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Context: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and
dysglycemia.

Objective: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by
testing metabolite associations with risk factors cross-sectionally and with risk factor changes over
time.

Design: Cross-sectional—discovery samples (N=650; age=36-69 years) from the Framingham
Heart Study (FHS) and replication samples (N=670; age=61-76 years) from the Biolmage Study,
both following a factorial design sampled from high versus low strata of body mass index, lipids,
and glucose. Longitudinal—FHS participants (N=554) with 5-7 years of follow-up for risk factor
changes.

Setting: Observational studies.

Participants: Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, ex-
cluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age and sex
matched by group.

Interventions: None.

Main Outcome Measure(s): Gas chromatography-mass spectrometry detected 119 plasma metab-
olites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in dis-
covery, with external replication of 37 metabolites. Single- and multi-metabolite markers were
tested for association with longitudinal changes in risk factors.
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Results: Cross-sectional metabolite associations were identified with obesity (n=26), dyslipidemia
(n=21), and dysglycemia (n=11) in discovery. Glutamic acid, lactic acid, and sitosterol associated
with all three risk factors in meta-analysis (p<4.5x10-4). Metabolites associated with longitudinal
risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5-
15.3% of longitudinal changes in metabolic traits.

Conclusions: Cross-sectional results implicated dysregulated glutamate cycling and amino acid
metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sec-
tionally and over time, suggesting their upstream role in risk factor progression. Functional studies
are needed to validate findings and facilitate translation into treatments or preventive measures.

ardiovascular disease (CVD) is the foremost cause of
death in the developed world and is emerging as a
leading cause of death in the developing world (1, 2). The
simultaneous presence of multiple CVD risk factorsisused
to diagnose metabolic syndrome (3-5). Metabolic syn-
drome is associated with cardiovascular morbidity and
mortality, and current estimates place its prevalence in
U.S. adults at nearly one-third (6, 7). Thanks to advances
in mass spectrometry, population-based studies are now
able to identify metabolite associations with metabolic
risk factors in plasma and other biosamples (8-12). We
hypothesized that metabolic pathway disturbances under-
lie the major components of metabolic syndrome. We
aimed to identify plasma metabolite signatures of obesity,
dyslipidemia, and dysglycemia cross-sectionally and of se-
rial changes in the same metabolic traits.

To that end, we designed an efficient 2 X 2x2 factorial
study to evaluate plasma metabolites as biomarkers of
obesity, dyslipidemia, and dysglycemia. Metabolomic
profiling was conducted using gas chromatography-mass
spectrometry (GC-MS) on plasma samples from 650 Fra-
mingham Heart Study (FHS) participants. Independent
external replication was performed on biosamples from
670 participants in the Biolmage Study. We also evaluated
associations of our complete metabolite set with longitu-
dinal changes in body mass index (BMI), lipids [triglyc-
eride (TG) and HDL-cholesterol (HDL-C)], and fasting
glucose during 5-7 years of follow-up in FHS participants.

Materials and Methods

Study Samples. The FHS is an observational study that began
recruitment of three generations of participants in 1948, 1971,
and 2002, respectively (13-15). In discovery, we sampled at-
tendees at Offspring cohort Examination 8 (2005-2008; n =
3,021) and Third Generation cohort Examination 1 (2002-
2005; n = 4,095). Exclusion criteria included off-site examina-
tion (n = 107), no blood specimen (n = 126), lack of unrestricted
consent (n = 335), prevalent CVD at baseline (n = 216), phar-
macological treatment for diabetes (n = 257) or dyslipidemia
(n = 1,201), missing BMI data (n = 4), smoking at baseline
examination (n = 772), or age < 50 or > 79 years for the Off-
spring cohort (n = 123) or < 25 or > 59 years for the Third

Generation cohort (n = 183). The eligible sample was 3792
individuals. Replication samples were selected from individuals
enrolled in the Biolmage Study, an ongoing prospective obser-
vational study of subjects free of prevalent CVD (ClinicalTrials-
.gov Identifier: NCT00738725) (16). In June 2009, enrollment
was complete for 6822 subjects from the metropolitan areas of
Chicago, IL, and Fort Lauderdale, FL. Study participants in-
cluded men ages 55-80 and women ages 60—80; exclusion cri-
teria included self-reported use of lipid- or glucose-lowering
medications. Nonfasting plasma and serum samples from FHS
and Biolmage were collected according to standard operating
procedures, aliquoted immediately after centrifugation, and
stored at —80°C with < 3 freeze-thaw cycles prior to assay.

Clinical Measures. Metabolic syndrome risk factor definitions
were similar to those of the National Cholesterol Education Pro-
gram’s Adult Treatment Panel Ill report (5). Obesity was defined
as BMI = 30 kg/m?. Obesity was selected as a stratifying variable
rather than waist circumference because it was available in both
discovery and replication, and the correlation between BMI and
waist circumference was extremely high (in pooled Offspring
and Third Generation cohort participants, r = 0.92 [n = 7,001],
adjusted for age, sex, and cohort). Dyslipidemia was defined as
plasma TG = 150 mg/dL or low plasma HDL-C (<40 mg/dL in
men or < 50 mg/dL in women). Dysglycemia was defined as
fasting blood glucose = 100 mg/dL. Plasma aspartate transam-
inase (AST) and alanine transaminase (ALT) levels were mea-
sured in FHS and Biolmage blood samples using the kinetic
method (Beckman Liquid-Stat Reagent Kit).

Study Design. In discovery and replication, we implemented an
efficient 2 X 2x2 factorial design by sampling for elevated vs
nonelevated levels of BMI, lipids, and glucose (Table 1). Indi-
viduals were stratified to high vs. normal BMI, dyslipidemia vs.
normal lipids, and high vs. normal fasting glucose. This strati-
fication produced eight groups of equal size, each with a unique
combination of presence and absence of the three metabolic risk
factors, that permitted analyses of individual risk factor axes (ie,
BMI, dysglycemia, or dyslipidemia) using data from all partici-
pants. The 2 X 2x2 factorial design ensured that when selecting
any of the three metabolic risk factors as a discriminatory factor
for analysis, the distribution of the other two factors remained
balanced across the eight groups. We aimed to sample 80-84
individuals for each group, while balancing age and sex (and
cohort in FHS). The final sample size for the FHS was 650 par-
ticipants; for Biolmage, the sample size was 670. The longitu-
dinal sample included members of the discovery sample who
attended the follow-up examination (FHS Offspring cohort Ex-
amination 9 [2011-2013] or Third Generation cohort Exami-
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Table 1. Study Design and Clinical Characteristics of Discovery and Replication Samples
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

Obesity* + + + +
Dysglycemiat - + - + + - +
Dyslipidemia$ - - + + + +
Framingham Heart Study (Discovery)
Sample size 84 83 84 84 82 84 74 83
Age (years) 52 + 14 54 =13 52 =14 54 =15 53 =12 54 =11 50 = 14 55+ 13
Women (%) 50 49 50 50 50 50 57 49
BMI (kg/mz) 245*238 25.0 %27 259+ 27 266 +23 324+23 359+51 354+48 349+49
Glucose (mg/dL) 925 107 =15 92 +5 107 =7 93 +4 109 =7 935 122 =37
HDL-C (mg/dL) 65 + 18 62 = 15 45 = 11 44 =14 61 =13 58 =13 42 =10 42 =10
TG (mg/dL) 8126 84 =26 167 = 115 175 =91 92 =28 95 * 29 165 = 77 202 + 148
Biolmage Study (Replication)
Sample size (#) 83 84 83 84 84 84 84 84
Age (years) 696 69 + 6 69 = 6 70 £ 6 67 =6 68 =6 68 =6 68 =6
Women (%) 49 50 51 50 50 50 50 50
BMI (kg/mz) 25626 259+26 258 2.7 269+23 33.6 =35 354+48 33.8+33 341+38
Glucose (mg/dL) 89+8 110 =13 90 =9 114 =19 90 =8 112 =12 92+6 116 = 19
HDL-C (mg/dL) 63 = 14 64 = 15 54 =17 50 = 15 59 =13 59 = 14 46 = 11 48 =13
TG (mg/dL) 104 = 27 106 * 35 221+ 119 238 + 118 105 * 33 110 = 29 224 + 92 223 107

(+) and (-) represent the presence and absence, respectively, of obesity, dysglycemia, and dyslipidemia in each of the eight metabolic risk factor

groups.
*Qbesity was defined as BMI =30 kg/m?.
tDysglycemia was defined as a fasting blood glucose level =100 mg/dL.

$Dyslipidemia was defined as either (1) TG level =150 mg/dL or (2) HDL-C level <40 mg/dL in men or <50 mg/dL in women.

nation 2 [2008-2010]). Participants without follow-up data for
the metabolic traits of interest (BMIL, TG, HDL-C, and glucose)
were excluded. The final sample size for the longitudinal analysis
was 554 participants. For individuals who reported treatment
for dyslipidemia (n = 133) or diabetes (n = 30) at follow-up,
values were imputed empirically to adjust for treatment effect

(described below).

Metabolomic Profiling. GC-MS profiling of plasma samples was
conducted at the TNO (Zeist, The Netherlands) with random-
ized cohorts and blinded analysis. A list of analyte targets was
created from a preliminary profiling experiment before target
peaks were measured in experimental samples. For GC-MS anal-
ysis, 100 pL samples were extracted with methanol and dried
under a stream of nitrogen. For two-step derivatization, oxima-
tion was completed with ethoxamine in pyridine, and then trim-
ethylsilylation was completed by adding 100 uL of N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA). To each
sample, a cocktail of internal standards was added for normal-
ization: d3-leucine, (13)CS5-ribose, d3-glutamic acid, d5-phenyl-
alanine, d4-alanine, d4-cholic acid, d4-citric acid, trifluoroacety-
lanthracene, and dicyclohexyl phthalate. The samples were
injected into an Agilent 7890 N gas chromatograph connected to
an Agilent 5975 mass spectrometer (Santa Clara, CA, USA). See
Pellis et al for more detail (17). The analytical runs were arranged
into 27 randomized batches, each containing 24 primary and
three quality control (QC) samples. Quality control (QC) sam-
ples were generated by pooling plasma specimens from 15
healthy donors (7 male; 8 female) following standard collection
protocols. Injections were made in duplicate for experimental
and QC samples. ChemStation software (Version E02.00.493,
Agilent Technologies) was used for data processing (18). A target
table was constructed using an in-house library containing the
mass spectra and retention times of > 600 reference metabolites
(authentic standards), >100 annotated metabolites (spectral
match with the NIST library or spectra of silylated compounds
published in literature), and > 200 unknown metabolites found
in serum or plasma in previous studies. Compounds were de-

tected either underivatized, oximated and silylated, or silylated.
Some lipid compounds, eg, sphingomyelins, were detected as a
thermal degradation product by losing the phosphocholine
group in the injector (19). Metabolites (known or unknown)
specific for this study were added to the target table by searching
the first three batches of samples for peaks present but not ac-
counted for by the preselected target table. Peaks present in
blanks and chemicals were excluded from the target table based
on analysis of blank solvents and blank derivatizations. When
one metabolite yielded = 2 derivatization products, the most
reliable was selected (based on specificity of ions, lack of coelu-
tion, and intensity) and the others excluded. A total of 175 tar-
gets were detected in this study and quantified in all samples by
reconstructing an ion chromatogram of a specific mass from the
mass spectrum of the target. The quantification for all targets
was manually checked by visual control and peak integration
was corrected as needed. Components detected in the GC-MS
runs were quantified through peak areas normalized to an in-
ternal standard peak area. The internal standard was selected
individually for each component: the standard yielding the small-
est variability observed in QC samples. To compensate for dif-
ferent batch medians and intra-batch linear trends, batch and
trend corrections were applied as needed. These methods are
described in detail by van der Kloet et al (20) Normalized peak
areas representing relative concentrations of the detected me-
tabolites were used for statistical data analysis without being
converting into absolute concentrations.

Statistical methods. Statistical analyses were performed using
SAS software version 9.2 for Windows (SAS Institute Inc., Cary,
NC, USA). We calculated rank normal scores of each metabolite
using the Blom method (21). In discovery and replication, gen-
eral linear mixed models were used to identify metabolites that
differed across all eight metabolic groups or with individual risk
factors (SAS procedure GLIMMIX). Metabolites were treated as
outcome variables and metabolic group was a categorical pre-
dictor. Covariates included age, sex, sex*age, cohort, and batch
effect, with additional adjustment in FHS for cohort, cohort*sex,
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and cohort*age. The effect of each main risk factor was studied
using models that adjusted for the other two risk factors. Anal-
ogous methods were applied in replication, except cohort ad-
justments were not necessary. False discovery rate (FDR) was
used to select metabolites for replication (SAS procedure MULT-
TEST). Metabolites for replication were chosen as follows: (1)
FDR = 0.01 in the eight-group comparison and (2) top 10 me-
tabolites from each main effect analysis, prioritized by discovery
FDR. Metabolites that were highly correlated with a previously
selected metabolite were excluded (r = 0.7). Meta-analyses were
carried out using a fixed-effect approach with inverse-variance
weighting (22). Specifically, the estimated combined effect was
the inverse variance weighted average of those in discovery and
replication. Associations of AST and ALT with metabolites were
conducted using general linear mixed models adjusting for age,
sex, alcohol consumption (average drinks per week), and met-
abolic risk factors (obesity, dyslipidemia, and dysglycemia), with
additional adjustment in FHS for cohort, cohort*sex, and
cohort*age. Plasma levels of ALT and AST were natural log
transformed and standardized, and outlier values were excluded.

In our longitudinal study, we used general linear models (SAS
procedure GLM). Each metabolite was treated as the predictor
and change from baseline for each continuous metabolic trait
(BMI, TG, HDL-C, and glucose) was the outcome. Covariates
included age, sex, cohort, and baseline values of the metabolic
traits. For participants on lipid or diabetes medications at follow-
up, values were imputed empirically. Specifically, HDL-C was
reduced by 10% and TG elevated by 20%, and glucose was
increased by 10% or to 126 mg/dL (whichever was higher), re-
spectively. As a sensitivity analysis, metabolite associations were
retested with treated individuals excluded. Multimetabolite as-
sociations with longitudinal change were assessed using stepwise
regression with forward selection. For each trait, candidate lipids
were considered those with FDR < 0.25 in the single-marker
analysis, and a p-value threshold corresponding to FDR < 0.25
was used for stepwise selection [at step 7, p<(0.25%7)/119]. Ag-
gregate partial r* was calculated for multimetabolite panels after
forward selection was complete. Using this approach, highly cor-
related markers could not enter the model.

The Bonferroni method was used to correct for multiple test-
ing (P < .05/# of measured metabolites). For discovery and lon-
gitudinal analyses, P < 4.2 X 10 was used (0.05/119). The
replication threshold was P < 1.4 X 10~ (0.05/37). For meta-
analysis, a more stringent cut-off was implemented by including
a term for the number of metabolic risk factors evaluated (n = 3):
P < .05/(37%3)=4.5 x 10*.

Results

Study Sample Characteristics. Clinical characteristics of
study participants in discovery and replication are shown
in Table 1. Mean age and percentage of women were con-
stant across groups. Biolmage participants were slightly
older than FHS participants (16). BMI, lipids, and glucose
levels differed systematically across metabolic groups per
study design. Supplemental Table 1 reports clinical char-
acteristics of the longitudinal samples, and the distribution
of changes from baseline for each metabolic trait is pro-

J Clin Endocrinol Metab

vided in Supplemental Figure 1A-D. The mean changes
from baseline to follow-up were 0.6 *+ 2.6 kg/m* for BMI,
-0.5 = 84.6 mg/dL for TG, 3.6 = 10.7 mg/dL for HDL-C,
and 0.5 = 20.4 mg/dL for glucose.

Metabolite Associations in Discovery. In discovery, 149
metabolites were detected by GC-MS. Of these, 26 were
unknown, one was a duplicate, and two were exogenous
compounds; these were excluded prior to analysis. The
median coefficient of variation in analytical replicates was
9.3% (25th percentile = 6.4%; 75th percentile = 10.9%).
One analyte, cysteine, was excluded due to poor measure-
ment quality. The final metabolite set consisted of 119
metabolites, consisting of alcohols (4.2%), amino acids
(23.5%), lipids (38.7%), organic acids (13.4%), sterols
(2.5%), sugars (9.2%), and others (8.4%). See Supple-
mental Table 2 for an annotated list of these metabolites.

We identified cross-sectional associations of metabo-
lites from multiple classes with obesity (n = 26), dyslipi-
demia (n =22),and dysglycemia (n=11)atP<4.2 X 10™*
(Tables 2-4). The top three metabolites associated with
obesity were glutamic acid (P = 2.1 X 107'®), sitosterol
(P = 1.6 X 107'°), and uric acid (P = 3.0 X 10'%) (Table
2). The strongest markers for dyslipidemia were sphingo-
myelins (SMs), including SM (d18:1/24:0) and SM (d18:
1/24:1) (P = 1.4 X 1027), SM (d18:2/24:0) and SM (d18:
2/24:1) (P = 4.5 X 10"*°),and SM (d18:1/16:0) (P = 7.4 X
10"'") (Table 3). For dysglycemia, the top three metabo-
lites were glucose (P = 1.4 X 10™*?), fructose (P = 2.9 X
1077), and 2-hydroxybutanoicacid (P = 5.5 X 10”7) (Table
4). Glutamic acid and lactic acid were positively associated
with all three risk factors. Several metabolites were asso-
ciated with multiple risk factors, including direct associ-
ations of branched chain amino acids (BCAAs) and inverse
associations of sitosterol and campesterol with obesity
and dyslipidemia (Supplemental Table 3). Forty metabo-
lites differed across the eight metabolic groups at P <
4.2 X 10 (Supplemental Table 2).

Metabolite  Associations in  Replication  and
Meta-Analysis. Thirty-eight metabolites met the replica-
tion criterion, of which 37 were successfully measured in
Biolmage samples. Replication results for metabolite as-
sociations with obesity (n = 10), dyslipidemia (n = 12),
and dysglycemia (n = 7) at P < 1.4 X 10 are provided
alongside their corresponding discovery results in Tables
2—-4. We compared estimated effect sizes between discov-
ery and replication phases for each metabolite and found
high degrees of similarity (Supplemental Figure 2A-C). All
metabolites in replication showed consistent directional-
ity of associations. Correlations between metabolites in
both discovery and replication phases are shown in Sup-
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Table 2. Cross-Sectional Metabolite Associations with Obesity in Discovery, Replication, and Meta-Analysis
Metabolite Discovery (FHS) Replication (Biolmage) Meta-Analysis
B* SE. P-valuet B* SE. P-valuet B* SE. P-value§

Glutamic acid 0.62 0.07 2.1 %1078 0.36 0.07 23x 107 0.49 0.05 5.3 x 1024
Mannose 0.43 0.08 15x 108 0.51 0.07 25x 1072 0.47 0.05 7.0 x 1020
Sitosterol -0.48 0.07 1.6 % 10710 -0.34 0.07 29 x10° -0.41 0.05 22 %1075
Uric acid 0.43 0.07 3.0 x 10710 0.31 0.07 1.8 % 107 0.38 0.05 2.4 x 1071
Glycerol 0.36 0.06 1.1 %108 0.25 0.07 22 %10 0.31 0.05 13x 10"
Glycine -0.34 0.07 7.7 x 107 —-0.30 0.07 29x107° -0.32 0.05 7.4 %10
2-Ketoglutaric acid 037 0.07 57 % 107 0.30 0.07 8.2 x 107 033 0.05 1.8 x 10710
Asparagine -0.28 0.07 4.0 % 10° -0.33 0.07 3.7 x10° -0.30 0.05 53x 10710
Indole-3-propionic acid -033 0.08 1.8 10° -0.25 0.08 1.1 %1073 -0.29 0.05 8.0 x 108
Inositol -0.30 0.07 2.2 x 107 -0.23 0.07 1.9 x 107 -0.27 0.05 1.5 % 107
SM (d18:2/16:0) 0.30 0.07 48 x10° 0.15 0.07 0.02 0.23 0.05 8.8 x 107
4-Hydroxyglutamate semialdehyde -0.21 0.07 46 %1073 -0.29 0.07 7.2 x 107 -0.25 0.05 13x10°
2-Hydroxybutanoic acid 0.31 0.08 32x 107 0.16 0.08 0.04 0.24 0.05 7.8 % 10°
LPA 16:0 -0.31 0.07 2.7 X107 -0.14 0.07 0.05 -0.23 0.05 13 %107
Leucine 0.30 0.07 15 % 10° 0.13 0.07 0.09 0.22 0.05 13 %105
Phenylalanine 0.32 0.07 1.9 x10° 0.14 0.08 0.08 0.23 0.05 1.5 % 10°
Lactic acid 0.34 0.07 6.3 x 10 0.09 0.07 0.21 022 0.05 40x 107
Aminomalonic acid -0.29 0.07 4.6 % 107° -0.10 0.07 0.12 -0.19 0.05 8.6 x 107
Sn-Glycerol-3-phosphate -0.25 0.07 6.0 x 104 —-0.15 0.07 0.04 -0.20 0.05 9.2 x 107
Campesterol —-0.42 0.08 33x 108 - - - - - -

Valine 0.35 0.07 12 x10°

LPC 18:2 -0.34 0.07 1.7 x 100

SM (d18:2/18:0) 0.32 0.07 7.5 x 10

Pyruvic acid 0.34 0.08 8.7 x 10

Creatinine 0.32 0.08 3.0 X 107

SM (d16:1/18:0) 0.29 0.07 1.1 % 10

Isoleucine 0.25 0.07 2.5 x 10

Tyrosine 0.27 0.07 3.1 x 10

(-) represents the absence of replication and meta-analysis data for a metabolite.

*Estimated B coefficients represent the mean differences in standardized metabolite measures between participants with and without obesity.

tThe discovery p-value threshold was P < 4.2Xx10 (0.05/119).
+The replication p-value threshold was P < 1.4 X 1073 (0.05/37).

§The meta-analysis p-value threshold was P < 4.5 X 107 [0.05/(37*3)]. All significant markers in meta-analysis are shown in order of ascending

p-value.

Abbreviations: SM = sphingomyelin; LPA = lysophosphatidic acid; LPC = lysophosphatidylcholine. See Supplementary Table 2 for complete

nomenclature.

plemental Figures 3—4. In meta-analysis of results from
discovery and replication, 32 markers were associated
with one or more risk factors, 16 were associated with two
or more risk factors, and three (glutamic acid, lactic acid,
and sitosterol) were associated with all three risk factors

(Tables 2—-4).

Transaminase Associations. Because the liver transami-
nases ALT and AST are robustly associated with meta-
bolic syndrome and regulate several of our identified me-
tabolites, (23-26) we examined metabolite associations
with ALT and AST. Glutamic acid and 2-ketoglutaric acid
were significantly associated with ALT and AST in dis-
covery and replication (Supplemental Table 4).

Metabolite Associations with Longitudinal Changes in
Risk Factors. We identified metabolites associated with
serial change in BMI (n = 1), TG (n = 5), HDL-C (n = 2),
and glucose (n = 1) at P < 4.2 X 10™* (Table $5). All
metabolites associated with longitudinal changes in risk
factors were also associated with the same metabolic risk
factor cross-sectionally (P < 4.2 X 10™*in discovery), with
consistent directionality of association. Following exclu-

sion of treated individuals, the associations of two longi-
tudinal markers were attenuated, but the effect sizes and
directionalities were unchanged (Supplemental Table 5).

Multimetabolite panels were associated with longitu-
dinal change in each metabolic trait (Table 6). For serial
change in BMI, the sole marker was LPA 16:0, which
explained 2.5% of change in BMI vs 2.1% explained by
baseline BMI). Six metabolites were selected in the TG
model: SM (d18:1/16:0), quinic acid, mannose, uric acid,
phosphate, and 1-methylhistidine. In sum, these markers
explained 15.3% of change in TG; baseline TG explained
23.2% of change. The metabolite panel for HDL-C con-
sisted of SM (d18:2/20:0) and SM (d18:1/22:0), which
explained nearly twice as much change in HDL-C as did
baseline HDL-C (6.2% vs 3.8%). 1,2-diglyceride and
3-methyl-2-oxovaleric acid together accounted for 4.4%
of change in glucose, relative to 21.6 % explained by base-
line glucose.

Discussion

We measured circulating levels of 119 metabolites and
identified metabolomic signatures of key metabolic risk
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Table 3. Cross-Sectional Metabolite Associations with Dyslipidemia in Discovery, Replication, and Meta-Analysis

Metabolite Discovery (FHS) Replication (Biolmage) Meta-Analysis
B* SE. P-valuet B* SE. P-valuet B* SE. P-value§
SM (d18:1/24:0) & SM(d18:1/24:1) -073 0.06 1.4 % 10?7 —0.44 0.07 42x 107" —0.59 0.05 6.2 x 10738
Glutamic acid 0.45 0.07 6.9 x 107" 0.50 0.07 6.9 x 10713 0.48 0.05 53 x 1023
Myo-inositol 1,2-cyclic phosphate 0.33 0.07 9.0 x 10 0.53 0.07 27 %x107° 0.44 0.05 1.6x 10719
SM (d18:1/17:0) -0.46 0.07 49 %1070 -0.33 0.07 4.0x10° ~0.40 0.05 9.2 x107°
SM (d18:0/16:0) -045 0.07 1.9 % 10710 -0.24 0.07 1.1 %103 -0.35 0.05 35x 1072
Leucine 0.29 0.07 2.8 x 107 0.41 0.07 26x 108 0.35 0.05 4.1 %1072
Alanine 0.29 0.08 1.9 x 10 0.44 0.07 43 %107 0.36 0.05 5.7 x 10712
Lactic acid 0.37 0.07 6.9 x 107 0.33 0.07 82 x10° 0.35 0.05 1.7 x 107"
Erythronic acid 0.22 0.06 52 % 10% 0.43 0.07 2.0x 1079 0.32 0.05 2.4 %107
Sitosterol -0.27 0.07 29 % 10% -0.37 0.07 39 x 107 -0.32 0.05 5.1 % 10710
Maltose 0.26 0.07 53 % 10% 0.29 0.08 1.7 x 10% 0.27 0.05 2.9 %107
Serine -0.31 0.07 2.8 X 10 -0.22 0.07 3.6 x 107 -0.26 0.05 4.4 x 107
Uric acid 0.24 0.07 45x 10 0.22 0.07 23x 1073 0.23 0.05 3.0x10°
SM (d18:2/16:0) -0.30 0.07 7.8 x 10 -0.12 0.06 0.07 ~0.21 0.05 7.5 x 10
SM (d16:1/24:1) -0.46 0.07 46 %1010 0.00 0.07 0.98 -0.23 0.05 85x 10°
3-Methyl-2-oxovaleric acid 0.20 0.07 1.6 %1073 0.23 0.07 1.6 X 10° 0.21 0.05 1.6 X 10°
SM(d18:2/24:0) and SM(d18:2/24:1) -0.67 0.07 45x 10720 - - - - - -
SM (d18:1/16:0) -0.49 0.07 7.4 x 10 - - - - - -
SM (d18:2/20:0) -0.35 0.07 1.5 % 107 - - - - - -
LPC 18:2 -0.34 0.07 1.1 %10 - - - - - -
Isoleucine 0.33 0.07 2.1 x 10 - - - - - -
SM (d17:1/16:0) -0.31 0.07 1.5 % 10° - - - - - -
Campesterol -0.29 0.07 13 x 10 - - - - - -
SM (d18:1/23:0) -0.28 0.07 1.4 %10 - - - - - -
Valine 0.27 0.07 22 x 10 - - - - - -
Quinic acid -0.27 0.08 41 %10 - - - - - -

(-) represents the absence of replication and meta-analysis data for a metabolite.

*Estimated g coefficients represent the mean differences in standardized metabolite measures between participants with and without
dyslipidemia.

tThe discovery p-value threshold was P < 4.2Xx10* (0.05/119).

$The replication p-value threshold was P < 1.4 X 1073 (0.05/37).

§The meta-analysis p-value threshold was P < 4.5 X 107 [0.05/(37*3)]. All significant markers in meta-analysis are shown in order of ascending
p-value.

Abbreviations: SM = sphingomyelin; LPC = lysophosphatidylcholine. See Supplementary Table 2 for complete nomenclature.

Table 4. Cross-Sectional Metabolite Associations with Dysglycemia in Discovery, Replication, and Meta-Analysis

Metabolite Discovery (FHS) Replication (Biolmage) Meta-Analysis
B* SE. P-valuet B* SE. P-valuet B* SE. P-value§

Glucose 0.95 0.06 1.4 %1042 0.95 0.06 9.0 x 10 0.95 0.04 2.1 x 107102
Mannose 0.25 0.08 85 x 104 0.41 0.07 15x% 108 0.33 0.05 9.6 x 107"
Lactic acid 0.31 0.07 43 %107 037 0.07 9.2 x 107 0.34 0.05 1.4 % 10710
Glutamic acid 0.30 0.07 1.1 x10° 031 0.07 82 % 10 0.31 0.05 2.7 % 10710
2-Hydroxybutanoic acid 0.38 0.08 55x 107 0.23 0.08 32 %1073 0.31 0.05 13x 108
3-Methyl-2-oxovaleric acid 0.24 0.07 48 %10 0.30 0.07 46 % 10° 027 0.05 7.6 x 1078
Alanine 0.26 0.08 8.8 x 104 027 0.07 25 x 10 0.26 0.05 6.6 x 107
Fructose 0.39 0.07 2.9 %107 0.09 0.08 0.25 0.24 0.05 6.4 x 10
Glycine -0.23 0.07 7.9 % 10 -0.20 0.07 4.4 %103 -0.22 0.05 1.0 x 107
Aminomalonic acid -0.35 0.07 1.1 % 10 -0.09 0.07 0.18 -0.21 0.05 1.6 % 107
2-Ketoglutaric acid 0.24 0.07 1.4 %103 0.21 0.07 54 % 107 0.22 0.05 22 x10°
SM (d18:1/24:0) & SM (d18:1/24:1) -0.22 0.06 55x% 104 -0.16 0.07 0.02 -0.19 0.05 29 x10°
Malic acid 0.30 0.07 35x10° 0.13 0.07 0.09 0.22 0.05 33x10°
4-hydroxyglutamate semialdehyde -0.28 0.07 1.1 %10 ~0.14 0.07 0.05 -0.21 0.05 33x107°
SM (d18:1/17:0) -0.26 0.07 42 %10 -0.16 0.07 0.03 —0.21 0.05 4.4 x10°
Sitosterol -0.16 0.07 0.03 -0.24 0.07 9.1 x 10 -0.20 0.05 8.6 x 10°
Malic acid 0.30 0.07 35x10° - - - - - -

Pyruvic acid 0.30 0.08 89 x 107 - - - - - -

C18:0 FA (stearic acid) 0.28 0.08 32x10% - - - - - -

C16:0 FA (palmitic acid) 0.26 0.07 4.0 x 104 - - - - - -

(-) represents the absence of replication and meta-analysis data for a metabolite.

*Estimated B coefficients represent the mean differences in standardized metabolite measures between participants with and without
dysglycemia.

tThe discovery p-value threshold was P < 4.2Xx10™ (0.05/119).

+The replication p-value threshold was P < 1.4 X 1073 (0.05/37).

§The meta-analysis p-value threshold was P < 4.5 X 10 [0.05/(37*3)]. All significant markers in meta-analysis are shown in order of ascending
p-value.

Abbreviations: SM = sphingomyelin; FA = fatty acid. See Supplementary Table 2 for complete nomenclature.

factors at baseline and of their longitudinal changes during ~ 5-7 years of follow-up. Many top cross-sectional findings
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Table 5. Metabolite Associations with Longitudinal Changes in Metabolic Traits
i i . 5 Estimated Par&ial
Change in Metabolic Trait Metabolite B* SE. P-valuet R
Body mass index LPA 16:0 —0.48 0.13 2.8 x 104 0.025
Triglyceride SM (d18:1/16:0) —-21.38 4.94 1.8 x 10° 0.035
SM (d18:1/17:0) —17.61 4.10 2.1 %107 0.035
Quinic acid —13.74 3.48 9.1 % 10® 0.030
Sitosterol —14.46 3.69 1.0 x 10 0.029
SM (d18:1/24:0) & SM (d18:1/24:1) —17.83 4.92 32x10% 0.025
HDL cholesterol SM (d18:2/20:0) 2.59 0.67 12 %10 0.029
SM (d18:1/24:0) & SM (d18:1/24:1) 2.62 0.68 1.4 %10 0.028
Glucose Glucose 5.31 1.05 52 % 107 0.048

*Estimated B coefficients represent the mean differences in longitudinal change (native units) in the stated metabolic trait per one standard

deviation difference in metabolite measures.

tThe p-value threshold for significance (P < 4.2 X 10™) was determined by the Bonferroni method (0.05/119 metabolites).

Abbreviations: LPA = lysophosphatidic acid; SM = sphingomyelin. See Supplementary Table 2 for complete nomenclature.

All markers of longitudinal change were also associated with the corresponding risk factor in cross-sectional analyses.

Table 6. Multi-Metabolite Associations with Longitudinal Changes in Metabolic Traits

i . . Estimated Par&ial
Change in Metabolic Trait Parameter B* SE. P-valuet R
Body mass index Baseline BMI —0.07 0.02 8 x 10 0.021

Baseline Covariatest 0.070
LPA 16:0 —0.48 0.13 3x10% 0.025
Multi-Metabolite Panel 0.025
Triglyceride Baseline TG -0.57 0.05 <1x10% 0.232
Baseline Covariatest 0.399
SM (d18:1/16:0) —25.25 5.18 <1x10* 0.046
Quinic acid ~12.02 3.34 <4x10% 0.025
Mannose 11.33 3.58 2% 1073 0.020
Uric acid 16.53 4.10 <1x10% 0.032
Phosphate -10.71 3.80 5% 107 0.016
1-Methylhistidine —-9.45 3.41 6 x 107 0.015
Multi-Metabolite Panel 0.153
HDL cholesterol Baseline HDL-C —0.16 0.04 <1x10% 0.038
Baseline Covariates# 0.127
SM (d18:2/20:0) 3.11 0.68 <1x10% 0.040
SM (d18:1/22:0) —1.96 0.56 6 x 10% 0.023
Multi-Metabolite Panel 0.062
Glucose Baseline Glucose -0.52 0.04 <1x10% 0.216
Baseline Covariates+ 0.275
1,2-Diglyceride -322 0.92 6 x 10% 0.023
3-Methyl-2-oxovaleric acid 3.05 0.92 1%x103 0.021
Multi-Metabolite Panel 0.044

*Estimated B coefficients represent the mean differences in longitudinal change (native units) in the stated metabolic trait per one standard

deviation difference in metabolite measures.

tA dynamic p-value threshold for entrance into the model was defined based on FDR<0.25 [at step i, p<<(0.25*i)/119].

$Baseline covariates were as follows: age; sex; cohort; batch; and baseline values for total cholesterol, HDL cholesterol, triglyceride, glucose, and

body mass index.

Abbreviations: LPA = lysophosphatidic acid; SM = sphingomyelin. See Supplementary Table 2 for complete nomenclature.

Metabolites also associated cross-sectionally with the corresponding metabolic risk factor are in bold.

in discovery were replicated in an independent external
cohort, and meta-analysis identified three metabolites
(glutamic acid, lactic acid, and sitosterol) associated with
all three risk factors cross-sectionally. Our cross-sectional
results identified risk factor associations with glutamic
acid and other major amino acids— particularly branched
chain and aromatic amino acids—that may contribute to
metabolic risk through their involvement in transaminase-
mediated pathways. Bioactive lipids also emerged as im-
portant markers of metabolic risk factors cross-sectionally
and of their changes over time. Multimetabolite analyses
demonstrated the predictive power of the top lipid mark-
ers, suggesting an upstream role for lipid dysregulation in
metabolic risk factor progression.

Amino Acids. The top cross-sectional amino acid bio-
marker was glutamic acid (glutamate), which was directly
associated with all three risk factors in discovery and rep-
lication. Glutamic acid is one of the most abundant amino
acids and a key player in amino acid and carbohydrate
metabolism. Glutamic acid has been linked to metabolic
dysfunction, with increasing plasma levels identified in
obesity, insulin resistance, and progression to type 2 dia-
betes in humans (8, 9, 27). The BCAAs—Ileucine, valine,
and isoleucine —were directly associated with obesity and
dyslipidemia in discovery. Aromatic amino acids phenyl-
alanine and tyrosine were directly associated with obesity
in discovery, while glycine and asparagine were inversely
associated. Elevated levels of BCAAs and the same aro-
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matic amino acids (as well as decreased levels of glycine)
have been identified in recent cross-sectional studies as
biomarkers of obesity, early insulin resistance, and risk of
diabetes in humans (8, 10, 12, 27-29). A number of pre-
vious intervention studies, however, found that higher di-
etary BCAA intake reduces body fat and body weight in
both humans and animal models, indicating that cross-
sectional associations are not necessarily predictive of the
results of intervention studies (30-33). We also examined
levels of liver transaminases ALT and AST in association
with our metabolites, and found strong associations of
ALT and AST with glutamic acid and 2-ketoglutaric acid
(its cognate a-keto acid) in discovery and replication.
Transaminase-mediated reactions are key to amino acid
catabolism and to the regulation of insulin secretion by
pancreatic beta cells (34). We focused on ALT and AST
because increased levels have been linked to obesity, dia-
betes,and CVD in large-scale epidemiological studies (23—
26). Taken together, our results implicate dysregulated
glutamate cycling via transaminase-mediated reactions,
likely during metabolism of BCAAs and other amino ac-
ids, in the metabolic dysregulation underlying metabolic
syndrome.

Lipids. One of the top cross-sectional lipid biomarkers
was the lysophosphatidylcholine species 1-linoleoyl-sn-
glycero-3-phosphocholine (LPC 18:2). LPC 18:2 showed
inverse associations with obesity and dyslipidemia in dis-
covery. Lysophosphatidylcholines are low-abundance
lipid derivatives involved in signaling processes; they are
theorized to act through G-protein-coupled receptors to
trigger glucose-dependent insulin secretion and activate
glucose uptake by adipocytes (35, 36). LPC 18:2 has re-
cently emerged as a biomarker of metabolic dysfunction,
showing robust inverse associations with insulin resis-
tance, dysglycemia, type 2 diabetes, and obesity (12, 37,
38).LPC 18:2 was also reported as a predictive biomarker
of incident coronary heart disease (CHD) (39). These find-
ings suggest that reduced levels of LPC 18:2 may contrib-
ute to the metabolic dysfunction that promotes CVD. Ly-
sophosphatidic  acid, a lipid derivative of
lysophosphatidylcholines, was our top longitudinal
marker for BMI. LPA 16:0 (1-palmitoyl-L-a-lysophos-
phatidic acid) was inversely associated with BMI at base-
line and with change in BMI in single marker and multi-
metabolite analyses, explaining 2.5% of longitudinal
change in BMI. LPA 16:0 is the most common circulating
form of lysophosphatidic acid, a lipid mediator with roles
in essential cellular processes. One signaling pathway in
which LPA is generated involves the action of autotaxin
(ATX), which is highly expressed in adipocytes (40). ATX
is elevated in the visceral fat of obese and insulin-resistant

J Clin Endocrinol Metab

individuals (41, 42). ATX-knockout mice exhibit en-
hanced adiposity and reduced plasma LPA, suggesting
that disruption of ATX/LPA signaling in adipose tissue
contributes to obesity and that lowered plasma LPA is a
biomarker of this process (43). The detailed mechanism by
which ATX mediates LPA signaling in humans, however,
remains unclear, and other LPA-producing pathways that
are independent of ATX also exist (44, 45). Complicating
this picture further, some studies have reported direct as-
sociations between LPA and obesity in mice (46).

Our results point to sphingomyelins as biomarkers of
dyslipidemia. Tightly linked to sterol metabolism, sphin-
gomyelins are bioactive sphingolipids that regulate cell
growth and immune functions (47, 48).

Ten sphingomyelin species were inversely associated
with dyslipidemia in discovery, and five of these were in-
versely associated with longitudinal change in TG and/or
directly associated with change in HDL-C. In multim-
etabolite analyses, top sphingomyelin biomarkers ex-
plained 4.6 % and 4.0% of longitudinal change in TG and
HDL-C, respectively.

Two phytosterols, sitosterol and campesterol, were in-
versely associated with obesity and dysglycemia in discov-
ery and replication, and sitosterol showed an inverse re-
lation to TG in longitudinal analysis. These natural plant
sterols, structurally similar to cholesterol, lower choles-
terol absorption by displacing cholesterol from micelles in
the intestinal tract, among other mechanisms (49). In-
creased intake of plant sterols is associated with choles-
terol-lowering activity, (50, 51) and reduced levels of
plasma phytosterols may serve as a proxy for altered cho-
lesterol homeostasis (52).

Organic Acids. Lactic acid (lactate) was our top organic
acid biomarker of all three risk factors in discovery. Lactic
acid is an indicator of oxidative capacity, and hyperlac-
taemia is broadly characteristic of acute illness. In the clin-
ical setting, lactic acid levels serve as a prognostic bio-
marker of a number of metabolic disorders (53). For
example, increased plasma lactic acid has been found in
the context of insulin resistance, diabetic ketoacidosis,
and type 2 diabetes (54-56). Lactic acid has also been
linked to incident diabetes in a large case-control study,
suggesting a causal role of oxidative stress in metabolic
disease (57). Particularly in the pediatric population, ele-
vated lactate is associated with inborn errors of metabo-
lism that affect key metabolic pathways involving pyru-
dehydrogenase, gluconeogenesis, and the
tricarboxylic acid cycle (58). Multiple organic acids were
directly associated with dysglycemia, including 2-hy-
droxybutanoic acid, malic acid, and pyruvic acid. Quinic
acid was inversely associated with dyslipidemia cross-sec-

vate
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tionally and with change in TG in single and multimetabo-
lite analyses. Quinic acid is a naturally occurring plant
cyclic polyol found as chlorogenic acid in common dietary
constituents, including tea, coffee, blueberries, apples,
grapes, and cereals (59-61). A functional role for quinic
acid as a prometabolite that enhances antioxidant pro-
duction and DNA repair enhancement has been described
(62). While human studies on chlorogenic acid have been
inconsistent, this compound has been shown to improve
lipid metabolism, BMI, and glycemic traits in mice

(63-65).

Strengths and Limitations. Although our discovery and
replication studies were modest in size (650 and 670, re-
spectively), the cost-effective factorial design of indepen-
dent discovery and replication phases enabled the identi-
fication of a robust set of metabolites associated with
metabolic risk factors. Sample selection and statistical
analysis for the replication phase were highly consistent
with discovery, allowing us to validate many top markers.
The use of an independent external, comparably-sized co-
hort for replication provided superior power to identify
robust signals. The availability of longitudinal data en-
abled us to identify metabolites associated with risk fac-
tors at baseline and their serial changes and to estimate
their predictive power in multimetabolite panels. It should
be noted, however, that baseline covariates including age,
sex, and baseline metabolic risk factor values explained a
greater proportion of longitudinal changes in metabolic
risk factors than multimetabolite panels alone.

Our study is limited by its use of predominantly middle-
aged individuals of European ancestry in discovery and
longitudinal analysis. We cannot generalize these findings
to other ethnic groups or younger ages. The replication
sample, however, was multiethnic (69% Caucasian; 13%
Hispanic; 12% African American; 4% Asian; 2% other),
and results were highly consistent with discovery. We were
also limited by the number of detectable metabolites;
newer platforms offer more comprehensive metabolomic
screening. Of note, a recent population-based study
showed that body weight change is associated with vari-
ous lipoprotein classes, but our results lacked data on as-
sociations between lipoproteins and metabolic traits (66).
In replication, restriction to uncorrelated metabolites lim-
ited our ability to analyze complete pathways.

Conclusion

We employed a factorial study design to identify cross-
sectional metabolomic signatures of obesity, dyslipide-
mia, and dysglycemia, with independent external replica-

press.endocrine.org/journal/jcem 9

tion of top findings. Using follow-up data from the
discovery sample, we identified metabolites associated
with longitudinal changes in metabolic traits. Amino acid
biomarkers of obesity and dysglycemia revealed a glu-
tamic acid-enhanced signature of metabolic risk that may
represent a systemic metabolic derangement involving
BCAA metabolism and transaminase-mediated pathways.
Organic acid intermediates were most highly associated
with dyslipidemia, and may represent shifts in cellular me-
tabolism in response to oxidative stress. Longitudinal re-
sults highlighted alterations in bioactive lipids, with lyso-
phospholipid derivatives as biomarkers of BMI and its
longitudinal change and sphingomyelins associated with
dyslipidemia and serial changes in TG and HDL-C. Our
multimetabolite analyses demonstrated a number of lon-
gitudinal associations, as multimetabolite panels ex-
plained a substantial proportion of longitudinal change in
each metabolic trait compared with the corresponding
baseline trait value. Our findings shed light on the pro-
found breadth and depth of metabolomic derangements
associated with metabolic syndrome risk factors. Fol-
low-up studies guided by these results may help in the
targeting of therapies to treat metabolic risk factors or
prevent their emergence.
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