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Abstract

We consider Higgs boson production by gluon fusion in hadron collisions. We study the doubly-
differential transverse-momentum (qT ) and rapidity (y) distribution of the Higgs boson in perturbative
QCD. In the region of small qT (qT � MH , MH being the mass of the Higgs boson), we include the ef-
fect of logarithmically-enhanced contributions due to multiparton radiation to all perturbative orders. We
use the impact parameter and double Mellin moments to implement and factorize the multiparton kine-
matics constraint of transverse- and longitudinal-momentum conservation. The logarithmic terms are then
systematically resummed in exponential form. At small qT , we perform the all-order resummation of large
logarithms up to next-to-next-to-leading logarithmic accuracy, while at large qT (qT ∼ MH ), we apply
a matching procedure that recovers the fixed-order perturbation theory up to next-to-leading order. We
present quantitative results for the differential cross section in qT and y at the LHC, and we comment on
the comparison with the qT cross section integrated over y.
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1. Introduction

The search for the Higgs boson [1] and the study of its properties (mass, couplings, decay
widths) at hadron colliders require a detailed understanding of its production mechanisms. This
demands reliable computations of related quantities, such as production cross sections and the
associated distributions in rapidity and transverse momentum. In this paper we consider the pro-
duction of the Standard Model (SM) Higgs boson by the gluon fusion mechanism.

The gluon fusion process gg → H , through a heavy-quark (mainly, top-quark) loop, is the
main production mechanism of the SM Higgs boson H at hadron colliders. When combined
with the decay channels H → γ γ and H → ZZ, this production mechanism is one of the most
important for Higgs boson searches and studies over the entire range, 100 GeV � MH � 1 TeV,
of Higgs boson mass MH to be investigated at the LHC [2]. In the mass range 140 GeV �
MH � 180 GeV, the gluon fusion process, followed by the decay H → WW → �+�−νν̄, can
be exploited as main discovery channel at the LHC and also at the Tevatron [3], provided the
background from t t̄ production is suppressed by applying a veto cut on the transverse momenta
of the jets accompanying the final-state leptons.

The dynamics of the gluon fusion mechanism is controlled by strong interactions. Detailed
studies of the effect of QCD radiative corrections are thus necessary to obtain accurate theoretical
predictions.

In QCD perturbation theory, the leading order (LO) contribution to the total cross section
for Higgs boson production by gluon fusion is proportional to α2

S, αS being the QCD coupling.
The QCD radiative corrections to the total cross section are known at the next-to-leading order
(NLO) [4–7] and at the next-to-next-to-leading order (NNLO) [8–12]. The Higgs boson rapidity
distribution is also known at the NLO [13] and at the NNLO [14,15]. The effects of a jet veto
have been studied up to the NNLO [11,14,15]. We recall that all the results at NNLO have been
obtained by using the large-Mt approximation, Mt being the mass of the top quark. This approx-
imation is justified by the fact that the bulk of the QCD radiative corrections to the total cross
section is due to virtual and soft-gluon contributions [9–11,16,17]. The soft-gluon dominance
also implies that higher-order perturbative contributions can reliably be estimated by applying
resummation methods [9] of threshold logarithms, a type of logarithmically-enhanced terms due
to multiple soft-gluon emission. In Ref. [17], the NNLO calculation of the total cross section
is supplemented with threshold resummation at the next-to-next-to-leading logarithmic (NNLL)
level; the residual perturbative uncertainty at the LHC is estimated to be at the level of better
than ±10%. The NNLL + NNLO results [17] are nicely confirmed by the more recent com-
putation [18–20] of the soft-gluon terms at N3LO; the quantitative effect [18] of the additional
(i.e., beyond the NNLL order) single-logarithmic term at N3LO is consistent with the estimated
uncertainty at NNLL + NNLO. The effect of threshold logarithms on the rapidity distribution of
the Higgs boson has been considered in Ref. [21].

The gluon fusion mechanism at O(α2
S) produces a Higgs boson with a vanishing transverse

momentum qT . A large (or, however, non-vanishing) value of qT can be obtained only starting
from O(α3

S), when the Higgs boson is accompanied by at least one recoiling parton in the final
state. This mismatch by a power of αS is a preliminary indication of the fact that the small-qT

and large-qT regions are controlled by different dynamics regimes.
The large-qT region is identified by the condition qT ∼ MH . In this region, the perturba-

tive series is controlled by a small expansion parameter, αS(M2
H ), and calculations based on the

truncation of the series at a fixed order in αS are theoretically justified. The LO, i.e., O(α3
S), cal-

culation is reported in Ref. [22]. The results of Ref. [22] and the higher-order studies of Refs. [23,
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24] show that the large-Mt approximation is sufficiently accurate also in the case of the qT dis-
tribution when qT � MH , provided qT � Mt . Using the large-Mt approximation, the NLO QCD
computation of the qT distribution of the SM Higgs boson is presented in Refs. [14,15,25–27].
QCD corrections beyond the NLO are evaluated in Ref. [28], by implementing threshold resum-
mation at the next-to-leading logarithmic (NLL) level. The results of the numerical programs of
Refs. [14,15] can also be safely (i.e., without encountering infrared divergences) extended from
large values of qT to qT = 0: in the small-qT region these programs evaluate the qT distribution
up to NNLO.

In the small-qT region (qT � MH ), where the bulk of events is produced, the convergence
of the fixed-order expansion is definitely spoiled, since the coefficients of the perturbative series
in αS(M2

H ) are enhanced by powers of large logarithmic terms, lnm(M2
H /q2

T ). The logarithmic
terms are produced by multiple emission of soft and collinear partons (i.e., partons with low
transverse momentum). To obtain reliable perturbative predictions, these terms have to be re-
summed to all orders in αS. The method to systematically perform all-order resummation of
classes of logarithmically-enhanced terms at small qT is known [29–36]. In the case of the SM
Higgs boson, resummation has been explicitly worked out at leading logarithmic (LL), NLL [35,
37] and NNLL [38] level.

The fixed-order and resummed approaches at small and large values of qT can then be matched
at intermediate values of qT , to obtain QCD predictions for the entire range of transverse mo-
menta. Phenomenological studies of the SM Higgs boson qT distribution at the LHC have been
performed in Refs. [39–45], by combining resummed and fixed-order perturbation theory at dif-
ferent levels of theoretical accuracy. Other recent studies of various kinematical distributions of
the SM Higgs boson at the LHC are presented in Refs. [46–50].

In Refs. [41,44] we studied the Higgs boson qT distribution integrated over the rapidity. In
the small-qT region, the logarithmic terms were systematically resummed in exponential form
by working in impact-parameter and Mellin-moment space. A constraint of perturbative unitar-
ity was imposed on the resummed terms, to the purpose of reducing the effect of unjustified
higher-order contributions at large values of qT and, especially, at intermediate values of qT .
This constraint thus decreases the uncertainty in the matching procedure of the resummed and
fixed-order contributions. Our best theoretical predictions were obtained by matching NNLL re-
summation at small qT and NLO perturbation theory at large qT . NNLL resummation includes
the complete NNLO result at small qT , and the unitarity constraint assures that the total cross
section at NNLO is recovered upon integration over qT of the transverse-momentum spectrum.
Considering SM Higgs boson production at the LHC, we concluded [44] that the residual pertur-
bative QCD uncertainty of the NNLL + NLO result is uniformly of about ±10% from small to
intermediate values of transverse momenta.

In this paper we extend our study to include the dependence on the rapidity of the Higgs
boson. Using the impact parameter and double Mellin moments, we can perform the extension
by maintaining all the main features of the resummation formalism of Refs. [36,44]. We are then
able to present results up to NNLL + NLO accuracy for the doubly-differential cross section
in qT and rapidity at the LHC.

The paper is organized as follows. In Section 2 we recall the main aspects of the resummation
formalism, and we illustrate the steps that are necessary to include the dependence on the rapidity
in the qT resummed formulae. In Section 3 we apply the formalism to the production of the SM
Higgs boson at the LHC, and we perform quantitative studies on the qT and rapidity dependence
of the doubly-differential cross section. Some concluding remarks are presented in Section 4.
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Additional technical details on the double Mellin moments of the resummation formulae are
given in Appendix A.

2. Rapidity dependence in qT resummation

We consider the inclusive hard-scattering process

(1)h1(p1) + h2(p2) → H(y,qT ,MH ) + X,

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the Higgs
boson H , accompanied by an arbitrary and undetected final state X. The centre-of-mass energy
of the colliding hadrons is denoted by

√
s. The rapidity, y, of the Higgs boson is defined in the

centre-of-mass frame of the colliding hadrons, and the forward direction (y > 0) is identified by
the direction of the momentum p1.

According to the QCD factorization theorem, the doubly-differential cross section for this
process is

dσ

dy dq2
T

(y, qT ,MH , s) =
∑
a1,a2

1∫
0

dx1

1∫
0

dx2 fa1/h1

(
x1,μ

2
F

)
fa2/h2

(
x2,μ

2
F

)

(2)× dσ̂a1a2

dŷ dq2
T

(
ŷ, qT ,MH , ŝ;αS

(
μ2

R

)
,μ2

R,μ2
F

)
,

where fa/h(x,μ2
F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at the fac-

torization scale μF , dσ̂ab are the partonic cross sections, and μR is the renormalization scale.
Throughout the paper we use parton densities as defined in the MS factorization scheme, and
αS(q2) is the QCD running coupling in the MS renormalization scheme. The rapidity, ŷ, and the
centre-of-mass energy, ŝ, of the partonic cross section (subprocess) are related to the correspond-
ing hadronic variables y and s:

(3)ŷ = y − 1

2
ln

x1

x2
, ŝ = x1x2s,

with the kinematical boundary |ŷ| < ln
√

ŝ/M2 (|y| < ln
√

s/M2 ) and ŝ > M2 (s > M2).
The partonic cross section dσ̂ab is computable in QCD perturbation theory. Its power series

expansion in αS contains the logarithmically-enhanced terms, (αn
S/q2

T ) lnm(M2
H /q2

T ), that we
want to resum. To this purpose, we use the general (process-independent) strategy and the for-
malism described in detail in Ref. [44]. The only difference with respect to Ref. [44] is that the
resummation is now performed at fixed values of the rapidity y, rather than after integration over
the rapidity phase space. In the following we briefly recall the main steps of the resummation
formalism, and we point out explicitly the differences with respect to Ref. [44].

We first rewrite (see Section 2.1 in Ref. [44]) the partonic cross section as the sum of two
terms,

(4)
dσ̂a1a2

dŷ dq2
T

= dσ̂
(res.)
a1a2

dŷ dq2
T

+ dσ̂
(fin.)
a1a2

dŷ dq2
T

.

The logarithmically-enhanced contributions are embodied in the ‘resummed’ component dσ̂
(res.)
a1a2 .

The ‘finite’ component dσ̂
(fin.)
a1a2 is free of such contributions, and it can be computed by trunca-

tion of the perturbative series at a given fixed order (LO, NLO and so forth). In practice, after
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having evaluated dσ̂a1a2 and its resummed component at a given perturbative order, the finite

component dσ̂
(fin.)
a1a2 is obtained by the matching procedure described in Sections 2.1 and 2.4 of

Ref. [44].
The resummation procedure of the logarithmic terms has to be carried out [30–34] in the

impact-parameter space, to correctly take into account the kinematics constraint of transverse-
momentum conservation. The resummed component of the partonic cross section is then obtained
by performing the inverse Fourier (Bessel) transformation with respect to the impact parameter b.
We write1

(5)
dσ̂

(res.)
a1a2

dŷ dq2
T

(ŷ, qT ,MH , ŝ;αS) = M2
H

ŝ

∞∫
0

db
b

2
J0(bqT )Wa1a2(ŷ, b,MH , ŝ;αS),

where J0(x) is the 0th-order Bessel function, and the factor W embodies the all-order depen-
dence on the large logarithms ln(MH b)2 at large b, which correspond to the qT -space terms
ln(M2

H /q2
T ) (the limit qT � MH corresponds to MH b � 1, since b is the variable conjugate

to qT ).
In the case of the qT cross section integrated over the rapidity, the resummation of the large

logarithms is better expressed [36,44] by defining the N -moments WN of W with respect to
z = M2

H /ŝ at fixed MH . In the present case, where the rapidity is fixed, it is convenient (see,
e.g., Refs. [51,52]) to consider ‘double’ (N1,N2)-moments with respect to the two variables
z1 = e+ŷMH /

√
ŝ and z2 = e−ŷMH /

√
ŝ at fixed MH (note that 0 < zi < 1). We thus introduce

W(N1,N2) as follows:

(6)W(N1,N2)
a1a2

(b,MH ;αS) =
1∫

0

dz1 z
N1−1
1

1∫
0

dz2 z
N2−1
2 Wa1a2(ŷ, b,MH , ŝ;αS).

More generally, any function h(y; z) of the variables y (|y| < − ln
√

z ) and z (0 < z < 1) can
be considered as a function of the two variables z1 = e+y√z and z2 = e−y√z. Thus, throughout
the paper, the (N1,N2)-moments h(N1,N2) of the function h(y; z) are defined as

(7)h(N1,N2) ≡
1∫

0

dz1 z
N1−1
1

1∫
0

dz2 z
N2−1
2 h(y; z), where y = 1

2
ln

z1

z2
, z = z1z2.

Note that the double Mellin moments can also be obtained (see, e.g., Ref. [53]) by introducing
a Fourier transformation with respect to y (with conjugate variable ν = i(N2 − N1)) and then
performing a Mellin transformation with respect to z (with conjugate variable N = (N1 +N2)/2):

(8)h(N1,N2) =
1∫

0

dz zN−1

+∞∫
−∞

dy eiνyh(y; z), where N1 = N + iν/2, N2 = N − iν/2.

The convolution structure of the QCD factorization formula (2) is readily diagonalized by
considering (N1,N2)-moments:

(9)dσ (N1,N2) =
∑
a1,a2

fa1/h1,N1+1fa2/h2,N2+1 dσ̂ (N1,N2)
a1a2

,

1 In the following equations, the functional dependence on the scales μR and μF is understood.
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where fa/h,N = ∫ 1
0 dx xN−1fa/h(x) are the customary N -moments of the parton distribu-

tions.
The use of Mellin moments also simplifies the resummation structure of the logarithmic terms

in dσ̂
(res.)(N1,N2)
a1a2 . The perturbative factor W(N1,N2)

a1a2 can indeed be organized in exponential form
as follows:

(10)W(N1,N2)(b,MH ;αS) =H(N1,N2)(MH ,αS) exp
{
G(N1,N2)(αS, L̃)

}
,

where

(11)L̃ = ln

(
M2

H b2

b2
0

+ 1

)
,

b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) and, to simplify the notation, the dependence
on the flavour indices has been understood.

The structure of Eq. (10) is in close analogy to the cases of soft-gluon resummed calculations
for hadronic event shapes in hard-scattering processes [54] and for threshold contributions to
hadronic cross sections [51,55,56]. The function H(N1,N2) (which is process dependent) does not
depend on the impact parameter b and, therefore, its evaluation does not require resummation of
large logarithmic terms. It can be expanded in powers of αS as

(12)H(N1,N2)(MH ,αS) = σ0(αS,MH )

[
1 + αS

π
H(N1,N2)(1) +

(
αS

π

)2

H(N1,N2)(2) + · · ·
]
,

where σ0(αS,MH ) is the lowest-order partonic cross section for Higgs boson production. The
form factor exp{G} is process independent2; it includes the complete dependence on b and, in
particular, it contains all the terms that order-by-order in αS are logarithmically divergent when
b → ∞. The functional dependence on b is expressed through the large logarithmic terms αn

SL̃m

with 1 � m � 2n. More importantly, all the logarithmic contributions to G with n + 2 � m � 2n

are vanishing. Thus, the exponent G can systematically be expanded in powers of αS, at fixed
value of λ = αSL̃, as follows:

(13)G(N1,N2)(αS, L̃) = L̃g(1)(αSL̃) + g(2)(N1,N2)(αSL̃) + αS

π
g(3)(N1,N2)(αSL̃) + · · · .

The term L̃g(1) collects the leading logarithmic (LL) contributions αn
SL̃n+1; the function g(2)

resums the next-to-leading logarithmic (NLL) contributions αn
SL̃n; g(3) controls the next-to-next-

to-leading logarithmic (NNLL) terms αn
SL̃n−1, and so forth.

Note that we use the logarithmic variable L̃ (see Eq. (11)) to parametrize and organize the
resummation of the large logarithms ln(MH b)2. We recall the main motivations [44] for this
choice. In the resummation region MH b � 1, we have L̃ ∼ ln(MH b)2 and the use of the vari-
able L̃ is fully legitimate to arbitrary logarithmic accuracy. When MH b � 1, we have L̃ → 0
(whereas3 ln(MH b)2 → ∞!) and exp{G(αS, L̃)} → 1. Therefore, the use of L̃ reduces the effect

2 More precisely, it depends only on the flavour of the colliding partons (see Appendix A).
3 As shown in Appendix B of Ref. [44] (see Eqs. (131) and (132) therein), after inverse Fourier transformation to

qT space, the b-dependent functions lnn(MH b)2 and L̃n lead to quite different behaviours at large qT . When qT � MH ,
the behaviour (1/q2

T
) lnn−1(qT /MH ) (which is not integrable when qT → ∞) produced by lnn(MH b)2 is damped (and

made integrable) by the extra factor
√

qT /MH exp(−b0qT /MH ) produced in the case of L̃n.
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produced by the resummed contributions in the small-b region (i.e., at large and intermediate val-
ues of qT ), where the large-b resummation approach is not justified. In particular, setting b = 0
(which corresponds to integrate over the entire qT range) we have exp{G(αS, L̃)} = 1: this prop-
erty can be interpreted [44] as a constraint of perturbative unitarity on the total cross section; the
dynamics of the all-order recoil effects, which are resummed in the form factor exp{G(αS, L̃)},
produces a smearing of the fixed-order qT distribution of the Higgs boson without affecting its
total production rate.

The resummation formulae (10), (12) and (13) can be worked out at any given (and arbitrary)
logarithmic accuracy since the functions H and G can explicitly be expressed (see Ref. [44]) in
terms of few perturbatively-computable coefficients denoted by A(n), B(n), H(n), C

(n)
N , γ

(n)
N . The

key role of these coefficients to fully determine the structure of transverse-momentum resum-
mation was first formalized by Collins, Soper and Sterman [32,34,36]. The present status of the
calculation of these coefficients for Higgs boson production is recalled in Section 3.

In the case of the qT cross section integrated over the rapidity, Eq. (10) is still valid,
provided the double (N1,N2)-moments are replaced by the corresponding single N -moments
WN,HN,GN (see Section 2.2 in Ref. [44]). The relation between double and single moments
can easily be understood by inspection of Eqs. (6)–(8). We see that setting ν = 0 in Eq. (8) is
exactly equivalent to integrate the cross section over the rapidity. Therefore, the functions WN ,
HN , GN in Ref. [44] are obtained by simply setting N1 = N2 = N in the corresponding functions
W(N1,N2),H(N1,N2),G(N1,N2) of Eq. (10).

Moreover, from the results presented in Ref. [44], we can straightforwardly obtain the func-
tions H(N1,N2) and G(N1,N2) from the functions HN and GN . Roughly speaking, we simply have

(14)G(N1,N2) = 1

2
(GN1 + GN2), H(N1,N2) = [HN1HN2 ]1/2.

More precisely, these equalities are valid in the simplified case where there is a single species
of partons (e.g., only gluons). In the following we comment on the physical picture that leads to
Eq. (14). The generalization to considering more species of partons does not require any further
conceptual steps: it just involves algebraic complications related to the treatment of the flavour
indices. The multiflavour case is briefly illustrated in Appendix A.

In the small-qT (large-b) region that we are considering, the kinematics of the Higgs bo-
son is fully determined by the radiation of soft and collinear partons from the colliding par-
tons (hadrons) in the initial state. The radiation of soft partons cannot affect the rapidity of
the Higgs bosons. On the contrary, the radiation of partons that are collinear to p1 (p2), i.e.,
in the forward (backward) region, decreases (increases) the rapidity of the Higgs boson as
a consequence of longitudinal-momentum conservation (see Eq. (3)). Since the emissions of
collinear partons from p1 and p2 are dynamically uncorrelated (factorized from each other),
correlations arise only from kinematics. The use of the (N1,N2)-moments exactly factorizes
(see Eqs. (2) and (9)) the kinematical constraint of longitudinal-momentum conservation. It
follows that the (N1,N2)-dependence of W(N1,N2) is given by the product of two functions
(say, W(N1,N2) = M(N1)

1 M(N2)
2 ) that depends only on N1 or N2, respectively. If all the par-

tons have the same flavour, the two functions should be equal, and Eq. (14) directly follows from
[W(N1,N2)]N1=N2=N =WN .

The formalism illustrated in this section defines a systematic ‘order-by-order’ (in extended
sense) expansion [44] of Eq. (4): it can be used to obtain predictions with uniform perturbative
accuracy from the small-qT region to the large-qT region. The various orders of this expansion
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are denoted4 as LL, NLL + LO, NNLL + NLO, etc., where the first label (LL, NLL, NNLL,
. . .) refers to the logarithmic accuracy at small qT and the second label (LO, NLO, . . .) refers to
the customary perturbative order5 at large qT . To be precise, the NLL + LO term of Eq. (4) is
obtained by including the functions g(1), g(2) and the coefficient H(1) (see Eqs. (13) and (12))
in the resummed component, and by expanding the finite (i.e., large-qT ) component up to its LO
term. At NNLL + NLO accuracy, the resummed component includes also the function g

(3)
N and

the coefficient H(2) (see Eqs. (13) and (12)), while the finite component is expanded up to NLO.
It is worthwhile noticing that the NNLL + NLO (NLL + LO) result includes the full NNLO
(NLO) perturbative contribution in the small-qT region.

We recall [44] that, due to our actual definition of the logarithmic parameter L̃ in Eq. (10)
and to our matching procedure with the perturbative expansion at large qT , the integral over
qT of the qT cross section exactly reproduces the customary fixed-order calculation of the total
cross section. This feature is not affected by keeping the rapidity fixed. Therefore, the NNLO
(NLO) result for total cross section at fixed y is exactly recovered upon integration over qT of
the NNLL + NLO (NLL + LO) qT spectrum at fixed y.

Within our formalism, resummation is directly implemented, at fixed MH , in the space of
the conjugate variables N1, N2 and b. To obtain the cross section in Eq. (2), as function of the
kinematical variables s, y and qT , we have to perform inverse integral transformations. These
integrals are carried out numerically. We recall [44] that the resummed form factor (i.e., each of
the functions g(k)(αSL̃) in Eq. (13)) is singular at the value of b where αS(μ2

R)L̃ = π/β0 (β0 is
the first-order coefficient of the QCD β function). This singularity has its origin from the presence
of the Landau pole in the running of the QCD coupling αS(q2) at low scales. When performing
the inverse Fourier (Bessel) transformation with respect to the impact parameter b (see Eq. (5)),
we deal with this singularity by using a ‘minimal prescription’ [56,57]: the singularity is avoided
by deforming the integration contour in the complex b space (see Ref. [57]). We note that the
position of the singularity is completely independent of the values of N1 and N2. Thus, the
inversion of the Mellin moments is performed in the customary way (in Mellin space there are no
singularities for sufficiently-large values of ReN1 and ReN2). In this respect, going from single
N -moments (as in Ref. [44]) to double (N1,N2)-moments (as in the present case, where the
rapidity is kept fixed) is completely straightforward, with no additional (practical or conceptual)
complications.

3. Higgs boson production at the LHC

In this section we apply the resummation formalism of Section 2 to the production of the
Standard Model Higgs boson at the LHC. We closely follow our previous study of the single
differential (with respect to qT ) cross section, with the same choice of parameters as stated in
Section 3 of Ref. [44]. Therefore, the integration over y of the double differential (with respect
to y and qT ) cross sections presented in this section returns the qT cross sections of Ref. [44].
As a cross-check of the actual implementation of the calculation, we have verified that after inte-
gration over the rapidity the numerical results in Ref. [44] are reobtained within a high accuracy.

4 In the literature on qT resummation, other authors sometime use the same labels (NLL, NLO and so forth) with a
meaning that is different from ours.

5 We recall that the LO term at small qT (i.e., including the region where qT = 0) is proportional to α2
S, whereas the

LO term at large qT is proportional to α3
S. This mismatch of one power of αS (and the ensuing mismatch of notation)

persists at each higher order (NLO, NNLO, . . . ).
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As in Refs. [17,44], we use an ‘improved version’ [16] of the large-Mt approximation. The
cross section is first computed by using the large-Mt approximation. Then, it is rescaled by a Born
level factor, such as to include the exact lowest-order dependence on the masses, Mt and Mb ,
of the top and bottom6 quarks, which circulates in the heavy-quark loop that couples to the
Higgs boson. We use the values Mt = 175 GeV and Mb = 4.75 GeV. As discussed in Ref. [17]
and recalled in Section 1, this version of the large-Mt approximation is expected to produce an
uncertainty that is smaller than the uncertainties from yet uncalculated perturbative terms from
higher orders.

For the sake of brevity, we present quantitative results only at NNLL + NLO accuracy, which
is the highest accuracy that can be achieved by using the present knowledge of exact perturbative
QCD contributions (resummation coefficients and fixed-order calculations [25–27]). We use the
MRST2004 set [58] of parton distribution functions at NNLO. The use of NNLO parton densities
consistently matches the NNLL (NNLO) accuracy of our partonic cross section in the region of
small and intermediate values of qT .

Resummation up to the NLL level is under control from the knowledge of the perturbative
coefficients A(1), B(1), A(2) [35] and H(1) [37]. To reach the NNLL + NLO accuracy, the form
factor function G(N1,N2) in Eq. (13) must include the contribution from g(3)(N1,N2) (which is
controlled by the coefficients B(2) [38] and A(3) [59]), and the coefficient function H(N1,N2) in
Eq. (12) has to be evaluated up to its second-order term H(2)(N1,N2). In Ref. [44] we exploited
the unitarity constraint G(αS, L̃)|b=0 = 0 to numerically derive an approximated form of the
coefficient H(2) from the NNLO calculation [12] of the total cross section. The recent calculation
of Ref. [15], which is based on the complete evaluation of H(2)(N1,N2) in analytic form, allows us
to gauge the quality of the approximated form. We find that the use of the H(2) of Ref. [44] leads
to differences of about 1% with respect to the exact computation of the rapidity cross section at
NNLO.

All the numerical results in this section are obtained by fixing the renormalization and fac-
torization scales at the value μR = μF = MH . The ‘resummation scale’ Q (the auxiliary scale
introduced in Ref. [44] to gauge the effect of yet uncalculated logarithmic terms at higher or-
ders) is also fixed at the value Q = MH . The mass of the Higgs boson is set at the value
MH = 125 GeV.

We start our presentation of the predictions for Higgs boson production at the LHC by con-
sidering the qT dependence of the cross section at fixed values of the rapidity. In Fig. 1, we set
y = 0 and we compare the customary (when qT > 0) NLO calculation (dashed line) with the
resummed NNLL + NLO calculation (solid line).

As expected, the NLO result diverges to −∞ as qT → 0 and, at small values of qT , it has an
unphysical peak that is produced by the numerical compensation of negative leading logarithmic
and positive subleading logarithmic contributions. The presence of this peak is not accidental. At
large qT , the perturbative expansion at any fixed order has no pathological behaviour: it leads to a
positive cross section, whose value decreases as qT increases. When qT → 0, instead, any fixed-
order calculation diverges alternatively to ±∞ depending on the perturbative order. Therefore,

6 We note that the Born level cross section is not insensitive to the contribution of the bottom quark. Adding the
bottom-quark loop to the top-quark loop in the scattering amplitude produces a non-negligible interference effect in
the squared amplitude. The relative effect of the bottom quark decreases the Born level cross section by about 11% if
MH = 125 GeV, and by about 3% if MH = 300 GeV. If MH � 500 GeV, the relative effect of the bottom quark is
always smaller than 1%.
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Fig. 1. The qT spectrum at the LHC with MH = 125 GeV and y = 0: results at NNLL + NLO (solid line) and NLO
(dashed line) accuracy. The inset plot shows the ratio K (see Eq. (15)) of the corresponding qT cross sections, fixing
y = 0 (solid line) and integrating them over the full rapidity range (dashed line).

to go smoothly from the large-qT behaviour to the small-qT limit, the NLO (or N3LO, and so
forth) calculation of the cross section has to show at least one peak in the intermediate-qT region.

We recall once more that the label NLO in Fig. 1 refers to (and originates from) the pertur-
bative expansion at large qT . To avoid possible misunderstandings (coming from such a label)
when interpreting the dashed (NLO) curve in the small-qT region, we point out that, the only
difference produced in Fig. 1 by the NNLO calculation at small qT (this calculation can be car-
ried out, for example, by using the NNLO codes of Refs. [14,15]) is a spike around the point
qT = 0. More precisely, as long as qT 
= 0, the dashed curve is exactly the result of the NNLO
calculation of the qT cross section at small qT . The only difference introduced in the plot by this
NNLO calculation would occur in the first bin (with arbitrarily small size) that includes the point
qT = 0. The NNLO value of the qT cross section in this first bin is positive and fixed by the value
of the NNLO total cross section.7 Of course, owing to the increasingly negative behaviour of the
qT distribution when qT → 0, the NNLO value of the qT cross section in the first bin increases
by decreasing the size of that bin.

The resummed NNLL + NLO result in Fig. 1 is physically well behaved at small qT (it
vanishes as qT → 0 and has a kinematical peak at qT ∼ 12 GeV), and it converges to the expected
NLO result only when qT is definitely large (qT � MH ).

7 By definition, the integral over qT of d2σ/(dqT dy) at NNLO is equal to dσ/dy at NNLO.
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Fig. 2. The qT spectrum at the LHC with MH = 125 GeV and y = 2: results at NNLL + NLO (solid line) and NLO
(dashed line) accuracy. The inset plot shows the ratio K (see Eq. (15)) of the corresponding qT cross sections, fixing
y = 2 (solid line) and integrating them over the full rapidity range (dashed line).

To quantify more clearly the effect of the resummation on the NLO result, the value at y = 0
of the qT dependent K-factor,

(15)K(qT , y) = dσNNLL+NLO/(dqT dy)

dσNLO/(dqT dy)
,

is shown in the inset plot of Fig. 1. The dashed line shows the analogous K-factor as computed
from the ratio of the rapidity integrated cross sections. The similarity between these two K-factors
is a first indication of the mild rapidity dependence of the resummation effects. By inspection of
the inset plot, we note that NNLL resummation is relevant not only at small qT , but also in the
intermediate-qT region: as soon as qT � 80 GeV, the resummation effects are larger than 20%.
Of course, the fact that K ∼ 1 at qT ∼ 24 GeV is purely accidental: it simply follows from the
unphysical behaviour of the fixed-order perturbative expansion at small qT .

Considering other values of the rapidity, from the central to the off-central rapidity region, we
find the same features as observed at y = 0. Our results of the qT spectrum at y = 2 are presented
in Fig. 2. The NNLL + NLO spectrum has a peak at qT ∼ 11 GeV. As happens in the case of the
qT distribution integrated over y, the effect of NNLL resummation is definitely non-negligible
starting from relatively-high values of qT . For example, at qT = 50 GeV the NNLL + NLO
result is about 30% higher than the NLO result.

To analyze the rapidity dependence in more detail, we study the doubly-differential cross
section at fixed values of qT . In Figs. 3 and 4, we show quantitative results at two typical values
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Fig. 3. The rapidity spectrum at the LHC with MH = 125 GeV and qT = 15 GeV: results at NNLL + NLO (solid line)
and NLO (dashed line) accuracy. The inset plot shows the K-factor as defined in Eq. (15).

of the transverse momentum, qT = 15 GeV and qT = 40 GeV, in the small-qT and intermediate-
qT region, respectively.

Fig. 3 shows the rapidity distribution at NNLL + NLO (solid line) and NLO (dashes) accuracy
when qT = 15 GeV. At this value of qT , the effect of NNLL resummation reduces the cross
section. For example, when y = 0 the reduction effect is about 25%. As can be observed in the
inset plot, the relative contribution from the resummed logarithmic terms is rather constant in the
central rapidity region, and its dependence on y only appears in forward (and backward) region,
where the cross section is quite small.

When qT = 40 GeV (see Fig. 4), instead, the effect of NNLL resummation increases the
absolute value of the cross section. For example, when y = 0 the NLO cross section is increased
by about 22%. Nonetheless, as for the relative effect of resummation and the rapidity dependence
of the K-factor, we observe features that are very similar to those in Fig. 3. The resummation
effects have a very mild dependence on y in the central and (moderately) off-central regions,
and this explains the remarkable similarity between the solid and dashed lines in the inset plot
of Figs. 1 and 2. Since the kinematical region where |y| � 2 accounts for most of the total cross
section, when comparing the ratio K(qT , y) to the analogous ratio of the y-integrated cross
sections, hardly any differences are expected, unless the large-rapidity region is explored.

The mild rapidity dependence of the qT shape of the resummed results can be studied with a
finer resolution by defining the following ratio:

(16)R(qT ;y) = d2σ/(dqT dy)
.

dσ/dqT
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Fig. 4. The rapidity spectrum at the LHC with MH = 125 GeV and qT = 40 GeV: results at NNLL + NLO (solid line)
and NLO (dashed line) accuracy. The inset plot shows the K-factor as defined in Eq. (15).

This ratio gives the doubly-differential cross section normalized to the qT cross section integrated
over the full rapidity range. For comparison, we consider also the qT -integrated version of the
cross section ratio in Eq. (16), and we define the ratio

(17)Ry = dσ/dy

σ

of the rapidity cross section dσ/dy over the total cross section σ .
We have computed the ratio in Eq. (16) by using the resummed qT cross sections at NNLL +

NLO accuracy. The results, as a function of qT , are presented in Fig. 5 (solid lines) at two dif-
ferent values, y = 0 and y = 2, of the rapidity. The results of the analogous (qT -independent)
ratio Ry (computed8 at NNLO with the numerical programs of Refs. [14,15]) at the corre-
sponding values of rapidity are also reported (dotted lines) in Fig. 5. The dashed lines in Fig. 5
correspond to the computation of Eq. (16) by using the qT cross sections at NLO: we see that the
dashed and solid lines are very similar (as expected from the similarity of the dashed and solid
lines in the inset plot of Figs. 1 and 2). As discussed below, the results in Fig. 5 show that the
cross section decreases and the qT spectrum softens when the rapidity increases.

8 The numerical accuracy of this computation is better than about 2%–3%. Owing to the unitarity constraint in our
resummation formalism, the same result (with a similar numerical accuracy) can be obtained by integration over qT of
the resummed qT cross sections.
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Fig. 5. The rescaled qT spectrum (as defined by the ratio R(qT ;y) in Eq. (16)) at the LHC with MH = 125 GeV. The
solid (dashed) lines correspond to the NNLL + NLO (NLO) results at two different values of the rapidity: y = 0 (upper)
and y = 2 (lower). The dotted lines refer to the corresponding values of the ratio Ry (see Eq. (17)).

We observe that the lines at y = 0 lie above the lines at y = 2; this is just a consequence of
the fact that the cross sections (both at fixed qT and after integration over qT ) decrease when
y increases.

At fixed y, R(qT ;y) is not constant: it depends (though very slightly) on qT . We note that the
corresponding upper and lower lines in Fig. 5 have different slopes with respect to qT : fixing qT ,
the qT slope of R(qT ;y) decreases from positive to negative values as y increases from y = 0 to
y = 2, thus showing that the qT spectrum becomes slightly softer at larger rapidity. In general, as
|y| increases, the hardness of the qT shape of d2σ/(dqT dy) decreases. Since the cross section
decreases by increasing the rapidity, the hardness of dσ/dqT (the denominator in Eq. (16)) is
intermediate between the values of the hardness of d2σ/(dqT dy) (the numerator in Eq. (16)) at
y = 0 and at large |y|. As a consequence, the qT slope of R(qT ;y) is necessarily positive when
y = 0. Note that the qT slope is already negative when y = 2 (Fig. 5): this is a consequence of
the fact that the bulk of the cross section is in the rapidity region |y| � 2.

Our qualitative illustration of the results in Fig. 5 can be accompanied by some quantitative
observations. We note that the rapidity dependence of the cross sections is sizeable: going from
y = 0 to y = 2, the ratio Ry decreases by about 43%; comparable variations affect the ratio
R(qT ;y), which is not very different from Ry and it is slowly dependent on qT . Indeed, at
fixed y, the ratio R(qT ;y) at NNLL + NLO accuracy has a small and nearly constant slope
from low values of qT around the peak (say, qT ∼ 10 GeV) to qT = 100 GeV; varying qT in
this region, R(qT ;y) increases by about 11% when y = 0, and it decreases by about 16% when
y = 2. In the same range of qT and y, the values of R(qT ;y) at NNLL + NLO (solid lines)
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and at NLO (dashed lines) are very similar: although this is expected at large qT , the differences
never exceed the level of about 4% even at values of qT as low as qT ∼ 10 GeV.

In summary, the results in Fig. 5 show that, when |y| increases from the central to the (moder-
ately) off-central region, the cross sections vary more in absolute value than in qT shape. These
features deserve some words of discussion.

We first consider the total cross section σ and the rapidity cross section dσ/dy. We recall (see
Section 1) that the value of these cross sections is sizeably affected by QCD radiative corrections.
The bulk of the effect is due to the radiation of virtual and soft gluons, and they cannot affect the
rapidity of the Higgs boson. As a consequence, the ratio Ry has little sensitivity to perturbative
QCD corrections. The decreases of Ry as |y| increases is mainly driven by the decrease of the
gluon density fg(x,M2

H ) as x increases. Considering the large-qT region, similar arguments ap-
ply to the qT cross sections dσ/dqT and dσ/(dqT dy), and similar conclusions apply to the ratio
R(qT , y). In the small-qT region, we have to consider the additional and large effect produced
on the qT cross sections by the logarithmically-enhanced terms lnm(M2

H /q2
T ). These terms are

due to the radiation of soft and collinear partons. As already discussed in Section 2, the rapidity
of the Higgs boson can be varied only by collinear radiation, while soft radiation can only lead
to on overall (independent of y) rescaling of the qT cross sections. At the LL level, only soft
radiation contributes (the LL function g(1) in Eq. (13) does not depend on N1 and N2) and all the
logarithmic terms cancel in the ratio R(qT , y). The y sensitivity of R(qT , y) starts at the NLL
level. The corrections produced on the dominant soft-gluon effects by the collinear radiation are
physically [29] well approximated by varying the scale μ of the gluon density from μ ∼ MH

to μ ∼ qT . As a consequence, the variations of the hardness of the qT cross sections are mainly
driven by d lnfg(x, q2

T )/d lnq2
T , the amount of scaling violation of the gluon density. Since the

scaling violation decreases as x increases, the hardness of dσ/(dqT dy) decreases and the qT

spectrum softens as |y| increases. Note that, by increasing x, the gluon density decreases faster
than its scaling violation: this explains why dσ/(dqT dy) varies more in absolute value than in
qT shape when |y| increases.

We conclude this section with some comments about the theoretical uncertainties on the
doubly-differential cross section dσ/(dqT dy) at NNLL + NLO accuracy. In Ref. [44] the
perturbative QCD uncertainties on dσ/dqT were investigated by comparing the results at
NNLL + NLO and NLL + LO accuracies and by performing scale variations at NNLL + NLO
level. We also considered the inclusion of non-perturbative contributions, and we found that they
lead to small corrections provided qT is not very small. From these studies we concluded that the
NNLL + NLO result has a QCD uncertainty of about ±10% in the region from small (around
the peak of the qT distribution) to intermediate (say, roughly, qT � MH /3) values of transverse
momenta. Similar studies can be carried out in the case of the doubly-differential cross section
dσ/(dqT dy). These studies are not reported here since their results and the ensuing conclusions
are very similar to those in Ref. [44]. The reason for this similarity is a feature that we have
pointed out throughout this section: the qT resummation effects have a very mild dependence on
the rapidity and, thus, they are almost unchanged when comparing dσ/(dqT dy) with dσ/dqT

(equivalently, they largely cancel in the ratio in the cross section ratio of Eq. (16)).

4. Summary

We have considered the resummation of the logarithmically-enhanced QCD contributions that
appear at small transverse momenta when computing the qT spectrum of a Higgs boson produced
in hadron collisions. In our previous work on the subject [41,44], the rapidity of the Higgs boson
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was integrated over: resummation was implemented by using a formalism based on a transform
to impact parameter and Mellin moment space. In this paper we have extended the resummation
formalism to the case in which the rapidity is kept fixed, and we have considered the doubly-
differential cross section with respect to the transverse momentum and the rapidity. We have
shown that this extension can be carried out without substantial complications: it is sufficient to
enlarge the conjugate space by introducing a suitably-defined double Mellin transformation.

The main aspects of our method [36,44], which are recalled here, are unchanged by the in-
clusion of the rapidity dependence. The resummation is performed at the level of the partonic
cross section, and the parton densities are factorized as in the customary fixed-order calcula-
tions. The formalism is completely general and it can be applied to other processes: the large
logarithmic contributions are universal and, thus, they are systematically exponentiated in a
process-independent form (see Eqs. (10) and (13)); the process-dependent part is factorized in
the hard-scattering coefficient H. A constraint of perturbative unitarity is imposed on the re-
summed terms (see Eq. (11)), so that the qT smearing produced by the resummation does not
change the total production rate. This constraint reduces the effect of unjustified higher-order
contributions at intermediate qT and facilitates the matching procedure with the complete fixed-
order calculations at large qT . In particular, when the rapidity is kept fixed, the integration over
qT of dσ/(dqT dy) at NNLL + NLO accuracy returns dσ/dy at NNLO.

We have presented numerical results for Higgs boson production at the LHC. Comparing
fixed-order and resummed calculations, we find that the resummation effects are large at small qT

(as expected) and still sizeable at intermediate qT . The inclusion of the rapidity dependence has
little quantitative impact on this picture since, as we have shown, the qT resummation effects are
mildly dependent on the rapidity. Going from the central to the (moderately) off-central rapidity
region, the qT shape of the spectrum slightly softens. In the range from small to intermediate val-
ues of qT , the residual perturbative uncertainty of the NNLL + NLO predictions for dσ/(dqT dy)

is comparable to that of advanced (NNLO or NNLL + NNLO) calculations of the qT inclusive
cross sections dσ/dy and σ .
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Appendix A

In this appendix we present the structure of the resummation formula (10) by explicitly in-
cluding the dependence on the flavour indices of the colliding partons.

In the context of our resummation formalism, a detailed derivation of exponentiation in the
multiflavour case is illustrated in Appendix A of Ref. [44]. Considering a generic LO partonic
subprocess c + c̄ → F (F = H and c = c̄ = g in the specific case of Higgs boson production by
gluon fusion), and performing qT resummation after integration over the rapidity, the resummed
component dσ̂

(res.)
a1a2 /dq2

T of the partonic cross section is controlled by the N -moments WF
a1a2,N

.
The final exponentiated result for these N -moments is given by the master formulae (106)–(108)
of Ref. [44]. We recall the master formula (106) in the following form:

(A.1)WF
a1a2,N

(b,M;αS) =
∑

H{I },F
a1a2,N

(M,αS) exp
{
G{I },N (αS, L̃)

}
,

{I }
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where the sum extends over the following set of flavour indices:

(A.2){I } = c, c̄, ii , i2, b1, b2,

and, for simplicity, the functional dependence on various scales (such as the renormalization and
factorization scales) is understood. The functions G{I },N and H{I },F

a1a2,N
are given in the master

formulae (107) and (108), respectively. In the present paper, qT resummation is performed at
fixed values of the rapidity, and the double (N1,N2)-moments W(N1,N2)F

a1a2 in Eq. (6) replace the
N -moments WF

a1a2,N
of Ref. [44]. The generalization of Eq. (10) to the multiflavour case is

straightforwardly obtained from Eq. (A.1) by the simple replacement N → (N1,N2):

(A.3)W(N1,N2)F
a1a2

(b,M;αS) =
∑
{I }

H{I },(N1,N2)F
a1a2

(M,αS) exp
{
G(N1,N2){I } (αS, L̃)

}
.

The exponent G(N1,N2){I } of the process-independent form factor and the process-dependent hard

factor H{I },(N1,N2)F
a1a2 are

(A.4)G(N1,N2){I } = Gc + Gi1,N1 + Gcb1,N1 + Gi2,N2 + Gc̄b2,N2,

(A.5)
H{I },(N1,N2)F

a1a2
= σ

(0)
cc̄,F HF

c ScC̃cb1,N1

[
E

(i1)
N1

V −1
N1

UN1

]
b1a1

C̃c̄b2,N2

[
E

(i2)
N2

V −1
N2

UN2

]
b2a2

.

The expressions in Eqs. (A.4) and (A.5) are completely analogous to the master formulae (107)
and (108) in Ref. [44] (the functional dependence on the scales M,μR,μF and Q is explicitly
denoted in those formulae). In particular, we note that the dependence of G(N1,N2) and H(N1,N2)

on the Mellin variables N1 and N2 is completely factorized: each of terms on the right-hand side
of Eqs. (A.4) and (A.5) depends only on one Mellin variable (either N1 or N2). This factorized
structure is completely consistent with Eq. (14) and with the physical picture discussed below
Eq. (14); the dependence on N1 (N2) follows the longitudinal-momentum flow and the flavour
flow a1 → b1 → i1 → c (a2 → b2 → i2 → c̄) that are produced by collinear radiation from the
initial-state parton with momentum p1 (p2). The various Mellin functions (Gi,N ,E

(i)
N ,UN and

so forth) in Eqs. (A.4) and (A.5) can be found in Ref. [44].
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