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Exact model of conformal quintessence
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A nonminimally coupled quintessence model is investigated and the conditions for a stationary solution to
the coincidence problem are obtained. For a conformally coupled scalar field and dissipative matter, a general
solution possessing late acceleration is found. It fits rather well the high redshift supernovae data and gives a
good prediction of the age of the Universe. Likewise, the cold dark matter component dominates the cosmo-
logical perturbations at late times albeit they decrease with expansion.
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[. INTRODUCTION of a nonminimally coupled quintessence with a constant po-
tential. As it turns out, there is a stationary solution that

After some years of research, the accelerated expansion efisures that for late times the ratio between both energy

the Universe appears to have gained further grdujcdut  densities remains a constant while the Universe asymptoti-

the nature of dark energy—the substratum behind thigally approaches a de Sitter expansion. In this late regime,

acceleration—remains as elusive as eE&B] While one the density perturbations of Iarge Wavelength decrease and

may expect that one or another of the dark energy candidat&@$e dark matter dominated. Further, our results are consistent

(a very small cosmological constapd], quintessencg5],  With the high redshift supernovae data and provide a very
Chaplygin ga$6], tachyon field 7], interacting quintessence reasonable estimate of the age of the Universe.

[8,9], nonminimally coupled quintessenf#0,11], etc) will _S_ection Il presents our_mod_el which, asidg frpm _the non-
finally emerge as the successful model, at the time beingninimally coupled scalar field, introduces a dissipative pres-
none of them is in position to claim such status. sure in the dark matter fluid; this pressure turns out to be key

In introducing dark energy as a novel component most ofor the solution of the coincidence problem. Section Ill de-
these candidates encounter the so-called “coincidence profives the statefinder parameters as well as the age of the
lem,” namely, “why are the energy densities of both compo-Universe. Section IV studies the observational constraints on
nents(dark energy and dark matjeof the precisely same our model imposed by the high redshift supernova data. Sec-
order today?” As shown by the authors, this problem has dion V investigates the long wavelength density perturba-
dynamical solution provided that the dark matter componentions. Finally, Sec. VI summarizes our findings. As usual, a
is assumed to be dissipatiy&2] or interacts with the dark Subindex zero indicates that the corresponding quantity must
energy[8]. In such a case, it can be demonstrated that th®€ €evaluated at the present time. We have chosen units so
equations governing the cosmic evolution imply the stationthatc=8wG=1.
ary condition[Eg. (10) below] and that the system is at-
tracted to a stationary and stable solution characterized by
the constancy of both density parameters, Kk, and (),
tend to constant values at late times. Let us consider a Friedmann-LertrarRobertson-Walker

The aim of this paper is to provide an exact quintessenc€~LRW) spacetime filled with two components, namely, dis-
model, nonminimally coupled to the Ricci curvature. Non- sipative matter and a nonminimally coupled quintessence
minimal coupling naturally arises in generalizing the Klein- field. The equation of state of the first component is of baryo-
Gordon equation from Minkowski space to a curved space—tropic typep,=(ym—1)pm, Where the baryotropic index of
for a recent review on this subject and further motivationsmatter is restricted to the rangesly,,<2. In addition to this
see Ref[13]. We believe it is rather reasonable to exploreequilibrium pressure the matter component is assumed to
whether a nonminimal coupling of the scalar field acting ashave a nonequilibriunfdissipative pressuyer connected to
dark energy to the Ricci curvature may be of help to underentropy production. It should be noted that barring superflu-
stand the present stage of accelerated expansion and shied (as helium superfluid this quantity is ever-present in
some light into the nature of the dark component. As a firsevery matter fluid found in Nature and is negative for ex-
step toward weighing the contribution of the coupling to thepanding fluidg 14]. In the case at hand, it may either come
evolution of the Universe we shall consider the simplest casérom interactions within the dark matter, or the decay of dark

matter particles into dark particl¢45], or from the nonlin-
ear growth of cosmic structur¢s6], and it proves crucial to

Il. CONFORMALLY COUPLED SCALAR FIELD

*Electronic address: chimento@df.uba.ar solve the coincidence problem. Likewise, the equation of
"Electronic address: jakubi@df.uba.ar state of the quintessence component can be writtep jas
*Electronic address: diego.pavon@uab.es =(v4—1)py with y,<1.
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The Friedmann equation and the conservation equationsally coupled approaches and leads to an accelerated phase
for the matter fluid and quintessence read of expansion at late times. This may be accomplished by
choosing for the coupling constant the conformal vafue
, K =1/6 and a constant value for the potent\&{¢) =V,. As a
3H +3; =pmtpg (K=1,0-1), (1) consequence, Egdl), (4) and(3) take a very simple form on
the stationary solution

Pt 3H(Ympm+ ) =0, @ , 1. ,
3H =(1+r) §(¢+H¢>) +Vo!, (11
d+3Hp+ ERP+ avig) =0 (3
deé ’ R=4(1+r)V,, (12)
where ¢ denotes the nonminimal coupling constant and the w2
Ricci curvature scalaRr is related to the quintessence scalar d+3Hp+ — =0, (13
field by [10,17] 2
_ dV(¢) where r=Q,/Q, stands for the density ratio, an@?
[1— £(1—6¢) p?]R=—(1—6¢&) p>+ 4V—6§¢W =(4/3)(1+71)V,. In deriving Eq.(12) we have made use of
the fact that the Ricci scalar B:6(H+2H2). It is inter-
+(4—=3Ym) pm— 3. (4) esting to note that, notwithstanding the potential being a con-

o ) ~ stant, the gravitational interaction induces an effective mass
Likewise, the energy density and pressure of the quintesgiven by mZ,=w?2 in the effective potential Vg

sence field are =(w?$%14)+V, of the generalized Klein-Gordon equation.
1 Thereby, in a loose sense, one might associate a particle—the
Po=> H2+V(p)+3EHG(Hp+2¢), (5)  ‘conformalon”—with the field ¢.

In order to integrate this system of equations it is expedi-
ent to introduce the conformal timg and define a new field

1. . .
Po=5 $2- V() ~ E[4HG$ + 247 Vs

dt
+2¢p+(2H+3H?) ¢?]. (6) 77=J;, ¥=ga. (14)

Obviously, these two reduce to their minimally coupled ex-Then Eqs(11)—(13) become
pressions for vanishing. In terms of the density parameters

Qm=pm/(3H?), Q4=p4/(3H?) andQy=—K/(aH)?, the 2

1 1)
set of equation$1)—(3) become 3(a’)?=(1+r) E(lﬂ')2+a4Vo , a”=7a3, Y'=0,
At Qy+Qe=1, 7) (15
. where a prime indicates derivation with respect;jto
_ . i . : L
0, +3H +yot |0, =0, ®) The general solution of this system of equations is given
3H? Pm by
o a=+/csinhwt, (16)
Qy+3H| —S+74|Q,=0, (9)
3H2 l,b \/202V07’]+b
= 1
respectively. ¢ a Ve sinhot a7

The simplest solution to the system of equatidds (9)
that solves the coincidence problem is tiiat=Q ., and wherec and b are arbitrary integration constants, and the
Q4=0, at late times, with),, and {2 4, constants. This initial singularity has been fixed &t 0. Combining Eq(16)

automatically implies the stationary conditiph2] with the Friedmann equation on the stationary solution,
) 3H2=(1+I‘)p¢,, we get the following expression for the
T 2H conformal quintessence energy density
Ymt —=Ye=" S 5 (10
Pm 3H po(1)=VocotHot. (18)

It is readily seen that on the stationary solution, EBd), one
has K=0 thereby we shall focus on spatially flat FLRW
spacetimes hence forward.

We are interested in obtaining a simplified, analytically p¢(t)=<——1)p¢ (19)
integrable model that still retains the essentials of honmini- 3 cosRwt

In the late time accelerated regime, its equation of state
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TE/p 4 —-1/4
m z
z.=|o|ls—-1 -1, 24

0 ¢ 0-(3')’m ) 49
where o= (sinhwt;) "2 is a characteristic parameter of the

0.2 model witht, denoting the “age” of the Universe. As is well
known, the second law of thermodynamics requiteto be

04 nonpositive for expanding fluidgl4]. This means that our

' model is valid fort>t. only; whent<t, it describes a fic-

titious positive pressure contribution implying that any real-

06 istic evolution of the Universe would yield a corrected value
for the critical timet.>t.. Hence we would obtain a cor-
rected age of the Universg=ty,—ts+ t.>t,. This model

0.8 may describe the growth of dissipative effects within dark

matter as a consequence of the development of density inho-
IrFnogeneities[lG]. Its characteristic growth time is given by
the inverse of the conformalon mass, i.e.,\hyandr. In the
late time accelerated regime, the transport equation for the
dissipative pressure becomes= —3{,H. So, we obtain for
becomes that of a cosmological constant, and both density’€ dissipative coefficiens;,= Ymf [Vo/(3(1+1))]4 which
parameters) 4(t) and Q(t)=rQ 4(t) asymptotically ap- atisfies,,=0 as demanded by the second law.
proach constant values.

Inserting Eq.(16) into Eq. (14) it follows that Ill. COSMOLOGICAL PARAMETERS

FIG. 1. Selected curves of the ratio dissipative pressure vs e
ergy density of matterr/p,, vs the redshifz between the present
z=0 andz=1. From top to bottom, the curves correspond to pa-
rametero=0.3, 0.224, and 0.18 defined lay= (sinhwty) 2

The acceleration of the Universe is usually evaluated by
, (200 the dimensionless deceleration parameter —a/(aH?),
whereq<0, q=0, g>0 describes an accelerating, a linearly
whereF is the elliptic integral of the first kind. The confor- expanding(or contracting, and a decelerating universe, re-

mal time is a growing monotonic function ofthat behaves SPECtively. The present valug does not uniquely character-
; . : e ize the current accelerating phase thereby different dark en-
ike \t close to the singularity and has a finite upper boundergy models can lead to the same value. Useful additional

2K(1/2) information is encoded in the statefinder parameteaads,

n(t)=iF <1—exp(—wt))”Zi
w\c V2

()= ——F, (21)  defined ag§17,19
w\c
where K is the complete elliptic integral andKZ1/\2) = a Pl r-1 25
=3.7. aH®’ 1\
From Eq.(17) it is apparent that depending on the choice 3( q- 5

of the constants several cases arise#{0, thengoc 1/t for

t—0 while if b=0, the field has an extremum at the initial It is to be hoped that the pairs_(q) and (gq) will provide
singularity. On the other hand, at late times the quintessencg. . rate description of the ’present d,ynamics of the Uni-
field evolves toward the minimum of its effective potential.

LD verse and give us some insight into the nature of dark energy.
The dissipative pressure g 9 %y

This is only natural becauseands are directly connected to
the third order term in Taylor’s expansion of the scale factor

4 ) .
T=pml — Ym+ ———— (22) around its present valugl9]. In the case of an expansion

3 cosHwt given by Eq.(16) these parameters are found to be
follows from Egs.(10) and (16); and the evolution of the 5 2 4 o?
ratio 7/ p,,, depicted in Fig. 1, shows that the relative rel- q=1— o T=3— l 5= e (26)
evance of the dissipative pressure grows with expansion. 2 2" 3(1-a?)’
From the last equation, whep,,<4/3, it is seen that there is
a critical timet, given by in terms of the adimensional ratio

cosfwt,=-— (23 o 2
3 a=—=—-—. (27)
Im H' [1+0(1+2)4"?

that separates the epoch witt>0 from the one with7w
<0. From Egs{(23) and(16) we see that it corresponds to Hence there is a single functionally independent cosmologi-
the redshift cal parameter, and the relationships
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-2.5 whereh indicates the current value of Hubble’s constant in
units of 100 km/s/Mpc and the corresponding redshift is
Zoe=0 Y*—1. For cold dark matter ¥,=1), the ratio

2 cosht,)/cosht,)=+/3/2 shows that at the commencement
of this phase the dissipative pressure was already negative.
On the other hand, in virtue of EQR7), the age of the Uni-
1.5 verse can be expressed by

il

1 1 Vit 1
to=—sinh 1 -—= =431 sin 1 -—Gyr, (30)
-1 ® Jo h Jo

implying thato must be lower than unity if the Universe is
L 0.5 to be accelerated at present. The time span since the critical
time to the present is given by

1 1 1
=5 "6 "4 T2 0 to—t.=—| sinh t———sinh"t—]|. (31)

5 ® Jo NE]

FIG. 2. Statefinder parameteiin terms ofs, the other member The stationary conditiori10) shows thaty,= y, at the
of the pair. The evoluton goes from the points.(r;)  critical time. Provided that by then the matter is cold, i.e.,
=(—=,5/2), corresponding to the critical time to the point y,,=1 (in the next section we will verify the consistency of

(s»,r..)=(0,1), corresponding to the asymptotically exponentialthis premis¢ we can assume a smooth extension Of our
expansion at large times. The present state of the universe corrgodel towards earlier times, as a cold dark matter dominated

sponds to §,,r ) = (—0.109+ 0.030,1.19% 0.043). era for the purpose of obtaining a corrected age of the Uni-
verse. Indeed, using Eq&4), (26) and (27) we find q(z.)

L 27 -1 =1/2 so that the deceleration parameter of this two-stage

r=2+q, s= 35— (28) Universe is continuous. Hence, imposing the continuity of
2r=5 the matter energy density at the critical time, we hale

between them holgthe dependencg(g) is depicted in Fig. =w andt;=2/(3v). This yields the corrected age

2], so that the history of the deceleration parameter com-

. . . X . ~ 1 1 ) 1 2
pletely describes the evolution of this universe. Sigeel T =" |sinhl—_—sinhl—+= (32)

K . 0 .

whent—0 andg— —1 whent—co, this model describes a o Jo V3 3
transition from a non-accelerated era to an accelerated era in
the present Universgsee Fig. 3. As the accelerated As shown in the nextsection, this simple estimate produces a
phase begins at a tintg., where sinhgt,)=1, we have that rather satisfactory result.

Qac= \/E-
1 B \/m IV. OBSERVATIONAL CONSTRAINTS
tac=5005h \/524-31T Gyr, (29 It appears that supernovae of type&iNelg may be used
as standard candles. Properly corrected, the difference in
their apparent magnitudes is related to the cosmological pa-
061 g rameters. Confrontation of cosmological models to recent
04 observations of high redshift supernovaes(l) have shown
’ a good fit in regions of the parameter space compatible with
0.2 ] an accelerated expansi¢ga0-25. We note, however, that
’ models like ACDM and QCDM usually require fine tuning
z to account for the observed ratio between dark energy and
0 02 0. 0.6 0.8 1 clustered matter, while our conformalon model, as well as
02 QDDM-QIM models[12,8], simultaneously provides a late
accelerated expansion and solves the coincidence problem.
0.4 Ignoring gravitational lensing effects, the predicted mag-
' nitude for an object at redshiftin a spatially flat homoge-
0.6 neous and isotropic universe is given [[26]

m(z)=M+51logD, (2), (33
FIG. 3. Selected curves of the deceleration paranmptes the
redshiftz between the presemt=0 andz=1. From top to bottom, Where M is its Hubble radius free absolute magnitude and

the curves correspond ®=0.3, 0.224, and 0.18. D, is the luminosity distance in units of the Hubble radius,
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Ho 7 | p(o)
—. (34
H(z') 5
In virtue of Eq.(27) we obtain a representation in terms of
the elliptic integral of the first kind

z
'DL=(1+Z)J dz'
0

[é)]

4
2(1+2)(1+ o) 1+i
L:J—( X : L P R CRADpETIPR 5
(1+i)oY4 V2
1+i 2
—-F (1+1) aill. (35)
J2 1
(e}
We have used the sample of 38 high redshift (&8 g
<0.83) supernovae of Reff21], supplemented with 16 low 0.1 02 03 04 0.5 06
redshift z<0.1) supernovae from the Caldololo Super- FIG. 4. The estimated probability density distributiorormal-

nova Survey27]. This is described as the “primary fit" or fit jzeq likelihood for the parameter-.
C in Ref.[21], where, for each supernova, its redshkift the
corrected magnitudey; and its dispersiowr; were computed.
We have determined the optimum fit of the conformalon
model by minimizing ay? function

matter is already cold at critical time and with the range of
redshifts of the supernovae used in the fit. On the other hand,
the accelerated expansion era begingat 0.467+=0.093.

N B o M)2 This value matches the estimation fro€CDM and the two
=3 [mi—m(z;0,M)] , (36)  epoch model of Ref.30], where the deceleration parameter
i=1 o? is constant within each stage.

From Eg. (27) we obtain the frequency parameter
where N=54 for this data set. The most I|ke|y values of =0.129+0.013 Gyfl, Corresponding to a conformalon ef-
these parameters are found to he 1) =(0.2041,23.93), fective massmgs=1.91+0.20x10 3 eV; and combined
yielding x5/ Npr=1.104 Npr=52), and a goodness-of-fit with the current density ratio,=0.56=0.07[31—33 yields
P(x?=x%,) =0.282. These figures show that the fit of con-V,=8.16+1.69x 10~2 Gyr 2. Finally, from Eq.(22) we get
formalon cosmology to this data set is even better than the ffor the current ratio
of the ACDM or QDDM-QIM models in spite of the fact
that we have at our disposal just one free parameter, namely,
g

T o—3
. — =3—:—0.758t 0.051, (38
We estimate the probability density distribution of the pa- Pmly 3(1+0)

rameters by evaluating the normalized likelihood

5 implying that nowadays the dissipative pressure plays a
exp—x°/2) (37  rather prominent role.

p(U,M):fdaf dMeX[Z(—)(ZIZ).

V. COSMOLOGICAL PERTURBATIONS

Then we obtain the probability density distribution for This section considers the evolution of long-wavelength
marginalizing p(o, M) over M. This probability density scalar perturbations of this model. We shall follow the
distribution p(O') is shown in Flg 4 and it y|e|d9'20224 method emp'oyed by Perrotta and Bacciga|upi[34,3a
+0.054. We next use EQ(30) to obtain Hotq=0.833  pased on the formalism developed by Hw&@§] to de-
*0.045. Likewise, takingh=0.7=0.07 (cf. [28]) we get  scribe the evolution of perturbations in the synchronous
from Eq. (31) a period since the critical timg—t.=7.46  gauge. In this gauge the perturbed metric takes the form
+1.03 Gyr, hence a corrected age of the Universe from Eq.

(32) of 1,=12.7=1.4 Gyr. This one standard deviation d?=a[—d7?+ (5, +h,)dxdx] (39)
range for the corrected age of the Universe falls within the he ’

95% confidence age range 11.2—20 Gyr derived from the age i i

of the oldest globular clusters and it is fully consistent with Where the tensoh;; represents the metric perturbations and
the recent estimation of 13#0.3 Gyr reported by the IS Fourier transform can be written as

WMAP team[29] though the latter was reached on the basis

of the standard\CDM model. 3 ikl o

By resorting to Eq(26) we obtaing,= —0.809*+0.043, hij (X, U):j d*ke™ ™ kik;h(k, 7)
ro=21.191+0.043 andsy=—0.109=0.030. Assumingyn .

=1 we get from EQq.(24) the critical redshiftz;,=0.931 +(A = )

+0.123. This figure is consistent with the assumption that kikj 35” 6¢(kom)|. (40)
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Hereh denotes the trace of the tensgy and{ represents its
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vestigate the behavior of the large scale density perturbations

traceless component -for the sake of brevity we will omit thein the asymptotically de Sitter era. In this regime we have

arguments K, ) henceforth.
The perturbed Einstein equations read

2

1 a“op
24 T A
k?¢—>Hh > (41)
a’(p+p)0
251
k¢ 5 ,
(42
h”+2Hh' —2k?{=—3a?8p, (43
h"+6¢"+2H(h'+6{')—2k?*;=—3a%(p+p)Z,
(44)

whereH=a'/a, and the perturbed densitp, pressuresp,
velocity divergenced and shea take the form(for a de-
tailed definition of these terms s¢&4,37)

1 o' 1 HOF'
op=—| Spmt+ ——F ,R6p—3
P=£| %Pm - i ) "
p+3p k2 F'h’
— + — | F+ ——|, 4
2 a2 6a2 ( 5)
1 ¢'6p" 1 oF"  HO6F'
op=—| op,+ +—-F ,Rép+ —+
p = Pm 2 o b [ 2 22
p—p 2Kk? F'h’
"= oF — , (46)
2 3a 9a2
(PmtPm) Om k?
(p+p) o= — (¢! 56— 6F '+ HOF),
F a‘F
(47)
s (pm+pm)2m 2k? 3F, h’
+p)S= SF+3—| '+ —1]|,
(P+p) F 3a?F| 2 &%
(48

where F=1—(¢?/6). There remains the perturbed Klein-
Gordon equation:

¢rh/ a2
Sp=—5—+ 5 F 40R,

SP"+2HSP' + 5
(49

1
k24 gazR

where the perturbed Ricci scalar reads

1
5R=—2(h”—3Hh’+2k2§). (50
3a

It has been shown in Ref38] that the density contrast
5= 6plp at large scales grows ag°~a during the matter

dominated era previous to the critical timig. Here we in-

a=(c/2)"%expt/2) and

n— ﬂ(w)EAﬂ:_w—a, (51)
hence H=-1/An and ¢=—(bw/2)An for An—0~,

where we have made use of Ed7) to obtaing. The solu-
tion of the system of equatiorid1)—(50) at the lowest order

in A% andk? is readily found to be

D
h=DA 7, QV:—EAn,

?’D
6p=0py=—O0R=— TA 7,

»?D
Op=pm=—g—A7 (52

Sp=AA7 (53
where the integration constarilsandA; are functions of the
wave numbeik. Thus we find that matter perturbations are
dominant at large times and it holds for the perturbation of
the energy density ratiér = 6,,= dp.,/ pm - The density con-
trast decreases in the late time regimedasl/a, so that it
has a peak during the period when viscous pressure grows.

VI. CONCLUDING REMARKS

We have presented a model of late acceleration that fits
extraordinarily well the high redshift supernovae data, yields
a good prediction for the age of the Universe and solves the
coincidence problem. The only free parameter in the super-
novae fit takes a natural value=0.224+ 0.054.

The dissipative pressure in dark matter is a key ingre-
dient of our model, and it can attain comparatively large
values. Such pressure may arise from the interaction of cold
dark matter with itself or the annihilation and/or decay of
this component. Different models of cold dark matter that
may show these features have been proposed recently—see,
e.g., the pedagogical short review of R9]. No doubt the
dissipative pressure inherent to these models may have a
profound cosmological impag¢#0].

The quintessence scalar field has a constant potential and
it is nonminimally conformally coupled to the Ricci curva-
ture. In our view, the model possesses two appealing fea-
tures, namely{i) an exact and simple solutidiEgs. (16)—

(20)], and(ii) notwithstanding the potential is a constéand
consequently plays the role of a cosmological congtahée
nonstandard kinetic energy term and the dissipation in the
matter allows a stationary regime where the ratio of the en-
ergy densities remains constant. Likewise we have calculated
the statefinder parameters and have shown that on this re-
gime they are functionally dependent so that in this case the
deceleration parameter is enough to describe these solutions.

The present model may describe the growth of dissipative
effects within dark matter with some kind of selfinteraction
as a consequence of the development of density inhomoge-
neities after a critical time when these inhomogeneities be-
come large enough. The large scale cosmological density
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perturbations are seen to decrease in the asymptotic de Sitiards earlier times, when dissipative effects within dark
phase, with the matter perturbations dominating over thenatter become negligible.
quintessence perturbations.

We believe that because of its simplicity, our conformal ACKNOWLEDGMENTS
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