, and therefore the wall friction computed
as above will be necessarily lower than the friction for a steady
flow with the present instantaneous mean velocity. Vardy and
Brown’s CM, and most of the models in the literature, predict
just the opposite. Confronted with this fact, we shall seek a
minimal modification of the Langevin equation that reproduces
at least the basic elements of the CM, without including more
free parameters than already present in the Vardy and Brown
approach. Although this will not teach us much about unsteady
friction, since it is essentially a transcription of the Vardy and
Brown model into the Gioia and Chakraborty language, it is
potentially revealing with regard to the way unsteady pipe
flows excite turbulence.

The rest of the paper is organized as follows. In the next
section, we include some necessary background material.
We first review the basic approaches to unsteady friction
[23,24], with an emphasis on those of Zielke [26], Vardy and
Brown [33,34], and Brunone et al. [36]. Then we introduce
the MTM, following closely the original presentation of [6].
We finally describe the stochastic approach to the MTM
previously introduced in Ref. [15]. The following two sections
are the bulk of the paper, since there we generalize the MTM
to time-independent inhomogeneous situations and homoge-
neous time-dependent situations, respectively. We conclude
with a few final remarks.

II. BASIC BACKGROUND

A. Main approaches to transient friction

In this subsection, we shall briefly review the main
approaches to transient friction in the literature. Zielke [26]
provides a thorough discussion of transient friction in laminar
flows. By assuming the flow may be regarded as parallel and
incompressible, the full set of continuity and Navier-Stokes
equations [24] is reduced to a single equation for a radially
dependent mean velocity u [z,r,t], related to U [z,t] in Eqs. (6)
and (7) through

U [z,t] = 2

R2

∫ R

0
rdr u[z,r,t]. (8)

If we further neglect z derivatives and nonlinear terms, this
single equation reads

∂u

∂t
− ν

r

1

r

∂

∂r
r
∂u

∂r
= − 1

ρ

∂p

∂z
. (9)
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The average of this equation over a cross section yields Eq. (7)
with the identification

τ = −νρ
∂u

∂r
[z,R,t]. (10)

Because Eq. (9) is linear and z appears only as a parameter, it
admits a solution where

u[z,r,t] = 1

ρ

∫ t

−∞
dt ′ g[r,t − t ′]

∂p

∂z
[z,t ′]. (11)

Averaging this equation over a cross section yields a similar
relationship,

U [z,t] = 1

ρ

∫ t

−∞
dt ′ G[t − t ′]

∂p

∂z
[z,t ′]. (12)

We may consider this as an integral equation for p for a given
U , invert it, and rewrite Eq. (11) as

u[z,r,t] =
∫ t

−∞
dt ′ g1[r,t − t ′]U [z,t ′], (13)

and finally use this equation and (10) to obtain a linear
relationship between the stress at the wall and the mean
velocity. Thus unsteady friction is naturally expressed as a
convolution over the history of the mean flow,

τt [z,t] = ρ

∫ t

−∞
dt ′ W [t − t ′]

∂

∂t ′
U [z,t ′]. (14)

The CM attempts to retain this pattern in the turbulent case,
which requires some ad hoc assumptions [45]. For example,
the Vardy and Brown weighting function is derived by writing a
linear equation for the mean velocity along the lines of Eq. (9),
but with an effective viscosity that depends on the radial
distance to the pipe. Although more complex, the analysis
follows the same steps as Zielke’s. The main result of the
analysis is the “weighting function” W [t]. The particular
weighting function derived by Zielke has been found to be
an accurate description of transient friction both for laminar
and low Reynolds number turbulent flows [23]. Vardy and
Brown [33,34] and others [46,47] have derived weighting
functions appropriate for fully developed turbulent flows. Most
proposals share many features, such as a pronounced peak or
else an integrable singularity as t → 0 and an exponential
fall off for large t . We shall take the Vardy and Brown
weighting function as paradigmatic [34]. The Vardy-Brown
weighting function is best introduced through its Laplace
transform,

WVB[s] = A
√

πν√
s + (Cω)

, (15)

which in the time domain becomes

WVB[t] = A

√
ν

t
e−Cωt , (16)

where ω is the viscous dissipation frequency,

ω = ν

R2
. (17)

The constants A and C depend on the Reynolds number and
roughness. For fully rough flow, they are given by [34]

A = 0.0206
√

Re
(

ε

2

)0.39

, (18)

C = 0.352 Re
(

ε

2

)0.41

. (19)

Observe that Re in Eqs. (18) and (19) is not the instantaneous
Reynolds number Eq. (2), but rather a fiducial Reynolds
number, e.g., the Reynolds number of a preexisting steady
flow [34]. By construction, Re is space- and time-independent.

While the CM represents unsteady friction as an average
over the history of the mean flow at a fixed point, the IAM
builds unsteady friction from time and space derivatives of the
mean flow at a given time. The Brunone ansatz for the transient
friction reads [36]

τt [z,t] = kBρR

{
∂U

∂t
− a

∂U

∂z

}
[z,t]. (20)

Brunone et al. [36] identify a with the speed of the pressure
wave, while the EIT derivation of Eq. (20) suggests it should
be chosen as the mean velocity U itself [37]. In practice, both
kB and a are often regarded as free parameters [48,49].

The signs in Eq. (20) are also a matter of some controversy
[35,50,51]. Among several proposals, we mention [23]

τt [z,t] = kBρR

{
sgn[U ]

∂U

∂t
+ a

∣∣∣∣∂U

∂z

∣∣∣∣
}

[z,t]. (21)

The Brunone constant kB may be derived from Eqs. (14) and
(16) if we require that CM and IAM agree for a z-independent
flow with constant acceleration,

kB = 1

R

∫
dt W [t] = A

√
π

C
= 0.06

(
ε

2

)0.185

. (22)

B. The original momentum transfer model

Let us consider a stationary flow within a straight pipe of
circular section and radius R. Let z be the coordinate along
the pipe. The flow may be decomposed into mean flow and
fluctuations as Up = Uẑp + up, where ẑp is the unit vector
in the z direction. U is defined by the condition that A 〈ρ〉 U

gives the flux across the section of the pipe, where A is the
area of the cross section and 〈〉 is the average over the section.
Henceforth, we shall omit the angular brackets on 〈ρ〉

In the central region, each scale δ is associated with a
velocity u [δ,U ]. The MTM claims that the stress at the wall
is given by

τ = ρUu[δ∗R,U ]. (23)

δ∗R is a characteristic length that is equal to the Kolmogorov
scale for flow in smooth pipes (leading to the Blasius law) or
else to the pipe roughness εR for rough pipes at large Reynolds
number, leading to the Strickler law [6]. We shall assume the
latter in what follows. For the recovery of the Poiseuille regime,
see [15].
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The velocity u [δ∗R,U ] that appears in Eq. (23) is defined
from the mode decomposition of the turbulent energy,

u[εR,U ]2 ≡ 〈u2[εR,U ]〉 = 2
∫ ∞

(εR)−1
dk E[k]. (24)

Of course to apply this formula, we need to know the spectrum
of turbulent fluctuations for turbulent pipe flow. Gioia and
Chakraborty get around this difficulty by assuming that the ac-
tual spectrum, at least in the relevant short-wavelength sector,
is the same as for an unbounded homogeneous flow, namely the
Kolmogorov spectrum E [k] = CKζ 2/3k−5/3, where CK ≈ 1.5
is the so-called Kolmogorov constant [52]. (Although this
simple picture must be modified in the dissipative and energy
ranges, these corrections are not relevant at large Reynolds
numbers and we shall not discuss them explicitly. Reference
[6] works with a more realistic spectrum; see also [14].) Even
after this drastic simplification, a crucial input is still missing,
namely the value of ζ , which is the energy flux feeding the
Richardson cascade. ζ is usually written in terms of a turbulent
velocity scale uT as

ζ = u3
T

R
. (25)

For uT , Gioia and Chakraborty assume a linear dependence on
the mean velocity,

uT = κU. (26)

It is interesting to contrast Eq. (26), for example, with the
usual expression for the turbulent velocity scale in terms of
a mixing length L, namely uT ≈ LdU/dr [1,3]. The goal of
the mixing length approach is to obtain the turbulent velocity
scale from local properties of the mean flow. An unbounded
homogeneous mean flow would excite no turbulence, out of
Galilean invariance, and so mean flow derivatives must be
called forth. In contrast, Eq. (26) is not intended as a local
relationship but rather as a global one. In particular, the
boundary condition at the wall plays an essential, if implicit,
role. If we could solve the full problem of turbulent pipe flow,
we would expect to find (if only out of dimensional reasons)
something like Eq. (26) at least close enough to the pipe
axis [53–58]. Because we cannot truly derive Eq. (26), we
cannot estimate the value of the parameter κ . However, if we
leave it as a free parameter, we may compute

u[εR,U ]2 = 3CKκ2ε2/3U 2. (27)

Then Eq. (23) reduces to Eq. (1), provided we identify

f = 8
√

3CKκε1/3. (28)

Comparing with Eq. (5), we obtain κ = 0.008. We see that
even in its original formulation, the MTM is not free from ad
hoc assumptions.

C. Stochastic approach to the MTM

It is clear that the full Navier-Stokes equation is too
complex for analysis, unless it is numerical. To make progress,
we shall substitute the Navier-Stokes equation by a linear
stochastic one, devised to give the right spectrum of turbulent
fluctuations, and therefore enabling us to compute u [εR,U ].

Let us begin by Fourier decomposing the fluid velocity

up(x,t) =
∫

dk
(2π )3

eik·xup

k [t]. (29)

We may think of the Fourier components up

k [t] as the velocity
associated with eddies of size k−1 at time t . We conceive the
dynamics of these velocities as the balance of two processes:
on the one hand, they draw energy and momentum from larger
eddies (and ultimately the mean flow); on the other hand,
they are subject to dissipation from interaction with smaller
eddies [59,60]. We model the first process by a stochastic
driving force and the second one by an eddy viscosity. In
steady homogeneous turbulence, both processes balance each
other, much like in the fluctuation-dissipation theorem of linear
nonequilibrium thermodynamics [61].

We postulate for the Fourier components a dynamic
equation [

∂

∂t
+ σk

]
up

k [t] = F
p

k [t]. (30)

This means that at any time t , the velocity of eddies of size k−1

undergoes a random increment F
p

k dt over a lapse dt , which
subsequently decays exponentially with a mean lifetime σ−1

k .
The velocity increments are Gaussian and uncorrelated if we
look at eddies of different sizes and/or at different times,〈

F
p

k [t]Fq

k′[t ′]
〉 = (2π )5δ(k + k′)δ(t − t ′)
pq

k Nk. (31)



pq

k is a projector that enforces incompressibility,



pq

k = δpq − kpkq

k2
. (32)

A representation like this may be derived from the functional
approach to turbulence, where the left-hand side of Eq. (30)
is identified as the inverse retarded propagator, and the self-
correlation Eq. (31) is given by a self-energy [52,62]. We shall
be content to propose simple expressions for σk and Nk to
reproduce the known turbulent spectrum.

In the inertial range, we expect σk and Nk to depend on
the only dimensionful parameter ζ from Eq. (25). Let us
assume the linear ansatz Eq. (26). On dimensional grounds,
σk ∝ (k2ζ )1/3 [63]. An important insight from Ref. [15] is
that to obtain the Virk asymptote for drag reduction by
polymer additives, it is necessary to assume that σk is inversely
proportional to the Reynolds number,

σk = λ

κ Re
(k2ζ )1/3, (33)

where λ is a pure number. An important consequence of
Eq. (33) is that σk is actually independent of the local mean
velocity U ,

σk = λ

2
ω(Rk)2/3, (34)

where ω is defined in Eq. (17). This will entail an important
simplification in what follows.

On the other hand, solving the Langevin Eq. (30) gives
the “fluctuation dissipation theorem” k2Nk = E [k] σk and,
therefore,

Nk = CKσkζ
2/3k−11/3 = 1

2
CKλκ2ω

U 2

k3
. (35)
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Observe that Nk ∝ U 2 or else F
p

k ∝ U . This is the analog to
Eq. (26) in the stochastic approach. We shall see presently that
this relation must be generalized for time-dependent flows.

This concludes the review of the stationary case.

III. FROM MTM TO IAM

We now face the problem of generalizing the above effective
linear model to the case in which the background velocity
U is position-dependent, though time-independent [16]. We
cannot reduce this problem to the homogeneous one, for
example, by considering turbulence in the presence of a mean
velocity gradient [64], because, as we already remarked, the
relationship of the turbulent fluctuations to mean velocity is
not purely local. Therefore, we shall proceed by developing
a natural, but to some extent arbitrary, generalization of the
stochastic approach to the MTM.

The basic idea is that at any time, and within the volume
of fluid between two cross sections at positions z and z + εR,
the flow remains translation-invariant enough that we may still
introduce a Fourier transform, though the Fourier amplitudes
now carry a “slow” variable indicating where the flow is being
Fourier-analyzed. In the formulas,

up (x,t) =
∫

Rk>ε−1

dk

(2π )3 eik·xup

k [t ; z] . (36)

We could make this definition precise by introducing centroid
and relative variables [65], but an intuitive idea is sufficient
for our present needs. See also [38,62]. Please observe that we
shall never need to compute other than instantaneous velocity
correlations between two points at a distance less than εR

apart.
To obtain a dynamics for the Fourier amplitudes in Eq. (36),

we assume that, besides the dissipation and noise already
accounted for in Eq. (30), turbulence is advected by the mean
flow [41–43]. Therefore, we write[

∂

∂t
+ U (z,t)

∂

∂z
+ σk

]
up

k [t ; z] = F
p

k [t ; z] . (37)

When the Langevin equation is systematically derived from
the Schwinger-Dyson equations, it is seen that the left-hand
side of Eq. (37) is the inverse of the causal propagator for
linearized fluctuations in the turbulent flow. The evolution of
these fluctuations is determined mostly by their interaction
with the turbulent eddies, and it is robust with respect to
changes in the external conditions. Therefore, it makes sense
to assume that the mean lifetime of a fluctuation is the same as
in a fiducial steady flow. Then σk is still given by Eq. (34), and
it is position- and time-independent. The solution to Eq. (37) is

up

k [t ; z] =
∫ t

−∞
dt ′ e−σk (t−t ′)F

p

k [t ′; ξ [z,t ; t ′]], (38)

where ξ obeys[
∂

∂t
+ U (z,t)

∂

∂z

]
ξ [z,t ; t ′] = 0 (39)

with boundary condition

ξ [z,t ; t] = z. (40)

To see the meaning of ξ , observe that we could define a function
z0(t) by holding t ′ and ξ [z0(t),t ; t ′] = ξ0 constant, and then we
get dz0/dt = U [z0 (t) ,t] and z0(t ′) = ξ0, so ξ is a Lagrangian
coordinate for the particles with respect to the mean flow.

We now generalize the MTM ansatz Eq. (23) to inhomoge-
neous situations as

τ (z,t) = ρ (z,t) U (z,t) u (z,t) , (41)

where

u(z,t)2 =
∫

Rk>ε−1

dk

(2π )3

∫
Rk′>ε−1

dk′

(2π )3
ei(k+k′)x

× 〈
up

k [t ; z]up

k′[t ; z]
〉
, (42)

where x is any point close enough to the cross section through
z. To compute the expectation value, we need to make some
assumption regarding the noise self-correlation. We assume
the random accelerations F

p

k [t ; z] are still Gaussian and
uncorrelated at different scales and/or times, and that they
scale as the local mean flow velocity. This leads to

〈
F

p

k [t ; z]Fq

k′[t ′; z′]
〉 = (2π )5 δ(k + k′)δ(t − t ′)
pq

k

× CKλκ2ω

2
U (t,z) U (t,z′)k−3, (43)

where we have built in the requirement that it reduces to
Eq. (43) if the mean velocity is homogeneous. Using Eqs. (28),
(34), (38), and (43), we get

u (z,t)2 = 2

3

(
f

8

)2 ∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

×U 2[ξ [z,t ; t ′],t ′], (44)

where

x = εRk (45)

and

� = λε−2/3ω. (46)

Observe that

2

3

∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3 = 1. (47)

Therefore, for steady flow we recover Eqs. (1) and (5). In the
general case, we have τ = τs + τt . Therefore, if τ = ρUu and
τs = (f/8) ρU 2, then

u = 1

ρU

[
τt + f

8
ρU 2

]
. (48)

Taking the square of this equation and equating to Eq. (44),
we get

τt

ρ
+ τ 2

t

2ρτs

= 1

3

(
f

8

)∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

×{U 2[ξ [z,t ; t ′],t ′] − U 2[z,t]}. (49)

We consider a situation in which the mean flow is only weakly
inhomogeneous, so the second term on the left-hand side of
Eq. (49) is negligible, and also time-independent. Since z is
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also ξ [z,t ; t], we may approximate

U 2[ξ [z,t ; t ′],t ′] − U 2[z,t] = − (t − t ′)2U
dU

dz

∂ξ [z,t ; t ′]
∂t ′

∣∣∣∣
t ′=t

,

(50)

where

∂ξ [z,t ; t ′]
∂t ′

∣∣∣∣
t ′=t

= −∂ξ [z,t ; t ′]
∂t

∣∣∣∣
t ′=t

= U (z,t)
∂ξ [z,t ; t ′]

∂z

∣∣∣∣
t ′=t

= U (z,t) (51)

so

τt

ρ
= −

(
f

16

)
U 2

�

dU

dz
. (52)

We recover the original Brunone formula Eq. (20) specialized
to time-independent flows, provided we identify

akB =
(

f

16

)
U 2

R�
. (53)

IV. FROM MTM TO CM

We now consider the complementary problem in which the
mean velocity is homogeneous in space but time-dependent.
As in the preceding section, there is no simple way of reducing
this problem to the homogeneous one. For example, to look
at the flow from a comoving, noninertial frame [66] would
be of no avail, because it changes the boundary condition at
the wall in an essential way. On the other hand, we shall see
presently that the ansatz Eq. (43) for the noise self-correlation
leads to an untenable prediction for transient friction. If we
believe in the MTM, we must conclude that a time-dependent
mean field excites turbulence in an essentially different way
from a time-independent one.

Concretely, in the model we have considered so far, the
turbulent velocity at a given scale and time is the sum of
velocity increments occurring at all earlier times and upstream
positions. Once produced, each elementary increment is
exponentially damped while it is advected by the mean flow.

Suppose we had a spatially homogeneous accelerating flow.
Let us look at the turbulent velocity at some time tnow, when the
mean flow velocity is Unow. If the random velocity increments
scale as the instantaneous velocity at the time and position
of production, as we have assumed so far, then the velocity
increments in the past have been smaller than for a steady
flow with velocity Unow. Add the exponential damping to this,
and the conclusion is that the turbulent velocity, and therefore
the wall friction according to Eq. (41), will be less for the
accelerating flow than for the steady flow with velocity Unow.
This is contrary to Vardy-Brown CM’s and most other models
in the literature.

To save the MTM, we must conclude that the random
velocity increments on the right-hand side of Eq. (37) are
sensitive not only to the local mean velocity but to mean
velocity derivatives as well. Of course, lacking a full solution
for pipe turbulence in time-dependent conditions, our only
guidance is phenomenology. On the other hand, not to sacrifice
too much predictive power, we would like to build a model

with no more free parameters than, say, the Vardy-Brown
CM. The Vardy-Brown weighting function has two adjustable
parameters, the A and C constants Eqs. (18) and (19). Our
model already has one parameter over and above the steady-
state model, namely the constant λ in Eq. (34), so we only
have room for one new parameter.

The simplest hypothesis is that the local random velocity
increments scale not as the instantaneous velocity U [z,t] but
rather as some effective velocity scale Ũ [z,t] that depends
also on the local acceleration. Repeating the arguments in the
preceding section, we arrive at

τt

ρ
+ τ 2

t

2ρτs

= 1

3

(
f

8

) ∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

× [Ũ 2[t ′,x] − U 2[t]]. (54)

We impose the requirement that for a weakly time-dependent
and space-independent flow, Eq. (54), after linearization in
τt and ∂U/∂t , should reduce to Eq. (14) with a weighting
function consistent with WVB as given in Eqs. (15) and (16).
When τt is small, we may write

τt = τ
(1)
t + τ

(2)
t , (55)

where

τ
(1)
t

ρ
= −1

3

(
f

8

) ∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

× [U 2[t] − U 2[t ′]]

= −1

3

(
f

8

) ∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

[
2U [t ′]
�x2/3

]
dU

dt ′
,

(56)

τ
(2)
t

ρ
= 1

3

(
f

8

) ∫
x>1

dx

x

∫ t

−∞
�dt ′ e−�(t−t ′)x2/3

× [Ũ 2[t ′,x] − U 2[t ′]]. (57)

It is clear that if we choose Ũ = U , then τ
(2)
t = 0 and we

get an expression for τt with the wrong sign, as expected.
Therefore, we must contemplate a more general ansatz. To
keep the number of new parameters to a minimum, we are
satisfied with proposing a simple scale-free form,

Ũ [t,x] = U [t] + T (Rk)α
∂U

∂t
[t] . (58)

T is a characteristic time to be determined, and it is the single
new parameter we shall allow ourselves. After linearization,
we get indeed Eq. (14) with a weighting function,

W [t] = 2

3

(
f

8

)
Re Rω sgn[U ]

×
∫

x>1

dx

x
e−x2/3�t

[
�T

εα
xα − x−2/3

]
. (59)

To obtain W [t] ≈ t−1/2 when t → 0 requires α = 1/3. Inte-
grating over time, we obtain the Brunone constant

kB =
(

f

4

)
Re ω

�

[
�T

ε1/3
− 1

4

]
, (60)
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and then, writing x1/3 = y/
√

�t ,

W [t] =
(

f

8

)
Re Rω sgn[U ]

×
[

�T

ε1/3

√
π

�t
erfc[

√
�t] + �t Ei[−�t]

]
, (61)

where

erfc [x] = 2√
π

∫ ∞

x

dy e−y2
, (62)

Ei [x] = −
∫ ∞

−x

dy

y
e−y. (63)

This weighting function decays as exp (−�t). To match the
Vardy-Brown weighting function Eq. (16), we ask

� = Cω, (64)

where C is defined in Eq. (19). This may be used to fix the
constant λ in Eqs. (33) and (34), namely

λ = Cε2/3. (65)

Observe that if we adopt Eq. (65), then we move beyond the
framework of [15], because there λ is supposed not to depend
on the Reynolds number. It should be observed that Ref. [15]
deals with relatively low Reynolds numbers, consistent with
Blasius’ law in the absence of the polymer, while here we
are considering very high ones to which Strickler’s scaling
applies.

Using Eqs. (5), (19), (22), and (64) in Eq. (60), we get

�T

ε1/3
− 1

4
= U

8a
= 0.47

(
ε

2

)0.26

. (66)

For example, if ε/2 = 10−2, then the right-hand side of
Eq. (66) gives 0.15, and it becomes smaller by a factor of 10 if
ε/2 = 10−6. For these values of �T /ε1/3, the MTM weighting
function Eq. (61) changes sign for relatively low values of
�t . Nevertheless, the scale-free ansatz Eq. (58) captures the
short-time behavior and the overall integral of the weighting
function, so it may be trusted to give the right results both

FIG. 1. (Color online) Plot of the weighting function W [Eq. (61)]
(full line) and the Vardy-Brown weighting function WVB [Eq. (16)]
(dashed), both divided by (f/4) Re Rω, as functions of �t.

FIG. 2. (Color online) log-log plot of the weighting function W

[Eq. (61)] (full line) and the Vardy-Brown weighting function WVB

[Eq. (16)] (dashed), both divided by (f/4) Re Rω, as functions of �t .

for strongly accelerating flows and slowly varying flows. In
any case, all CM models have only a finite time duration
of validity [67–69], so we cannot truly say that such a sign
reversal is ruled out by experiment [70].

For larger values of �T /ε1/3, the sign reversal occurs too
late to be of any relevance. This follows from the asymptotic
expansions [71]

erfc [x] ≈ e−x2

√
πx

, (67)

Ei [−x] ≈ −e−x

x
. (68)

After the identifications Eqs. (60) and (64), the Vardy and
Brown weighting function Eq. (16) reads

WVB [t] =
(

f

4

)
Re Rω

[
�T

ε1/3
− 1

4

]
e−�t

√
π�t

. (69)

In Fig. 1, we show a plot of both weighting functions as a
function of �t , divided by (f/4)Re Rω, for �T /ε1/3 = 0.4.
Figure 2 is a close-up of the short-t behavior, for which we
have chosen a log-log scale.

V. FINAL REMARKS

In this paper, we have shown a simple generalization of
the momentum transfer model to time-independent inhomo-
geneous flows, which yields a dynamic friction similar to
the Brunone model [36]. Matching the Vardy and Brown
model [33,34] proves to be a harder task. In this case, we must
appeal to a phenomenological approach to obtain a minimally
acceptable MTM model.

Although we have made several ad hoc choices in order to
achieve this match, we believe there are at least two senses
in which these results are meaningful. First, if it is conceded
that a weakly time-dependent mean flow produces a spectrum
of turbulent fluctuations as depicted by the stochastic equation
(37) with the noise self-correlation given by Eqs. (43) and (58),
then this may be used as a benchmark for more fundamental
approaches such as those in Refs. [62,65].
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Second, while the model is built to match Vardy and
Brown’s weighting function for a weakly time-dependent flow,
it is clearly superior to it when space dependence becomes an
issue, since it has the Brunone model built in. This synthesis
of the IAM and CM expressions for unsteady friction is a
legitimate prediction of the momentum transfer model, which
it ought to be possible to contrast against experimental data.

We continue our research in these two promising directions.
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