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Correction to the geometric phase by structured environments: The onset of non-Markovian effects
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We study the geometric phase of a two-level system under the presence of a structured environment, particularly
analyzing its correction with the ohmicity parameter s and the onset of non-Markovianity. We first examine the
system coupled to a set of harmonic oscillators and study the decoherence factor as function of the environment’s
ohmicity parameter. Second, we propose the two-level system coupled to a nonequilibrium environment, and
show that these environments display non-Markovian effects for all values of the ohmicity parameter. The
geometric phase of the two-level system is therefore computed under the presence of both types of environment.
The correction to the unitary geometric phase is analyzed in both the Markovian and non-Markovian regimes.
Under Markovian environments, the correction induced on the system’s phase is mainly ruled by the coupling
constant between the system and the environment, while in the non-Markovian regime, memory effects seem to
trigger a significant correction to the unitary geometric phase. The result is significant to the quantum information
processing based on the geometric phase in quantum open systems.
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I. INTRODUCTION

A system can retain the information of its motion when
it undergoes a cyclic evolution, in the form of a geometric
phase; this was first put forward by Pancharatnam in optics
[1] and later studied explicitly by Berry in a general quantal
system [2]. Since then, great progress has been achieved in
this field. For example, the application of the geometric phase
has been proposed in many fields, such as geometric quantum
computation. In this line of work, many physical systems have
been investigated to realize geometric quantum computation,
such as nuclear magnetic resonance (NMR) [3], Josephson
junction [4], ion trap [5], and semiconductor quantum dots
[6]. The quantum computation scheme for the geometric phase
has been proposed based on Abelian or non-Abelian geometric
concepts, and the geometric phase has been shown to be robust
against faults in the presence of some kind of external noise due
to the geometric nature of the Berry phase [7–10]. Then, for
isolated quantum systems, the geometric phase is theoretically
perfectly understood and experimentally verified. However, it
has been shown that the interactions play an important role for
the realization of some specific operations. As the gates operate
slowly compared to the dynamical time scale, they become
vulnerable to open system effects and parameter fluctuations
that may lead to a loss of coherence. Consequently, the study
of the geometric phase was soon extended to open quantum
systems. Following this idea, many authors have analyzed
the correction to the geometric phase under the influence
of an external thermal or nonequilibrium environment, using
different approaches (see [11–16]). In all cases, the purely
dephasing model considered was a spin-1/2 particle coupled
to the environment’s degrees of freedom through a σz coupling.
The interest on the geometric phase in open systems has also
been extended to some experimental setups [17]. Lately, it has
also been observed in a variety of superconducting systems
[18,19], and the importance of quantifying decoherence when
geometric operations are carried out in the presence of
low-frequency noise has been shown. All real experiments
generally imply the presence of an external environment which

induces noise and dissipation on the subsystem depending on
the strength of the coupling among them. Memory effects are
also considered a relevant source of noise that can affect the
dynamics of the system of interest. Thus, a detailed mechanism
of decoherence due to external noise sources is still required
in order to overcome the effect of a destructive decoherence in
measurements of the geometric phase.

Within a microscopic approach, quantum Markovian mas-
ter equations are usually obtained by means of the Born-
Markov approximation, which assumes a weak system-
environment coupling and several further, mostly rather drastic
approximations [20]. However, these approximations are not
applicable in many processes occurring in nature, such as
strong environment couplings, structured and finite reservoirs,
low temperatures, and large initial system-environment corre-
lations [21]. In the case of any substantial deviation from the
dynamics of a quantum Markov process, one often speaks
of a non-Markovian process, implying that the dynamics
is governed by significant memory effects. Unfortunately, a
consistent general theory of quantum non-Markovianity does
not exist and even the very definition of non-Markovianity is
currently an issue. Very recently, important steps towards a
general theory of non-Markovianity have been made. There
has been a great effort to rigorously define the border between
Markovian and non-Markovian quantum dynamics and to de-
velop quantitative measures for the degree of memory effects in
open systems [22–24]. The quantification of non-Markovianity
is justified by the fact that there is increasing evidence
of its crucial role as a resource for quantum technologies
[24,25]. Non-Markovianity evolution is often characterized
by decoherence phenomena and information trapping, hence
leading to longer coherence times in comparison to the
Markovian case. As reservoir engineering techniques become
experimentally feasible, it is crucial to establish relations
between the occurrence of non-Markovianity and the form
of the environmental spectrum. Recently, there have been
many studies of systems whose reduced dynamics are char-
acterized by memory effects. Non-Markovian features play an
important role in systems where the frequency spectrum of the
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environment is structured. In Ref. [26], the authors established
a connection between the general form of the spectrum and
the memory effects in the reduced system dynamics.

In this framework, this study has a twofold motivation:
on the one hand, the need to have a better understanding
of the geometric phase in open quantum systems in order
to achieve fault tolerance quantum computation, and, on the
other hand, the need to understand memory effects as a
source of noise for the system of interest. In this manuscript,
we shall study the correction to the geometric phase of a
two-level system coupled to an external environment. We
shall use the spin-boson model since it has the advantage of
having an analytical solution which can be useful to have
a better insight into the onset of non-Markovian effects. By
the use of the established relation between the form of the
reservoir spectrum and the onset of non-Markovianity, we
shall study the geometric phase of the open system as a
function of the “ohmicity” of the reservoir, which allows
the description of subohmic, ohmic, and superohmic spectra.
The paper is organized as follows: in Sec. II, we briefly
describe the model and present both types of environments
to be analyzed: thermal equilibrium and nonequilibrium.
We study the diffusion coefficients and the corresponding
decoherence factors. Following Ref. [26], we study the onset of
non-Markovianity in the environments considered. In Sec. III,
we compute the geometric phase acquired by the system for
different forms of the reservoir spectrum, as a function of the
ohmicity parameter, and study how the memory effects of the
environment affect the geometric phase. Finally, in Sec. IV,
we make our final remarks.

II. THE MODEL

The spin-boson model is studied in a variety of fields,
such as condensed-matter physics, quantum optics, physical
chemistry, and quantum information science [27], in order to
describe nonunitary effects induced in quantum systems due
to a coupling with an external environment. For a quantum
system, the influence of the surroundings plays a role at
a fundamental level. When the environment is taken into
consideration, the system dynamics can no longer be described
in terms of pure quantum states and unitary evolution. From
a practical point of view, all real systems interact with an
environment, which means that we expect their quantum evo-
lution to be plagued by nonunitary effects, namely, dissipation
and decoherence. Most theoretical investigations of how the
system is affected by the presence of an environment have been
done using a thermal reservoir, usually assuming Markovian
statistical properties and defined bath correlations [28,29]
(there are also works on non-Markovian models such as, for
example, Ref. [30]).

In the following, we shall consider a paradigmatic spin-
boson model consisting of a two-level system coupled to an
external environment. We shall consider two different types
of environments and see the non-Markovian effects: thermal
equilibrium environment and nonequilibrium environment. In
both cases, we shall compute the diffusion and decoherence
factor derived by the definition of the corresponding bath
correlations and the spectral density I (ω), which can be defined

for a general environment as

I (ω) = γ0
ωs

�s−1
exp(−ω/�). (1)

In Eq. (1), � is the reservoir frequency cutoff and γ0 is
the coupling constant (which has different units for the
different environment considered). By changing the value
of the s parameter, one goes from subohmic reservoirs
(s < 1) to ohmic (s = 1) and superohmic (s > 1) reservoirs,
respectively. The ohmic spectrum is generally used to describe
charged interstitials in metals. The supraohmic environment
commonly describes the effect of the interaction between a
charged particle and its electromagnetic field. The subohmic
environment is used to model the type of noise occurring in
solid-state devices due to low-frequency modes, similar to the
“1/f ” noise in Josephson junctions. Thus, the description of
the spectral density function in terms of a continuous parameter
s allows one to simulate paradigmatic models of open quantum
systems by the variation of s. We stress that such engineering
of the ohmicity of the spectrum is possible when simulating
the dephasing model in trapped ultracold atoms [31].

A. Thermal equilibrium environments and the onset
of non-Markovianity

We shall start by studying the decoherence effects induced
by a thermal equilibrium environment, generally modeled by
a set of harmonic oscillators. The interaction between the two-
state system and the environment is entirely represented by a
Hamiltonian in which the coupling is only through σz. In this
particular case, [σz,Hint] = 0 and the corresponding master
equation for the reduced density matrix is much simplified,
with neither frequency renormalization nor dissipation effects.
The Hamiltonian of the complete system is written as

HSB = 1

2
��σz + 1

2
σz

∑
k

λk(gka
†
k + g∗

k ak) +
∑

k

�ωka
†
kak.

(2)
The interaction Hamiltonian is only proportional to σz, which
means that the populations of the eigenstates remain constant
while the off-diagonal terms of the reduced density matrix
decay due to the existence of the environment, as

ρr10 (t) = ρ∗
r01

(t) = ρr10 (0)e−F(t)e−i�t , (3)

where F is the decoherence factor defined as (see Ref. [13]
for details)

F(t) = 2
∫ ∞

0
dωI (ω) coth

(
ω

2kBT

)
[1 − cos(ωt)]

ω2

= 2
∫ t

0
dsD(s), (4)

where D(s) is the diffusion coefficient, present in the master
equation. It is clear that F(t) not only depends on the
temperature of the bath but also on the spectral density,
particularly on the ohmicity parameter s.

In Ref. [26], the authors have shown that there exists a
link between the onset of non-Markovianity and the form of
the reservoir spectrum for thermal equilibrium environments
such as the ones considered here. They have stated that the
crossover is signalled by the onset of periods during which
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FIG. 1. (Color online) Density plot of the diffusion coefficient
of thermal environments. The horizontal axis represents the time
evolution as �t and the vertical axis is the ohmicity s. The darkest
areas are negative values of the diffusion coefficient which has been
shown to be related to the onset of non-Markovian effects as stated
in [26]. Parameters used: γ0 = 0.1 and � = 10�.

the diffusion rate is negative. A common feature of all non-
Markovianity measures is that they are based on the nonmono-
tonic evolution in time of certain coefficients which signal
the information backflow from the environment back to the
main system. Without memory effects, decoherence rates (as
a quantum channel) decrease in time monotonically. However,
environment memory effects may produce a nonmonotonic
behavior of the quantum channel capacity. This is related
to the convex to nonconvex changes of the spectrum. The
condition on the nonconvexity of the environmental spectrum
is a necessary and sufficient condition for non-Markovianity
at all temperatures. This has been set as s > 2 for zero-T
environments. Hence, memory effects leading to information
backflow and recoherence occur only if the reservoir spectrum
is superohmic with s > 2. This means that even if the reduced
dynamics is exact, and hence no Markovian approximation
has been performed, the time evolution of the qubit does not
present any memory effects for ohmic and subohmic spectra.
This argument has been derived based on the nonmonotonic
behavior of the decoherence factor F(t), and basically it
is equivalent to the fact that the diffusion coefficient D(s)
becomes negative.

In Fig. 1, we present a contour plot for the diffusion
coefficient for different equilibrium environments at zero
temperature, to show the onset of non-Markovianity as derived
in [26]. We can see the regions where the diffusion coefficient
has a negative value, which are related to the onset of
non-Markovian effects. For example, in Fig. 1, we see that for
ohmic thermal environments, i.e., s = 1 in the vertical axis,
we always have positive values for the diffusion coefficient.
This means that the ohmic environment is always Markovian.
For other environments, such as s = 4 in the vertical axis, we
can find regions where the diffusion coefficient gets positive
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FIG. 2. (Color online) Decoherence factor as a function of the
time for different values of the ohmicity parameter s. It can be
seen that areas with negative diffusion coefficient in Fig. 1 present
a nonmonotonic behavior in the decoherence factor leading to
recoherence effects. The blue line corresponds to s = 1 and the red
dashed line corresponds to s = 4. Parameters used: γ0 = 0.1 and
� = 10�.

values and areas where the value is negative. This means
that the memory effects become important after some time
evolution.

Using Eqs. (1) and (4), the exact decoherence factor as a
function of time and the ohmicity parameter s can be written
as

F(t) = 4γ0
	[s]

s − 1

[
1 − (1 + �2t2)−

s
2

×{cos[s arctan(�t)] + �t sin[s arctan(�t)]}], (5)

where 	[x] is the gamma function. In Fig. 2, we present
the evolution of the decoherence factor as time evolves. In
ohmic (s = 1) thermal environments, the decoherence factor
is known to be a monotonic decreasing function in time
(blue line in Fig. 2). However, when the memory effects of
the environment become relevant (for example, s = 4), the
decoherence function does not have a monotonic behavior,
leading to recoherence phenomena (red dashed line in Fig. 2).
This is related to the negative regions of the diffusion
coefficient, as can be seen in Fig. 1.

B. Nonequilibrium environments and the onset
of non-Markovianity

In this section, we shall deal with nonequilibrium envi-
ronments, represented by random perturbations with nonsta-
tionary statistics. The motivation to study these type of envi-
ronments is twofold: on one hand, the diffusion coefficients
computed for different environment spectra have negative parts
for all values of the ohmicity parameter. This means they can
be considered as non-Markovian environments for all values
of the parameter s and, contrary to the environments studied
above, there is not a critical value of s which determines
the onset of non-Markovianity. On the other hand, these
nonequilibrium baths may represent a proposal for engineering
reservoirs in a manner reminiscent of a coherent control
experiment using shaped pulses [32]. In this model, the control
parameter λ is derived not from a laser pulse, but rather
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from well-defined phase relations between the modes of the
bath.

The modeling of these nonequilibrium environments im-
plies that the two-level quantum system presents an energy gap,
E2(t) − E1(t) = �ω(t), which fluctuates due to the influence
of the environment, where Ej (t), with j = 1,2, is the instan-
taneous energy of state j as perturbed by the surroundings.
Following the idea proposed in [33], the bath is represented
by a random function of time corresponding to the transition
frequency of the two-state quantum system. In contrast to
the usual treatment, the statistical properties of this random
function are nonstationary, corresponding physically to, for
example, impulsively excited phonons of the environment with
initial phases that are not random, but which have defined
values at t = 0. Due to these assumptions, this environment is
not at thermal equilibrium. The time-dependent frequency is
written in the form ω(t) = � + δω(t).

Following this approach, it is easy to check that the off-
diagonal terms of the reduced density matrix can be written
as

ρr01 (t) = e−i�t
〈
e−i

∫ t

0 δω(s)ds
〉
ρr01 (0)

≡ e−i�t e−F̃ (t)ρr01 (0). (6)

Here, we denote with 〈·〉 the nonequilibrium average over
the nonstationary random bath and F̃(t) is defined as the
decoherence factor for the nonequilibrium environments,
which reads

F̃(t) = exp
(−{

γ0 exp(−4dt)
[−1 + exp(2dt)

×	(1 + s)
{
[1 + 4(t − λ)2�2]

−(1+s)
2

}
× cos{(1 + s) arctan[2�(t − λ)]} + cosh(2dt)

+ sinh(2dt)
]})

, (7)

where d and λ are parameters of the environment model. By
knowing the decoherence factor, we can have a better insight
into the decoherence process induced in the system by the
presence of a nonequilibrium environment.

In Fig. 3, we show a contour plot for the diffusion
coefficients for different forms of the ohmicity parameter s in
the vertical axis and different values of �t in the horizontal one.
We can note that there is always a period when the coefficient
becomes negative, even for s = 1. This means that memory
effects are always present for these types of environments and
the decoherence factors are always nonmonotonic decreasing
functions, allowing recoherence effects on the system of
interest. We can consider these environments to be non-
Markovian for all values of s. We can also note a clear hierarchy
in the coefficients: the bigger the value of s, the more negative
is the diffusion coefficient and the more decoherence (and
recoherence) induced by the environment. This fact can be
observed in Fig. 4, where we show the decoherence factor for
different nonequilibrium environments. It can be seen that even
though we have s = 1, the behavior is nonmonotonic, which
is quite different from the decoherence factor of a thermal
equilibrium environment. In Fig. 4, we present the decoherence
factor for different values of the ohmicity parameter s as a
function of time. The red dashed line corresponds to s = 1,
the black solid line is for s = 2, and the blue dotted line shows
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FIG. 3. (Color online) Density plot of the diffusion coefficient
for the nonequilibrium environments. The horizontal axis represents
the time evolution as �t and the vertical axis is the ohmicity s.
The darkest areas are negative values of the diffusion coefficient.
Parameters used: � = 10�, γ0 = 0.1, �λ = 0.3, and d = 2�.

the case s = 3. In all cases, these nonequilibrium environments
present a “dip,” which makes the behavior of the decoherence
factor nonmonotonic. The strength and location of the dip is
determined by the other parameters of the model λ and d.

III. CORRECTION TO THE GEOMETRIC PHASE

In order to compute the geometric phase (GP) and note
how it is corrected by the presence of the environment, we
shall briefly review the way the GP can be computed for a
system under the influence of external conditions such as an
external bath. In Ref. [11], a quantum kinematic approach
was proposed and the GP for a mixed state under nonunitary
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t0.75
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1.00
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FIG. 4. (Color online) Decoherence factor for different values of
the ohmicity parameter s as a function of time. We can see that
the dip becomes more relevant and drastic for bigger values of s.
The red dashed line is for s = 1, the black solid line is for s = 2,
and the blue dotted line is for s = 3. Parameters used: � = 10�,
γ0 = 0.1, �λ = 0.3, and d = 2�.
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evolution has been defined as

φG = arg

{∑
k

√
εk(0)εk(τ )〈�k(0)|�k(τ )〉e− ∫ τ

0 dt〈�k | ∂
∂t

|�k〉
}

,

(8)

where εk(t) are the eigenvalues and |�k〉 are the eigenstates of
the reduced density matrix ρr (obtained after tracing over the
reservoir degrees of freedom). In the last definition, τ denotes a
time after the total system completes a cyclic evolution when
it is isolated from the environment. Taking into account the
effect of the environment, the system no longer undergoes a
cyclic evolution. However, we shall consider a quasicyclic path
P : tε[0,τ ], with τ = 2π/� (� is the system’s characteristic
frequency). When the system is open, the original GP, i.e.,
the one that would have been obtained if the system had
been closed φu, is modified. This means, in a general case,
that the phase can be interpreted as φG = φu + δφ, where δφ

depends on the kind of environment coupled to the main system
[13–15,17,34,35].

We want to compute the GP acquired by the system for
different forms of the reservoir spectrum, as a function of the
ohmicity parameter, which allows the description of subohmic,
ohmic, and superohmic spectra. Particularly, we want to see
how the unitary geometric phase for a two-level system, φu =
π (1 − cos θ ), is corrected as a function of the ohmicity, i.e., the
parameter s of the spectral density I (ω). Assuming an initial
quantum state of the system as

|ψ(0)〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉, (9)

its evolution at a later time t is

|ψ(t)〉 = e−i�t cos[θ+(t)]|0〉 + sin[θ+(t)]|1〉, (10)

where cos[θ+(t)] (and sin[θ+(t)]) encodes diffusion induced
on the subsystem due to the presence of the environment.
As explained in Ref. [11], the GP is obtained by computing
eigenvectors and eigenvalues of the reduced density matrix
derived by using the state vector |ψ(t)〉 and using Eq. (8).

We shall consider the thermal equilibrium and nonequilib-
rium environments considered above. With the decoherence
factors and the reduced density matrix computed analytically
for each case, we can compute the GP and see how it is affected
by the memory effects present in the different environments
considered.

A. Thermal equilibrium environments

By considering the thermal equilibrium environments in the
zero-T limit and using the corresponding decoherence factor
[Eq. (5)], we can find an expression for the correction to the
GP in terms of a series expression in the coupling constant,

φG = φu + γ0 sin2 θ cos θ	(s − 2)

(
2π (s − 2)

+
(

1 + 4π2�2

�2

)− s
2
{

4π cos

[
s arctan

(
2π�

�

)]

+
(

4π2�

�
− �

�

)
sin

[
s arctan

(
2π�

�

)]})
. (11)
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FIG. 5. (Color online) Correction to the geometric phase (in units
of the unitary phase) as a function of the ohmicity parameter s.
Solid-crossed red line is for γ0 = 0.001, dotted-asterisk blue line is for
γ0 = 0.005, dotted-square magenta line is for γ0 = 0.01, and double-
dotted black-circled line is for γ0 = 0.03 for zero-T environments.
Parameters used: θ = π/3, � = 10�.

As expected, in the limit s → 1, the correction to the phase
approaches δφ ≈ 4πγ0 sin2 θ cos θ (−1 + ln[2π�/�]). In the
limit s → 3, the correction is given by δφ ≈ 4πγ0 sin2 θ cos θ .
Both expressions agree with the corrections to the ohmic
(s = 1) and supraohmic (s = 3) geometric phases in the
zero-temperature limit found in Ref. [13]. As this result is
derived for small values of the coupling constant γ0, in the
following we shall compute the exact GP numerically.

In Fig. 5, we show the correction induced by different
environmental types on the geometric phase (normalized by
the value of the unitary geometric phase φu) as a function
of the ohmicity for different values of γ0. In this figure, we
can note that the geometric phase is very much destroyed
when s → −1. In that case, we are considering the effect of
a noise, similar to 1/f , which is very harmful. This type of
noise can be considered a subohmic environment due to the
fact that low frequencies are predominant. The correction to
the phase grows as the effect of low-frequency modes of the
environment becomes more relevant. On the contrary, as s

starts increasing, we obtain the correction to the phase similar
to the one of an ohmic environment (s = 1) at zero T [13].
As can be expected, decoherence induced by this type of
environment is low for a very weak coupling (less than 10%
for smaller values of γ0). However, it becomes significant for
bigger values of γ0; for example, for γ0 = 0.03 in Fig. 5, the
correction is bigger than 20%. This agrees with the results in
Ref. [13]: more decoherence induced on the system implies
a bigger correction to the unitary geometric phase. Near the
ohmic region of the parameters set, the correction depends
mainly on γ0, as expected, being negligible when the small
value of γ0 is such that it is not able to destroy coherences
in the system. For 1 < s < 2, the correction to the phase is
more insensitive to the ohmicity value, and it is evident that
there is a change in behavior for s > 2 (it starts increasing), in
agreement with the onset of non-Markovianity. This shows that
non-Markovian environments induce a bigger correction to the
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FIG. 6. (Color online) The correction to the GP as a function
of the angle that defines the state vector in the Bloch sphere (θ ) for
ohmic and supraohmic environments in the zero-T limit. Red asterisks
represent the ohmic environment (s = 1), while blue squares are for
a supraohmic environment of s = 2 and black circles for one of
s = 2.5. The triangles represent s = 3. Parameters used: γ0 = 0.01
and � = 10�.

unitary geometric phase. As expected, this fact is enlarged for
bigger couplings between system and environment, i.e., values
of γ0, since these imply a bigger decoherence effect. These
corrections have not been studied in Ref. [13]. In conclusion,
corrections to the phase are double. First, we have the common
hierarchy in the induced correction ruled by the coupling to
the environment: the bigger correction occurs with the bigger
value of γ0. Second, it is possible to see that the correction to
the phase becomes more relevant when the ohmicity parameter
surpasses its critical value. It becomes evident that the more
non-Markovian the environment, the biggest correction to the
geometric phase for the same coupling to the environment.
This explains the behavior observed in Fig. 5.

In Fig. 6, the normalized correction is plotted for different
environments at zero temperature. Red asterisks represent
an ohmic environment (s = 1), while blue squares are for a
supraohmic environment of s = 2 and black circles are for
one of s = 2.5. The triangles represent s = 3. We can see
that for s > 2, the correction to the geometric phase is bigger
and its behavior is more drastic, in agreement with the onset
of non-Markovianity expected to be for environments at zero
temperature.

B. Nonequilibrium environments

Finally, we compute the correction to the GP for the
nonequilibrium environments which have memory effects
for all values of s. Therefore, we shall consider them as
non-Markovian environments. In Fig. 7, we show the behavior
of the normalized correction to the unitary geometric phase
as a function of the ohmicity s. In this figure, we can see
that for smaller values of s and particular values of λ and d

parameters (which determine a small dip in the decoherence
factor coefficient as shown in Fig. 4), the nonequilibrium
environment does not have a big influence on the geometric
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FIG. 7. (Color online) Correction to the unitary geometric phase
for different values of the model’s parameters. The blue dotted line is
for γ0 = 0.5 and � = 10�, while the blue square dots are for γ0 = 0.5
and � = 5�. The red asterisks are for γ0 = 0.1 and � = 5�, while
the solid red line is for γ0 = 0.1 and � = 1�, and the triangle dotted
line is for γ0 = 0.1 and � = 1� but changing the parameters of λ

and d . Finally, the dotted black line is for γ0 = 0.01 and � = 10�.
Parameters used: �λ = 0.5, d = 1�.

phase, and the open geometric phase coincides with the unitary
one. In Fig. 7, we present different sets of values for the
parameters of the environment’s model. It is easy to note that
the correction is mainly ruled by the value of the coupling
constant; see, for example, the blue dotted line and the blue
dots. Both lines correspond to the same value of γ0 = 0.5,
but different frequency cutoff �. The same occurs with the
red line and the red asterisks with γ0 = 0.1. The magenta
triangles share the same value of γ0, but the values of λ and
d are interchanged with respect to the red line and asterisks.
Finally, the black lines indicate smaller values of γ0. When s

increases (even for the set of parameters γ0, λ, and d, for which
decoherence is negligible), the effect of the memory effects
on the geometric phase of the nonequilibrium environment is
stronger and the correction to the geometric phase is bigger.
After this, the non-Markovian correction to the phase presents
an abrupt slope, leading to bigger corrections compared to the
equilibrium baths considered above. By an analytical com-
parison of the perturbative Eqs. (11) and (12), it can be seen
that the correction induced by nonequilibrium environments
is similar to that of the thermal ones for ohmicity parameters
−1 < s < 1 (for equal coupling constant γ0 and environment
cutoff �). However, as s increases, the correction induced
by nonequilibrium environments gets bigger in comparison,
becoming particularly important for s > 3. This confirms the
importance of the memory effects of the environment in
the correction of the geometric phase, as already stated in
Refs. [26,36,37], where the authors studied the memory effects
of the environment for different two-level systems.

As in the previous section, we can estimate the correction
to the unitary geometric phase in an expansion in powers of
the coupling between system and environment γ0. In this case,
the geometric phase can be approximated analytically as

φG ≈ φu + γ0 	[s + 1] sin2 θ cos θ, (12)
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where we have neglected O(γ0�/�) terms. This approximate
expression matches very well with the low-γ0 corrections given
in Fig. 7. This expression also gives the leading correction to
the phase found in Ref. [16] for s = 1 and s = 3. On general
grounds, we can see that the nonequilibrium bath is more
harmful and induces a bigger correction on the geometric phase
for all values of θ than the equilibrium environment.

IV. CONCLUSIONS

The geometric phase of quantum states could have a potential
application in holonomic quantum computation since the study
of spin systems effectively allows us to contemplate the design
of a solid-state quantum computer. However, decoherence is
the main obstacle to overcome. Furthermore, in most cases
of practical interest, quantum systems are subjected to many
noise sources with different amplitudes and correlation times,
corresponding de facto to a nonequilibrium environment.

We have computed the correction of the geometric phase
under the presence of structured reservoirs. We have defined
the spectral density as a function of the ohmicity parameter s.
This is advantageous because it allows one to study subohmic,
ohmic, and supraohmic environments in the same approach.
One could wonder if the correction to the geometric phase
is due to the non-Markovianity of the environment or simply
to a stronger effective interaction among the system and the
environment.

First, we have considered the structured reservoirs to be
composed of a set of harmonic oscillators at zero temperature.
In the case of thermal equilibrium environments, we have
shown that for small values of the ohmicity s � 2, the
hierarchy on the correction of the unitary geometric phase
is mainly due to the value of γ0. This means that the stronger
the coupling to the environment, the stronger the correction
induced on the geometric phase as expected. However, for
s > 2, even though the hierarchy is repeated, we can see
that the non-Markovianity also has an important role in the

correction. We have checked this argument by considering the
decoherence factor for different values of s and observing that
the correction to the geometric phase is strongly influenced by
this coefficient.

Second, we have considered the structured environments
to be modeled by a type of nonequilibrium environment.
The nonequilibrium feature is represented by a nonstationary
random function corresponding to the fluctuating transition
frequency between two quantum states coupled to the sur-
roundings. We have shown that the diffusion coefficients
always have negative values for the same period of time for s �
1, which means a nonmonotonic behavior of the decoherence
factors. This allows one to consider these nonequilibrium
environments as non-Markovian ones for all values of s. In
this framework, we have computed the nonunitary geometric
phase for the qubit in a quasicyclic evolution under the pres-
ence of these particular nonequilibrium environments, both
numerically and analytically. When comparing the correction
of the geometric phase induced by these environments and
the thermal ones, memory effects of the environments with
random noise are more harmful and the correction induced is
bigger, particularly for values of s � 3.

Finally, these kinds of environments could become a proper
experimental setup for the observation of the geometric phase.
Our work on the assessment of the environmental effect on
the geometric phase, especially in the non-Markovian regime
(either for equilibrium or nonequilibrium environments), could
be of great importance in using the geometric phases in two-
level systems to implement the quantum gates. The results
presented in this paper can also provide a clue to observe the
GP in a two-level system.
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