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Biosorption of crystal violet dye using inactive biomass

of the fungus Diaporthe schini

Patrícia Grassi, Caroline Reis, Fernanda C. Drumm, Jordana Georgin,

Denise Tonato, Leticia B. Escudero, Raquel Kuhn, Sérgio L. Jahn

and Guilherme L. Dotto
ABSTRACT
An inactive biomass of a new fungus recently discovered, Diaporthe schini, was evaluated for the

biosorption of crystal violet (CV) in simulated textile effluents. The characterization assays were

performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning

electron microscopy (SEM) and N2 adsorption/desorption isotherms. The influences of pH and

biosorbent dosage on the biosorption capacity were evaluated. Kinetics, equilibrium and

thermodynamic studies were also carried out. Characterization techniques showed an amorphous

biosorbent, with a rough surface containing irregular particles and surface area of 6.5 m2 g�1.

The most adequate values of pH and biosorbent dosage were 7.5 and 0.4 g L�1, respectively.

The Elovich kinetic model and the Sips equilibrium model were suitable to fit the experimental data.

The biosorption capacity increased with temperature, reaching a maximum biosorption capacity of

642.3 mg g�1 at 328 K. The biosorption was a spontaneous and endothermic process. Diaporthe

schini inactive biomass was an interesting biosorbent to treat colored effluents, presenting efficiency

of 87% in the decolorization of a simulated dye house effluent.
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INTRODUCTION
The discharge of synthetic dyes in industrial effluents is a
topic of growing concern due to their high polluting poten-

tial. It is estimated that approximately 280,000 tons of
these compounds are annually disposed of in an environ-
mentally inadequate manner (Sen et al. ). The

presence of dyes in the environment causes serious risks,
since they hinder the incidence of solar radiation, damaging
the development of the existing biota. Moreover, the pres-

ence of dyes in wastewater is a problem due to their toxic,
carcinogenic and teratogenic character (Naskar & Majum-
der ). Therefore, efficient treatments are necessary to
allow the removal of these contaminants from wastewater

before release into the environment (Fabryanty et al. ).
Several processes are used on an industrial scale to

remove contaminants from aqueous effluents. Adsorption/

biosorption, advanced oxidative processes, coagulation,
ion exchange, and membrane filtration are some examples
of operations usually used. Adsorption is considered one
of the most promising alternatives for the removal of organic
molecules due to its simplicity, low cost and high removal

efficiency (Gopi et al. ). Activated carbon is the most
commonly used adsorbent for dye removal. However, its
use is limited because of the high cost. In this way, the scien-

tific community has sought the use of alternative adsorbents
that, besides allowing the efficient removal of contaminants,
have a low cost of acquisition (Naskar & Majumder ).

Thus, residues or byproducts from industrial processes
are excellent materials. Among these alternatives, the use
of biomass generated in fermentative processes using bac-
teria (Luo et al. ) and fungi cells (Puchana-Rosero

et al. ; Li et al. ) can be highlighted.
In fermentative processes, large amounts of biomass are

generated for the production of different products. After

extraction of the desired compounds, the wastes must be
discarded, offering great potential to be exploited as
low cost biosorbents (Svecova et al. ). Fungi used in

mailto:guilherme_dotto@yahoo.com.br
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fermentative processes present in their cell walls com-

pounds including polysaccharides (mainly chitin), lipids,
proteins, and pigments in minor proportion (Escudero
et al. ), which provide a variety of functional groups

that can favor the biosorption process. Fermentative pro-
cesses using fungi of the Diaporthe genus have been used
in the production of secondary metabolites, which have
been applied in different fields according to their antibacter-

ial, anticancer, antifungal, antimalarial, antiviral, cytotoxic
and herbicidal activity (Guarnaccia et al. ). To date, no
studies have been reported in the scientific literature related

to physicochemical characterization and application of the
inactive biomass of Diaporthe schini fungus as a
biosorbent for removal of contaminants. The use of this

byproduct (inactive biomass), generated in biotechnological
processes of production of secondary metabolites, would
be an alternative to valorize the byproduct and reduce
costs for obtaining the biomass. Therefore, this work aims

to characterize the inactive biomass generated in the
fermentation process of the Diaporthe schini fungus and to
evaluate its biosorption potential for the removal of crystal

violet (CV) dye.
MATERIALS AND METHODS

Preparation of the fungal biosorbent

The biomass of the fungus Diaporthe schini was obtained by

submerged fermentation, where the main objective was the
production of secondary metabolites for in vitro evaluation
of the antimicrobial and antifungal activity. The fermenta-

tion conditions and composition of the medium followed
the parameters optimized in a previous work (Souza et al.
). After fermentation, the biomass was separated from

the fermentation broth by centrifugation (Eppendorf,
5804R, Brazil) for 10 min at 4,000 rpm. The broth followed
for later extraction processes of the compounds for further
evaluation of the antimicrobial and antifungal activity,

while the residual biomass was used for biosorption studies.
The resulting solid was oven dried at 100 �C for a period of
24 h to inactivate the microorganism. Finally, the biomass

was macerated, sifted in a 0.25 mm (60 mesh) sieve and
packed into a container.

Characterization of Diaporthe schini inactive biomass

The point of zero charge (pHpzc) of the fungal biomass was
determined by a method previously described (Postai et al.
): 0.05 g of fungal biomass was conditioned in 11 Erlen-

meyer flasks, to which were added 20 mL of NaCl solution
(0.1 mol L�1). The pH of the solutions was adjusted to 2,
3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 using HCl (0.1 mol L�1) or

NaOH (0.1 mol L�1) solutions and kept under stirring for
24 hours at 150 rpm and 25 �C. Then, the samples were
filtered and the final pH of the solution was determined
using pre-calibrated digital ion mark pH. For each pH

value assayed, the value of ΔpH was determined as
the difference between the initial and final pH values
(ΔpH¼ pHi – pHf). The pHpzc was defined as the point

where the value of ΔpH¼ 0 (zero), on the graph ΔpH vs
pHi. The biosorbent was characterized by X-ray diffraction
(XRD) using a Rigaku Mini flex model 300 diffractometer,

operated with Cu-Kα radiation (λ¼ 1.5418 Å), 30 kV,
10 mA, step size of 0.03 and a count time of 0.5 s per
step. The functional groups present in the sample were ident-
ified by Fourier transform infrared spectroscopy (FTIR)

(Prestige, 21210045, Japan) in the range of 400–4,000 cm�1.
The specific surface area, pore volume and pore size distri-
bution were determined by adsorption/desorption of N2

(ASAP 2020, Micromeritics). The specific surface area was
determined based on the Brunauer-Emmett-Teller (BET)
method and the pore volume and pore size distribution by

the Barrett-Joyner-Halenda (BJH) method. The biosorbent
morphology was verified using scanning electron microscopy
(SEM) (Tescan, Vega, Czech Republic).

Biosorption assays

CV dye was used as the contaminant for the biosorption

studies. The dye characteristics are: color index 42555,
molar weight¼ 407.98 g mol–1, λmax¼ 590 nm, purity¼
99.0%. CV was purchased from INLAB Ltda (Brazil).

Different concentrations of CV were obtained
from dilution of the stock solution (1.0 g L�1) with distilled
water. A calibration curve was generated in order to

determine the concentration of the dye present in the
solution as a function of the absorbance. The absorbance of
the solutions was determined using an UV/Vis spectropho-

tometer (Biospectro SP-22, Brazil), at the maximum dye
wavelength (λ¼ 590 nm). The volume of solution used in
the biosorption experiments was 50 mL, kept in Erlenmeyer
flasks, with stirring at 150 rpm (Marconi, MA 093, Brazil).

Removal of the biosorbent from the medium was performed
by centrifugation (Centribio, 80-2B, Brazil) at 4,000 rpm for
10 min. The effect of pH (2-10) was initially evaluated by

keeping the mass biosorbent, CV dye concentration, biosorp-
tion temperature and time at 1.5 g L�1, 100 mg L�1, 298 K
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and 120 min, respectively. The biosorbent dosage effect was

then evaluated in the range of 0.4 to 2.0 g L�1.
Under adequate pH and biosorbent dosage conditions,

kinetic curves were constructed using dye concentrations

of 50, 100 and 200 mg L�1. Samples were collected at
different time intervals up to 210 min. In each case, an
initial volume of 50 mL was used and a temperature of
298 K was selected. Isotherms were constructed using the

suitable conditions and equilibrium time. Four temperatures
were evaluated: 298, 308, 318 and 328 K, using initial dye
concentrations from 0 to 300 mg L�1. The operation was

evaluated according to the biosorption capacity at any
time (qt, mg g�1), equilibrium biosorption capacity (qe,
mg g�1) and percentage of dye removal (R, %), which were

determined by simple global mass balance.

Kinetic equilibrium and thermodynamic calculations

The biosorption kinetic profile was elucidated using pseudo-
first order (PFO) (Lagergren ), pseudo second-order
(PSO) (Ho & McKay ) and Elovich (Wu et al. )
models. The isotherm curves were fitted by Freundlich
(Freundlich ), Langmuir (Langmuir ) and Sips (Sips
) models. The values of standard Gibbs energy variation

(ΔG�, kJ mol �1), standard enthalpy change (ΔH�, kJ mol �1)
and standard entropy variation (ΔS�, kJ mol �1 K �1) were
also estimated (Tran et al. ). Details of kinetic,

equilibrium and thermodynamic calculations are presented
in the supplementary material (available with the online ver-
sion of this paper).

Biosorption applied to treat a simulated textile effluent

In order to analyze the biosorption efficiency in the simu-

lated effluent, a solution containing dyes and salts present
in industrial textile effluents was prepared. The textile
effluent was composed of: CV (20 mg L�1), malachite

green (10 mg L�1), Procion red (10 mg L�1), methylene
blue (10 mg L�1), NaCl (10 mg L�1), and K2CO3 (10
mg L�1). The biosorption assay was performed at the ade-

quate pH and biomass dosage determined in the previous
experiments, using 50 mL of simulated effluent solution
under the conditions of agitation, reaction time and temp-
erature of 150 rpm, 120 min and 298 K, respectively.

Visible spectra of the effluent before and after the treatment
were obtained from 300 to 800 nm using a UV–Vis spectro-
photometer (Shimadzu, UV-2600, Japan). The color removal

was estimated by the ratio between the areas under the spec-
tral curves (Lima et al. ).
RESULTS AND DISCUSSION

Characteristics of Diaporthe schini inactive biomass

The pHpzc value determined for the fungal biomass assayed

was 5.4. This means that at pH above this value, the biosor-
bent surface will be negatively charged and could biosorb
cationic molecules preferentially. In contrast, for pH
values lower than pHpzc the surface will be positively

charged and will prefer to biosorb molecules with anionic
character (Lim et al. ). So, it can be stated thatDiaporthe
schini is more suitable to uptake cationic dyes, since it is

negatively charged at a wide range of pH.
Through the X-ray diffraction analysis of the fungal

biomass of Diaporthe schini (supplementary material,

Figure S1, available with the online version of this paper), it
was possible to identify the appearance of a pronounced
band in the range of 2θ from 20� to 35�, characteristic of an

amorphous material (Naskar & Majumder ). This shows
that the polymers present in the material have low organiz-
ation, causing the appearance of the diffraction peaks
characteristic of chitin or chitosan not to occur.

The infrared spectrum of the Diaporthe schini fungal bio-
mass is shown in Figure 1(a). The main bands were at
3,424 cm�1, which can be attributed to the stretching of O-H;

2,925 cm�1 attributed to the stretching of C-H bonds;
1,633 cm�1 and 1,550 cm�1 which may be attributed to
the amide groups; 1,405 cm �1 and 1,320 cm�1 assigned to

C-H bonds; 1,114 cm�1 that can be attributed to elongation of
C¼C and S¼O; 1,088 cm�1 attributed to ether groups;
615 cm�1 attributed to the vibration elongation of C-H bonds
in aromatics. The fungus showed some functional groups of

natural chitin, including hydroxyl groups (OH) at 3,450 cm�1,
C-H at 2,960 cm�1; amide groups I (carbonyl vibration C¼
amide stretching) and amide II (N-H deformation of amide

II) at 1,650 and 1,560 cm�1; CHX deformation at 1,380 cm�1

and asymmetric C-O elongation at 1,020 cm�1. These groups
on the biosorbent surface can facilitate the dye biosorption.

The N2 adsorption-desorption isotherm of the fungal
mass of Diaporthe schini is shown in Figure 1(b). According
to IUPAC standards, the isotherm found is classified as type

II, characteristic of materials with low porosity. The surface
area, volume and mean pore size determined by the BET
and BJH methods were 6.5 m2 g�1, 0.02 cm3 g�1 and
15.6 nm, respectively. The mean pore diameter of this type

of material can be attributed to the inserts left by the cell
mass formed when the fungus grows.

From the SEM analysis, it was possible to verify that

the fungal biomass presented as irregular particles, of



Figure 1 | (a) FT-IR vibrational spectrum of Diaporthe schini fungal biomass and (b) N2 adsorption-desorption isotherm of the fungal mass.
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different sizes in the range of 5 to 50 μm (Figure 2(a)).
Figure 2(b) shows that the surface of these particles is

quite irregular and is formed by an agglomerate of hyphae.
This type of surface containing roughness and cavities is
favorable to the biosorption process because it allows an

interaction of the dyes in the structure of the biosorbent
(Soltani et al. ).

Evaluation of pH and biosorbent dosage on the
biosorption of CV

Figure 3(a) shows the effect of pH on the biosorption

capacity and removal of CV dye. It can be seen that the
percentage of removal increased with pH, reaching
approximately 87% of dye removal at pH 6. From pH 6 to

pH 10, the removal percentage was maintained at 87%. At
Figure 2 | Scanning electron microscopy (SEM) image of the biosorbent at magnifications of 1
pH< pHpzc, the surface of the biosorbent is positively
charged and CV dye is neutral or cationic (Brião et al.
). As consequence, CV and Hþ ions in the solution com-
petes for the sites, disfavoring the cationic dye biosorption.
At pH values higher than the pHpzc, the biosorbent tends

to be with excess of electrons in the surface, propitiating
favorable conditions for cationic CV biosorption, since this
dye is in its cationic form (Brião et al. ). Regarding to

the biosorption capacity, higher values were found at pH
higher than 6.0. Based on this information, a pH of 7.5
was selected for further experiments, since is the normal
pH of the CV solution.

Figure 3(b) shows the influence of the adsorbent dosage
(g L�1) on the percentage of removal and biosorption
capacity of the CV dye. It was found that an increase

of the biosorbent dosage resulted in an increase on the
,000× (a) and 5,000× (b).



Figure 3 | (a) pH effect on the CV dye removal percentage (▪) and biosorption capacity (▪) by fungal biomass. (b) Biosorbent dosage effect on the dye removal percentage (▪) and
biosorption capacity (▪) of CV dye (V¼ 50 mL, C0¼ 100 mg L�1, T¼ 298 K).

Figure 4 | Kinetic curves for CV biosorption on Diaporthe schini fungal biomass

(V¼ 500 mL, C0¼ 50, 100 and 200 mg L�1, biosorbent dosage¼ 0.4 g L�1,

pH¼ 7.5 and T¼ 298 K).
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amount of the biosorbed dye (percentage of removal) but led
to a reduction in the amount of dye biosorbed per mass unit
(biosorption capacity). This occurs because the number of

active sites in the solid increases with increasing biosorbent
dosage and therefore results in an increase in the amount of
biosorbed dye. However, aggregation of these sites can

occur, causing a decrease in the biosorption capacity. The
highest biosorption capacity was verified when 0.4 g L�1 of
dosage was used, corresponding to a biosorption capacity

of 173.7 mg g�1.

Biosorption kinetic profiles

Biosorption kinetic curves were obtained at initial dye con-
centrations of 50, 100 and 200 mg L�1, biosorbent dosage of
0.4 g L�1, temperature of 298 K and pH of 7.5. The curves

are depicted in Figure 4.
An increase of the biosorption capacity can be observed

until 150 minutes, maintaining constant values for longer

times. This shows that the equilibrium was reached within
210 min, independent of the initial dye concentration. More-
over, when the initial dye concentration is increased, the

biosorption capacity also increases, reaching a maximum
value of 290 mg g�1. According to other reports, this behav-
ior is common in biosorption processes and can be

attributed to two factors: (1) at higher values of initial adsor-
bate concentration, the concentration gradient between the
solution and the outer surface of the biosorbent is higher,
which facilitates the external mass transfer; (2) at higher

values of initial adsorbate concentration, the diffusion sur-
face mass flow increases (Dotto et al. ).

The pseudo-first order (PFO), pseudo-second order

(PSO) and Elovich models were used to elucidate the
biosorption kinetics and to obtain information about the
biosorption mechanism of the CV dye on Diaporthe schini
fungus. The biosorption kinetic parameters are shown
in Table 1.

The higher R2 (coefficient of determination) values
(R2> 0.987) and the lower ARE (average relative error)
values (ARE< 4.75%) presented in Table 1 show that the

Elovich model was the most suitable to represent the exper-
imental data of biosorption kinetics. In the literature, the
biosorption based on the Elovich equation increases rapidly
in a shorter time and, over a longer time, increases slightly

(Wu et al. ). The initial velocity parameter of the
Elovich model (a) increased with the initial dye concen-
tration. This indicated that at earlier stages, the

biosorption rapidly increased, mainly at higher initial CV
concentrations. The b parameter decreased with the initial



Table 1 | Kinetic parameters for the CV biosorption on Diaporthe schini biomass

C0 (mg L�1) 50 100 200

PFO

q1 (mg g�1) 81.3 159.6 263.1

k1 (min�1) 0.10 0.984 0.094

R2 0.889 0.898 0.849

ARE (%) 9.22 8.45 11.01

PSO

q2 (mg g�1) 89.00 173.14 286.8

k2 (g mg�1 min�1) 0.0016 0.0008 0.0005

R2 0.952 0.968 0.938

ARE (%) 5.37 4.43 6.97

Elovich

a (mg g�1 min�1) 95.0 238.5 306.9

b (g mg�1) 0.079 0.043 0.025

ab (min�1) 7.56 10.18 7.58

R2 0.994 0.994 0.987

ARE (%) 5.14 4.73 5.52

Table 2 | Isotherm parameters for the biosorption of CV on Diaporthe schini fungal

biomass

Models

T (K)

298 308 318 328

Freundlich
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CV concentration increase. Since the b units are g mg�1, it
can be concluded that adsorption capacity was higher at initial

CV of 200 mg L�1.

Equilibrium isotherms

Figure 5 shows the biosorption isotherms of CV dye, which
were obtained at four different temperatures. The
Figure 5 | Isotherm curves for CV biosorption on Diaporthe schini fungal biomass

(V¼ 50 mL, adsorbent dosage¼ 0.4 g L�1, pH¼ 7.5).
equilibrium curves were of type I (Zazycki et al. ).

At low CV concentrations, an inclination was observed
for all studied temperatures. This inclination shows that
the fungal biomass contains available biosorption sites

to uptake the CV dye. At CV concentrations higher than
200 mg L�1, the isotherms tend to a plateau, indicating
that all the biosorption sites were practically occupied.
The results indicated that the temperature increase was

favorable for the biosorption capacity of CV dye. This may
occur because the increase of temperature causes a swelling
effect of the fungal mass, leading to the exposure of more

biosorption sites (Barbosa et al. ).
Freundlich, Langmuir and Sips models were fitted with

the experimental data in order to obtain detailed infor-

mation about the equilibrium. The equilibrium parameters
for the biosorption of CV on the fungal biomass are pre-
sented in Table 2. From the statistical indicators (R2, R2

adj

(adjusted determination coefficient) and ARE), it was veri-

fied that the Sips model was adequate to represent the
isotherms for all temperatures. Therefore, the Sips model
was selected to represent the CV dye biosorption on the

fungal biomass.
KF (mg g�1) (mg L�1)�1/n
F 41.67 49.72 53.38 72.6

1/nF 0.41 0.42 0.44 0.41

R2 0.984 0.942 0.942 0.901

R2
adj 0.982 0.932 0.932 0.884

ARE (%) 17.40 27.42 31.73 44.62

Langmuir

qm (mg g�1) 494.0 633.7 728.2 787.8

KL (L mg�1) 0.0178 0.0180 0.0185 0.0248

R2 0.999 0.989 0.989 0.9705

R2
adj 0.999 0.987 0.988 0.965

ARE (%) 1.30 8.04 11.60 23.75

Sips

qms (mg g�1) 490.2 555.5 618.2 642.3

Ks (L mg�1) 0.018 0.024 0.027 0.041

m 1.040 1.353 1.434 1.865

R2 0.999 0.994 0.997 0.994

R2
adj 0.999 0.992 0.996 0.992

ARE (%) 1.40 8.90 5.95 9.25



Figure 6 | Visible spectra of simulated effluent before and after treatment with fungal

biomass (conditions: V¼ 50 mL, biosorbent dosage¼ 0.4 g L�1, pH¼ 7.5).
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The Ks parameter of the Sips model, which represents

the equilibrium constant, increased with temperature,
reaching maximum values at 328 K. This indicates that
when the temperature increases, the dye affinity of the bio-

sorbent is favored, hence increasing the biosorption
capacity. The qmS parameter also increased with the temp-
erature, attaining a maximum biosorption capacity of
642.3 mg g�1 at 328 K. The maximum biosorption capacity

is normally used to compare the potential of biosorbent/
adsorbent materials to uptake dyes. Several data from the
literature regarding many types of preponderantly organic

materials used to remove CV dye were used for compari-
son with this work. This comparison is presented as
supplementary material (Table S1, available online). The

maximum biosorption capacity of all compared biosorbents
(Table S1) ranged from 9.58 to 352.79 mg g�1 (Senthilku-
maar et al. ; Ahmad ; Chakraborty et al. ;
Lin et al. ; Pavan et al. ; Gopi et al. ; Muthuku-

maran et al. ; Sabna et al. ; Abdel-Salam et al. ;
Kulkarni et al. ; Kumari et al. ; Miyah et al. ;
Shoukat et al. ; Tahir et al. ; Georgin et al. ;
Liu et al. ). Comparing these values with the
value obtained in this work, it can be verified that the
biosorption capacity of the fungal biosorbent was much

higher than that verified by other authors. Coupled with
the high biosorption capacity, Diaporthe schini fungal bio-
mass has other advantages such as low cost, availability as

fermentation waste, and biodegradability. These results
show that this type of biomass has potential to be used
as a biosorbent for the removal of contaminants present
in liquid effluents.

Thermodynamic parameters

The biosorption thermodynamics were evaluated by the
standard values of Gibbs free energy (ΔG�, kJ mol �1),
enthalpy (ΔH�, kJ mol�1) and entropy (ΔS�, kJ mol�1 K�1)

changes. The results are shown in the supplementary
material (Table S2, available online). The negative ΔG�

values depicted in Table S2 indicate that the CV dye

biosorption on the fungal biomass occurs spontaneously
and favorably. The increase in temperature led to more
negative ΔG� values, confirming that the biosorption was
more favorable at 328 K. The positive value of ΔS� demon-

strates that there were some rearrangements at the solid-
liquid interface during the biosorption process. The positive
value of ΔH� indicates that the dye biosorption is of an

endothermic nature and the magnitude of ΔH� values
indicates biosorption by physisorption (Barbosa et al. ).
Simulation in the treatment of a textile effluent

The Diaporthe schini fungal biomass was tested to treat a
simulated textile effluent containing several dyes and inor-

ganic compounds. In the test, 0.4 g L�1 of the biosorbent
at pH 7.5 was used. Figure 6 shows the UV-visible spectra,
in the range from 300 to 800 nm, before and after the bio-
sorption process. It can be verified that there was a

considerable reduction in the area under the curve, indicat-
ing that the fungal biomass was efficient in removing the
color present in the simulated effluent. The percentage of

removal provided in these test conditions was of the order
of 86%, determined by the ratio of the area before and
after biosorption. Even using low adsorbent dosage, it can

be stated that the biomass of the fungus Diaporthe schini
was very effective in the removal of a mixture of dyes and
salts usually present in industrial effluents, indicating that
this material presents potential to be employed as a low-

cost biosorbent.
CONCLUSIONS

In this work, the potential of the inactive biomass of the
fungus Diaporthe schini to treat colored effluents containing

CV dye was demonstrated. The fungal biomass presented an
amorphous character and FTIR bands similar to those
observed for chitin, indicating that this polymer is part of

the structure. In the SEM analysis, it was observed that
the particles have varied size and irregular surface. The bio-
sorbent material showed a BET specific area of 6.5 m2 g�1
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and point of zero charge of 5.4. The biosorption tests

showed that the maximum biosorption capacity and percen-
tage of removal were achieved at pH of 7.5 and a biomass
dosage of 0.4 g L�1. The experimental data on the variation

of the concentration as a function of time can be well
described by the Elovich model and the equilibrium data
were better represented by the Sips model. The maximum
biosorption capacity was 642.3 mg g�1. The thermodynamic

study showed that the biosorption process of the dye on the
biomass surface occurs spontaneously and is endothermic.
In the experiments with simulated effluent, a color removal

percentage of 87% was reached. The results showed that the
biosorption process was successfully applied to a simulated
effluent, predicting the great potential of this biosorbent for

the removal of dyes from real industrial effluents.
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