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Abstract

Many important pathogen-host interactions rely on highly specific carbohydrate binding events. In 

the case of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, 

glycointeractions involving sialic acid (SA) residues are pivotal for parasite infectivity, escape 

from immune surveillance and pathogenesis. Though unable to synthesize SA de novo, T. cruzi 
displays a unique trans-Sialidase (TS) enzyme, which is able to cleave terminal SA residues from 

host donor glycoconjugates and transfer them onto parasite surface mucins, thus generating 

protective/adhesive structures. In addition, this parasite sheds TS into the bloodstream, as a way of 

modifying the surface SA signature, and thereby the signaling/functional properties of mammalian 

host target cells on its own advantage. Here, we discuss the pathogenic aspects of T. cruzi TS: its 

molecular adaptations, the multiplicity of interactions in which it is involved during infections, and 

the array of novel and appealing targets for intervention in Chagas disease provided by TS-

remodeled sialoglycophenotypes.

Keywords

Sialic acids; trans-Sialidase; pathogenesis; glycobiology of infection; Chagas disease; 
Trypanosoma cruzi

INTRODUCTION

Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) is a parasitic protozoan that 

alternates between haematophagous triatomine vectors and a variety of mammalian hosts, 

including humans. Chagas disease, caused by infection with T. cruzi, is the highest impact 

parasitic disease and leading cause of infectious cardiomyopathy throughout Latin America 

[1]. Due to migratory trends of infected populations to non-endemic regions, this illness is 

*Address correspondence to: Oscar Campetella (oscar@unsam.edu.ar). IIBio, Av. 25 de Mayo y Francia, Campus UNSAM, San 
Martín (B1650HMP); Phone: 54-11-4006-1500; Fax: 54-11-4006-1559. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2021 May 01.

Published in final edited form as:
Biochim Biophys Acta Mol Basis Dis. 2020 May 01; 1866(5): 165692. doi:10.1016/
j.bbadis.2020.165692.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



now also recognized as an emergent threat to global public health [1]. Despite this alarming 

epidemiological situation, vaccines are not yet available, and the current arsenal of 

trypanocidal drugs is restricted to two rather old compounds: Benznidazole and Nifurtimox. 

Both require prolonged regimes, have unclear therapeutic efficacy, and display serious 

secondary effects [1]. In this context, there is an urgent need to develop innovative therapies, 

particularly those exploiting novel mechanisms of action.

In order to establish a persistent infection, T. cruzi must strike a balance between causing 

disease and staying below the radar of the mammalian immune system. This parasite has 

accordingly evolved a broad range of self-protective mechanisms and elusion devices, 

including the establishment of an intracellular replicative niche and the formation of 

quiescent or dormant forms [2]. Prominent among T. cruzi evasion strategies, is the 

manipulation of the sialic acid (SA) signature of the infection. SAs are a family of acidic, 

nine-carbon monosaccharides, usually found at terminal positions of oligosaccharide chains 

of membrane-anchored and/or secreted glycoconjugates [3]. Mainly two SA species, N-

Acetylneuraminic acid and N-Glycolylneuraminic acid, can be found in mammals, where 

they are involved in a broad range of biological processes, including the regulation of cell-

to-cell adhesion and signaling phenomena [3]. The mechanistic basis for SA-modulated 

phenotypes is quite variable, but the central theme is that their strong negative charge tends 

to alter the range of binding partners of scaffolding glycoconjugates and, hence the overall 

landscape of cell glycointeractions. Of note, SAs are major forces underlying intercellular 

recognition events required for the elicitation and resolution of effective immune responses, 

and therefore it should not come as any surprise that sialylation constitutes the glycosylation 

step most widely manipulated by pathogens [4]. It was shown, for instance, that a variety of 

bacteria, protozoa and fungi develop ‘protective shields’, instrumental to the colonization of 

the host and/or to inhibit immune recognition and clearance, upon surface 

sialoglycoconjugates [5, 6]. In this context, it is worth noting that surface sialylation is a 

well-recognized microbial determinant of complement resistance [7]. Other pathogens 

express lectins that enable their initial attachment to SA-containing structures on target cells 

or tissues [8–10]. Finally, certain microorganisms induce sialylation changes in the host as 

an indirect way to undermine the immune system and/or the integrity of endothelial barriers 

[11, 12]. Outside of hijacking the glycosylation machinery, usually through the expression of 

sialyltransferases [13, 14], a stronger case can be made for direct alteration of the host cell 

surface SA signature by microbial sialidases [15, 16].

Despite being unable to synthesize SA de novo, T. cruzi incorporates this carbohydrate 

through the action of a unique enzyme: the trans-Sialidase (TS). This molecule combines 

many of the SA-based parasitic traits mentioned above, i.e. SA lectin, sialidase and 

sialyltransferase activities, all in a single, multitasking polypeptide. TS binds to and 

subsequently cleaves terminal SA residues linked α2,3 to β-galactopyranoses (ßGalp) from 

host donor macromolecules. However, instead of just hydrolyzing SA residues as for 

classical sialidases, TS is able to catalyze the formation of an equivalent SAα2–3βGalp 
glycotope in the glycans of mucin-type proteins displayed on the parasite membrane [18]. 

The generation of such surface SA-containing structures is crucial for protection and 

infectivity of trypomastigotes, the parasite forms present in the mammalian bloodstream 

[19]. In addition, the regulated shedding of TS into the bloodstream allows T. cruzi 
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trypomastigotes to manipulate the surface sialylation pattern, and thereby the biological 

properties of different host cell types including thymocytes, lymphocytes, erythrocytes, 

platelets and endothelial cells. TS-induced alterations in the host sialylglycophenotype 

correlate with immune dysfunction, hematological alterations, susceptibility to T. cruzi 
infection and disease. These molecular features, together with the absence of a functional 

counterpart in the mammalian host, enthroned TS as a very promising target for the 

development of new treatments and vaccines against Chagas disease [20].

Recent and comprehensive reviews about the structural, and biochemical properties of T. 
cruzi TS prompt us to cover these aspects only briefly [17, 21]. Here, we will rather aim to 

assess the role(s) played by this molecule in the interaction with the mammalian host: from 

the molecular adaptations underlying its pathogenic effects to the multiplicity of parasite and 

host TS-altered sialoglycophenotypes that take place during T. cruzi infections.

2- Biological adaptations of T. cruzi TS, or how to make a virulence factor 

out of an enzyme.

2.1- Genomic features

The most parsimonious hypothesis proposes that TS emerged in an ancestor of the 

trypanosome lineage, most likely as an upgraded sialidase [22]. This event predated the 

splitting of salivarian and non-salivarian trypanosomes, which occurred ~250–500 million 

years ago [23]. The ‘primal’ sialidase may have evolved spontaneously in this ancestral 

organism or, most likely, may have been acquired from a microbe sharing the same niche 

(i.e. the insect gut) (Fig. 1). Whatever the case, TS activity was readily adopted by different 

clades of the Trypanosoma genus, including the African trypanosomes Trypanosoma brucei 
[22] and T. congolense, in which a small family of TS molecules was found [24]. However, 

it was in T. cruzi where this evolutionary ‘spin off’ was actually pushed up to its very limits. 

Successive events of gene duplication followed by diversification and recombination led to a 

tremendous increase in the genetic dosage and functional complexity associated to this 

enzyme. Indeed, T. cruzi evolved a huge repository of >1,400 TS and TS-like genes and 

pseudogenes, collectively known as the gp85/trans-Sialidase gene family, in which eight 

rather robust groups can be delineated [25–27]. Members of this family are very 

polymorphic, bearing as low as 30% sequence identity between each other, though they are 

unified by certain structural features. These include a sequence associated to tissue tropism 

known as FLY [28] as well as typical bacterial/viral sialidase motifs such as Asp-boxes and 

the FR(I/D)P tetrapeptide (Fig. 2) [25–27]. In addition, all of gp85/trans-Sialidase family 

members display an N-terminal signal peptide and a C-terminal sequence compatible with 

the post-translational anchoring to the plasma membrane through a 

glycosylphosphatidylinositol (GPI) moiety, both of which ensure their localization at the 

parasite surface (Fig. 2) [29]. Throughout this review, we will focus our analysis on 

molecules displaying trans-sialidase/sialidase activity, which are restricted to the gp85/trans-

Sialidase Group I. It is worth mentioning, however, that other family members are likely 

involved in several aspects of T. cruzi biology, particularly in the interaction with the 

mammalian host (reviewed in [28]). Importantly, and besides molecule- or group-specific 

features/functions, it should be stressed that the redundancy and sheer diversity of the Gp85/
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trans-Sialidase family may have been selected for as an additional strategy to cope with the 

mammal immune system [30, 31].

Group I of gp85/trans-Sialidases family includes genes expressed by insect-dwelling, 

epimastigote forms (eTS) and those expressed by trypomastigotes, characterized by the 

presence of an antigenic and repetitive C-terminal region (Fig. 2). This region is known as 

SAPA (for Shed Acute Phase Antigen), as TS is actively secreted by T. cruzi 
trypomastigotes (see below), and recognized mainly by sera from patients coursing the acute 

phase of Chagas disease [32, 33]. The N-terminal and catalytic region of TS (and likely also 

of eTS) folds into two distinct domains: a β-propeller, which contains the catalytic pocket, 

and a lectin-like domain (named as such due to its structural similarity to plant lectins) [34]. 

These domains are connected by a long α-helix (see inset, Fig. 2). Both TS and eTS display 

trans-Sialidase/sialidase activity with very similar kinetic properties and SA acceptor-donor 

specificity [35]. However, eTS is a rather simple molecule, streamlined for the transference 

of SA residues between glycoconjugates whereas TS display additional sequences (such as 

SAPA) involved in moonlighting, i.e. non-catalytic, activities. These structural features, 

together with the acknowledged idea that TS activity was originally involved in the 

interaction between trypanosomes and arthropod vectors [22, 36], put forward the notion 

that eTS correspond to the ‘ancestral’ T. cruzi TS genes, upon which the trypomastigote-

expressed counterparts were crafted [37]. Moreover, it is likely that acquisition of such 

molecular gadgets was instrumental to the pathogenic repurposing of TS.

T. cruzi is better defined as a taxon composed of multiple ‘clonal’ strains showing 

remarkable genetic and phenotypic diversity that were grouped into six evolutionary 

lineages or DTUs (Discrete Typing Units) [38]. The differential genomic make-up of T. 
cruzi strains is patently reflected in the dosage/diversification of gene families coding for 

molecules involved in the interaction with the host(s) [39]. In the case of gp85/trans-

Sialidases, all of the strains analyzed so far were shown to contain TS genes, with dosages 

ranging from 1 to 40 copies per haplotype [40, 41]. Despite previous studies claiming the 

existence of phenotypic TSnull parasites [42], strict conservation and expression of TS genes 

across the T. cruzi taxon was also supported by comprehensive phenotypic [43] and 

immunological surveys [44, 45]. Intriguingly, these studies also revealed that the activity of 

enzyme displayed by different strains does not correlate with TS gene dosage [40, 43].

Along with TS and eTS genes, a third kind of closely related genes can be found in the T. 
cruzi genome. These code for molecules lacking trans-Sialidase/sialidase activity and were 

hence called ‘inactive TS members’ or iTS. Notably, all iTS genes analyzed so far present a 

T/C transition on codon 342, which determines a Tyr342His replacement on the deduced 

polypeptides (Fig. 2). This sole mutation accounts for their lack of trans-sialylation capacity, 

as supported by biochemical and structural data [34, 46, 47]. iTS molecules bear SAPA 

repeats and display extremely high conservation in sequence (>95% identity at the amino 

acid level) and structure to enzymatically active TS [34, 40, 48]. This structural conservation 

includes the N-terminal domain, and even the ‘inactivated’ catalytic pocket [48]. Indeed, iTS 

molecules are able to bind substrates of the TS reaction (αSA2–3βGalp and/or glycoproteins 

bearing this glycotope) and even retain residual hydrolytic activity [41, 48, 49], suggesting 

they function as parasite surface adhesins in vivo ([50], see also Section 3). The structural 
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conservation of iTS molecules is further stressed by their recognition by a TS-neutralizing 

monoclonal antibody (13G9) specific to a conformation-dependent epitope located in the 

enzymatic pocket [51].

Genotypic analyses showed that iTS genes, instead of presenting taxon-wide distribution 

such as TS genes, were restricted to parasite strains clustering to DTUs TcII, TcV and TcVI 

[40]. This peculiar phylogenetic distribution, along with the fact that iTS genes always show 

SAPA repeats and the same catalytic inactivating T/C transition, strongly suggest that they 

originated from an enzymatically active TS gene by a single mutation event. In the 

framework of currently accepted T. cruzi evolutionary history [38], this primal mutation 

most likely occurred early after the stemming of the TcII branch from the main T. cruzi 
clade, which is dated at 3–88 million years ago, depending on the analyzed genes [38]. The 

resultant iTS gene was strictly conserved in TcII strains and transmitted during relatively 

recent (~100,000 years ago) TcII recombination events that led to the emergence of hybrid 

TcV and TcVI lineages [38, 40]. As in the case of TS genes, distinct strains of T. cruzi DTU 

TcII, TcV and TcVI seem to have undergone differential expansion of the iTS dosage [40]. 

The absence of mutation accumulation on iTS genes from independently evolving strains 

strongly suggests that their diversification is under strong negative selection. Based on 

available data [41, 48–52], it is tempting to speculate that this selective pressure was driven 

by structural, and hence functional constraints (see below). In this framework, development, 

upholding and expression of iTS molecules may be envisaged as an additional, genomic-

based trick devised to optimize TS pathogenic function. A schematic representation of the 

proposed evolution of TS genes in T. cruzi is presented in Fig. 1.

2.2- Biological features of SAPA repeats

The facts that eTS molecules do not bear SAPA repeats and, more importantly, that TS 

proteins devoid of SAPA conserved full enzymatic activity provided the first hint that this C-

terminal extension was involved in non-catalytic activities [53, 54]. Because of its repetitive 

nature and the robust humoral responses that this sequence elicits early upon T. cruzi 
infection [32, 33], it was initially considered that SAPA operated as an antigenic decoy, 

drawing the attention of the immune system and thereby delaying and/or preventing the 

elicitation of protective responses. Indeed, the appearance of antibodies able to neutralize TS 

activity (TS-neutralizing antibodies, TS-NtAbs) is a much later event in the course of 

infection, which coincides with the decline in parasitemia at the end of the acute phase [33, 

55, 56]. In contrast with short-lived anti-SAPA humoral responses, TS-NtAbs can be found 

in ~100% of chronically infected individuals [33, 55, 56], and even in treated patients that 

met the parasitological cure criterion (i.e. negative results in conventional serological and 

parasitological assays) [57]. This switch in anti-TS antibody specificity (from anti-SAPA to 

TS-NtAbs) allowed serologic discrimination of patients in the acute vs. chronic phases of the 

disease, and thereby the improvement of Chagas disease diagnostic applications [32, 57–59]. 

Moreover, the fact that TS-NtAbs are also widely detected in sera from T. cruzi-infected 

mammals support their epidemiologic value [44, 45].

Subsequent work from our labs unveiled a complex antigenic arrangement on TS, apparently 

engineered to skew humoral responses in the infected host. This antigenic structure is 
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centered in SAPA, which bears multiple and partially overlapping B cell epitopes in each 

repeat [60], though it also relies on the presence of a mesh of SAPA cross-reacting B cell 

epitopes localized to the N-terminal region of TS [61, 62]. In this regard, it is most notable 

the case of the so-called epitope 1443 [62]. This epitope, restricted to gp85/trans-Sialidases 

Group I molecules, is flanked by two disulfide bond-forming Cys residues and thereby folds 

into an exposed and immunogenic loop that protrudes from the protein surface [34]. 

Antibodies to epitope 1443, however, do not neutralize TS activity. Moreover, mutant 

molecules lacking 1443 elicit an improved TS neutralizing response as compared to wild-

type molecules, strongly suggesting that this epitope evolved to delay the elicitation of TS-

NtAbs [62].

From a structural standpoint, the rigid, ‘stalk-like’ conformation of SAPA was proposed to 

assist TS activity on the trypomastigote surface by projecting the N-terminal catalytic region 

above the parasite glycocalix and thereby easing its access to SA donors and acceptors. 

Alternatively, the identification of high molecular mass TS species on the supernatant of 

cultured trypomastigote, which were sensitive to mild proteolysis, led to the hypothesis that 

SAPA repeats may promote enzyme multimerization [54]. This proposal, however, needs to 

be reevaluated in view of our recent studies on the biogenesis and physiology of the 

trypomastigote membrane [63, 64]. As shown, TS is not secreted as a GPI-less, ‘soluble’ 

protein upon the action of phospholipases on the trypomastigote membrane. On the contrary, 

this molecule is largely, if not exclusively, shed into the milieu as part of membrane-derived 

micro-vesicles [64, 65], which may account for the above mentioned high molecular mass 

TS species [54].

Interestingly, SAPA improves the pharmacokinetics of TS in the bloodstream [66–68], 

although this was shown using recombinant TS instead of native, micro-vesicle-associated 

molecules. Most importantly, prolonged persistence in the bloodstream is a likely 

determinant underlying the effective reach of immune organs or cells far from the infection 

site, and hence the pathogenic effects of TS (and by extension also of iTS, see below). The 

ability of SAPA to increase the bloodstream half-life of TS/iTS could be conveyed to other 

molecules of biotechnological interest and, most interestingly, it could be dissected from its 

strong immunogenicity [68].

Besides the antigenic and structural aspects, SAPA repeats, independently of TS/iTS 

activities, may also contribute to T. cruzi pathogenesis. As shown, SAPA interacts with 

endothelial cells or Peripheral Blood Mononuclear Cells (PBMCs), thereby inducing the 

secretion of the proinflammatory cytokine IL-6 [69]. The consequences in terms of the 

infection are not clear, but IL-6 is required for parasite specific response and host resistance 

to T. cruzi [70]; and may also facilitate endothelium activation and parasite extravasation, as 

shown for African trypanosomes [71]. On the other hand, SAPA was shown to stimulate 

immunoglobulin secretion by inducing B cell proliferation in a T cell independent manner, 

suggesting it may have a role in the polyclonal lymphocyte activation and 

hypergammaglobulinemia observed during the acute phase of T. cruzi infection [70, 72].
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Overall, SAPA repeats display a multiplicity of antigenic, structural and biological features 

(summarized in Fig. 2), which seem ideally suited to optimize the in vivo functioning of 

bloodstream trypomastigote trans-sialidases (TS and iTS).

3- Pathogenic effects of T. cruzi trypomastigote trans-Sialidases (TS and 

iTS)

Trypomastigote trans-Sialidases (TS and iTS) display a variety of pathogenic effects that 

lead to hematological disorders and to the dampening of the immune surveillance on the 

infected host (summarized in Fig. 2 and Table 1). Since these effects may be mediated by 

trans-sialylation/sialylation events (i.e. restricted to TS molecules) and/or by SAα2–3βGalp 
lectin activity (i.e. achieved by both TS and iTS molecules), they will be discussed 

separately in this section. It is worth mentioning that T. cruzi TS has also been proposed to 

moonlight as a parasite-derived neurotrophic factor, involved in the modulation of the 

balance between neuronal degeneration and regeneration [73]. However, and since these 

effects do not apparently involve TS catalytic and/or lectin activities, they will not be 

covered here.

3.1 TS activity-associated effects

In the absence of genotypic TSnull parasites, a key evidence supporting TS as a major T. 
cruzi virulence factor is provided by the fact that the amount of expressed (surface-

associated and/or shed) TS activity correlates with the extent of pathogenesis induced by 

different strains in experimental infections [43]. In agreement, passive transfer of TS-NtAbs 

into T. cruzi-infected mice ameliorates histological alterations [74, 75] and 

thrombocytopenia [76].

Pathogenic effects of TS are mainly related to trans-sialylation events on the surface of 

distinct host cell types/tissues. However, some effects can be associated with desialylation 

events. For instance, bloodstream TS activity detected during the early steps of the infection 

is responsible for the reduced amount of SA on the surface of platelets and red blood cells, 

and hence for inducing thrombocytopenia and erythropenia in the acutely infected host [76, 

77]. In this regard, it is worth noting that shedding of sialidase activity by bloodstream forms 

of African trypanosomes also correlates with erythrocyte desialylation and anemia in the 

infected host [16].

TS activity modifies the sialylation pattern of many cell types [74, 78, 79], being of 

particular relevance on the immune system. As shown, parasite-borne TS (or injection of the 

recombinant enzyme), induces several histologic abnormalities such as apoptosis in central 

and peripheral immune organs [78, 80, 81]. For instance, TS triggers apoptosis of immature 

CD4+CD8+ thymocytes inside the nurse cell complexes [74, 80]. This, together with the 

leakage of this cell population to the periphery leads to transient thymic aplasia, a signature 

of early T. cruzi infection [82]. On the other hand, in in vitro experiments, TS is able to co-

stimulate the proliferation induced by Concanavalin-A lectin or anti-CD3 antibody in a 

mixed culture of T cell lymphocytes and Antigen Presenting Cells (APC). There are some 

controversies in the literature on this issue. Gao and Pereira described that this effect is 
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independent of CD43 or CD40 molecules and mediated by Bruton’s tyrosine kinase and 

IL-6 while Todeschini et al have reported that the CD43 pathway is clearly involved [83, 

84]. Therefore, there is a lot of work ahead to understand the molecular pathways that 

govern the T cell activation by the TS. Moreover, TS may also alter the surface sialylation 

code of CD8+ effector T cells, thereby impairing the cytotoxic response and favoring 

parasite persistence [85].

In addition to the actions on T cells it was recently described that TS induces the secretion of 

the pro-inflammatory cytokine IL-17 by B cells. At variance with T helper (Th) 17 cells, the 

molecular pathway that trigger the secretion of IL-17 in B cells involves the sialylation of 

the membrane glycoprotein CD45 and is independent of the transcription factors RORγt and 

Ahr [86]. In T. cruzi-infected mice, B cells are the major source of IL-17 at the early stage, 

and contributes to the control of the parasite, possibly through the upregulation of specific 

CD8+ responses [86, 87]. Interestingly, a decline in IL-17 serum level has been recently 

proposed as a biomarker for assessing anti-T. cruzi therapeutic efficacy [88].

All the described pathogenic effects/immune alterations that depend on SA mobilization are 

observed during the acute phase of T. cruzi infection. They are associated to the TS activity 

shed into the bloodstream, which cannot be detected later on in the infection due to i) a 

dramatic drop in parasitemia and ii) the elicitation of TS-NtAbs [55, 57]. SA incorporation 

into the trypomastigote surface, on the contrary, is most likely mediated by ‘local’ TS, which 

may have been previously accumulated into the cytoplasm of the infected cell [21]. Thus, it 

seems to be two discrete pools of TS activity in the infected host: i) a systemic one, that is 

mainly relevant during the acute phase and that contributes to host colonization, 

pathogenesis and immune disorders, and ii) a locally-relevant one, which is mainly involved 

in trypomastigote surface coat sialylation and hence in parasite protection and infectivity 

(see next section). Based on our findings, it may be hypothesized that at variance with 

systemic TS activity, this latter pool is not majorly affected by NtAbs, probably due to the 

absence of edema at the sites of parasite replication.

3.2 Lectin activity-associated effects

Different studies using recombinant iTS molecules, showed that this isoform can 

recapitulate several of the alterations induced by TS in the host immune system physiology 

[50, 52, 84]. Therefore, these effects may be in principle attributed to the lectin activity 

towards SAα2–3βGalp-containing structures, which is common to iTS and TS molecules 

[74, 78].

Although it is known that the protective response against T. cruzi infection is mediated by 

the Th1 phenotype, eliciting an adequately balanced Th1/Th2 response is critical for host 

survival [89, 90]. Tipping off this balance towards a Th2 phenotype is conducted via the 

hijacking of the IL-10 pathway in APC, which translates into a decrease in IL-2 and IFNγ 
secretion with concomitant increment in IL-4 production by CD4+ T cells [52]. It is 

important to note that iTS and TS are involved in the induction of IL-2 suppression in vitro 
and in vivo, a hallmark of the acute phase of T. cruzi infection [52]. In addition, in vitro 
experiments have shown that iTS and TS induce CD4+ T cell co-stimulation, with 

concomitant secretion of IL-4 and, hence a Th2 bias [84]. The same authors have also shown 
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that TS and/or iTS rescue CD4+ T cells from programmed cell death via CD43 interaction 

[84]. These findings provide a context where a harnessing system of the potential extreme 

damage that an uncontrolled Th1 response might provoke is induced. In further support, the 

co-administration of iTS and TS to infected mice, showed that the presence of iTS reduce 

the pro-inflammatory capacity of TS [91]. In the same line, iTS administration to infected 

mice reduced the number of cells infiltrates in heart [91]. Indeed, it is worth mentioning that 

stimulation of the NF-kB pathway on endothelial cells by iTS induces the up-regulation of 

adhesion molecules such as E-selectin, ICAM-1 and VCAM-1, with a concomitant increase 

in parasite infectivity [92].

Due to their extreme similarity to TS molecules and the co-occurrence of iTS and TS on the 

trypomastigote surface, the precise sub-cellular distribution and biological meaning of iTS 

molecules is a quite difficult task to assess. However, recent studies using parasite lines 

expressing iTS (developed upon natural iTSnull parental background) indicate that iTS 

molecules are effectively displayed on the trypomastigote surface [50], and that their SAα2–

3βGalp lectin activity play significant roles in the physiologic scenario of parasite infection. 

As shown, iTS-transfected parasites display exacerbated adhesion/invasion to non-

phagocytic cells in vitro and increased virulence in vivo [50]. Altogether, these findings 

strongly support that iTS proteins exert alternative and/or complementary roles to TS in T. 
cruzi virulence and pathogenesis.

4.- TS and the parasite sialoglycophenotype

Establishment of specific glycointeractions with the host are needed throughout the T. cruzi 
life-cycle, including for those parasite forms dwelling in the insect (epimastigotes and 

metacyclic trypomastigotes). For instance, glycointeractions with endothelia of the 

triatomine digestive tract is critical for the survival and proliferation of epimastigotes [93]. 

In this phase of the life-cycle, however, the parasite relies on non-sialylated rather than 

sialylated surface glycoconjugates to engage in such contacts [93–95]. This is consistent 

with the fact that epimastigote mucins (known as Gp35/50) are poorly sialylated, which may 

be attributed to the low concentration of suitable SA donors in the gut lumen of triatomines 

[96], and to the very low expression of TS activity in this stage [35].

Differentiation into infective metacyclic trypomastigotes, correlates with an increase in TS 

expression [35]. This leads to massive sialylation of metacyclic surface Gp35/50 mucins, 

which contribute to the first steps of infection of the mammal host, particularly in cases of 

oral transmission [97]. Once in the mammal, Gp35/50 may also play supporting roles in the 

recognition and/or signaling of the target cell. Interestingly, these effects are dependent on 

the parasite genotype and, at least for some parasite strains, modulated by the sialylation 

status of Gp35/50 [98].

The scaffolding polypeptides and the O-glycans from bloodstream trypomastigote mucins 

(known as tGPI-mucins) are different than those of Gp35/50 [18, 99]. Of note, tGPI-mucins 

bear non-reducing, terminal αGalactopyranosyl (αGalp) residues, which are not SA 

acceptors in the TS reaction [100]. These αGalp-containing structures are foreign to humans 

and therefore, highly immunogenic during T. cruzi infections [100]. Anti-αGal antibodies 
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have the capability to lyse bloodstream trypomastigotes in a complement-dependent or 

independent manner, strongly suggesting that they are involved in controlling parasitemia 

[19]. As mentioned, incorporation of SA residues onto tGPI-mucins by means of TS occurs 

immediately upon trypomastigote egress from the infected cell, and is critical to prevent 

parasite lysis by yet undefined mechanisms. On one hand, it may be considered that the 

negative charges in SA residues somehow stabilize the surface coat. Experiments showing 

that neutralization of negative charges by addition of MgCl2 reverses the protective effect of 

sialylation support this hypothesis [19]. Alternatively, it may be proposed that sialylation of 

nearby βGalp residues imposes steric hindrance to the binding of anti-αGal antibodies 

and/or to the subsequent capping of tGPI-mucins on the trypomastigote surface. This idea is 

however not supported by recent data showing that tGPI-mucins bearing terminal αGalp and 

βGalp residues are sorted to mutually exclusive membrane domains on the trypomastigote 

surface [64, 65]. Whatever the case, sialylation of tGPI-mucins protects trypomastigotes 

from lytic antibodies and, most likely, also from the action of complement [21].

In addition to their protective effects, formation of SAα2–3βGalp glycomarkers on the 

parasite surface was shown to be involved in trypomastigote recognition and invasion of host 

non-phagocytic cells [101]. Other groups, however, described a minor effect for the 

trypomastigote sialoglycophenotype on target cell recognition [102, 103]. Whether these 

differences are related to the experimental set-up and/or the genetic background of the 

parasite strains analyzed remains to be addressed. More recently, in vitro studies indicated 

that both the SAα2–3βGalp lectin activity of TS/iTS molecules and/or the generation of 

such sialoglycomarkers on the target cell surface by parasite-anchored TS contribute to 

trypomastigote internalization [50, 104]. Pioneer studies described that following invasion, 

TS-mediated mobilization of SA residues from host cell sialoglycoconjugates (and 

particularly from LAMP 2) was critical for the timely escape of trypomastigotes from the 

parasitophorous vacuole, a critical step in the progression of parasite intracellular 

development [21]. These findings were recently corroborated using genetically modified cell 

lines and/or parasites, as well as elegant co-infection models [105, 106]. Upon 

differentiation into replicative amastigotes, the parasite shuts down TS expression, which is 

compatible with its intracellular life style and hence, absence of suitable SA donors. 

Moreover, these parasite forms are completely refractory to TS activity as they do not 

express appropriate SA acceptors on their surface [107]. Intriguingly, amastigotes do express 

mucin-like products [108, 109], and bear huge amounts of αGal epitopes on their surface 

[19].

On a final note, it is worth noting that tGPI-mucins may also contribute to T. cruzi 
pathogenesis. Vesicles containing tGPI-mucin-positive are shed profusely by 

trypomastigotes and, independently of antibody opsonization, they are internalized by 

epithelial cells and macrophages. This, in turn, triggers pro-inflammatory responses and 

enhances parasite virulence by yet undefined mechanisms [110]. Most interestingly, tGPI-

mucins were shown to bind to specific Siglecs (SA-binding Ig-like lectins), and 

subsequently modulate their downstream functions in the innate and/or adaptive host 

immune response [111–115]. Since Siglec manipulation is strictly dependent on the 

sialylation status of tGPI-mucins [114, 115], this phenomenon may be therefore considered 

Campetella et al. Page 10

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as an indirect TS effect on the host. Table 1 summarizes the molecular/cellular targets of TS 

(both on the parasite and the insect/mammal host), and their associated effects.

5. Conclusions

Cleavage and release of SA residues from host glycoconjugates by classical sialidases is a 

widely used pathogen strategy with crucial roles in nutrient acquisition and pathogenesis. 

Decoration of microbial surface glycoconjugates with SA, on the other hand, usually results 

in a dampening of the host immune response. Therefore, development of a molecule with 

trans-sialidase activity should be considered a major achievement in the evolution of 

trypanosomes, as it allowed these parasites to couple SA scavenging activity with the 

formation of protective and/or adhesive structures on their own surface. As discussed here, 

TS plays multiple key roles on T. cruzi basic biology and virulence (summarized in Box 1). 

On one hand, TS enables SA incorporation on the parasite surface, which is critical for the 

insect-to-mammal host switching, a major bottleneck in the T. cruzi life cycle. Most 

importantly, once in the mammalian host, parasite multiplication and persistence in tissues is 

strictly dependent on the timely sialylation of its surface glycoconjugates. On the other hand, 

the controlled shedding of this molecule into the bloodstream provides the trypomastigotes 

with the opportunity to manipulate the surface sialylation pattern, and hence the signaling/

functional properties, of different target cells. Different genomic and molecular adaptations 

such as a repetitive extension (SAPA) that improves protein pharmacokinetics while, at the 

same time, delays the elicitation of neutralizing responses in the infected mammal and/or the 

co-expression of structurally conserved though enzymatically inactive molecules (iTS) seem 

ideally suited to optimize TS pathogenic function in vivo. Though still fragmentary, 

collective evidence from in vitro and in vivo studies indicate that changes in the host 

sialoglycophenotype strictly correlate with hematological alterations, immune dysfunction 

and susceptibility to T. cruzi infection. Moreover, certain pathological alterations associated 

to acute Chagas disease such as thrombocytopenia, polyclonal B cell activation and thymus 

atrophy may be directly associated to the effect of secreted TS.

Development of novel genetic, molecular and cellular tools aimed at deepening our 

knowledge of these multitasking molecules and of their targets/effects during T. cruzi 
infections will provide a significant impact in the parasitology/glycobiology/immunology 

areas. As a first step towards filling this gap, we developed a method allowing the high 

throughput identification of TS targets in vivo. This method is based on the use of a 

synthetic ‘SA donor’ analog, i.e. a SA residue with an azide group on its carbon 5, which is 

α2–3-linked to a ßGalp group [107]. When added exogenously, such compound is 

recognized as a suitable SA donor by T. cruzi TS, hence leading to the formation of a 

Neu5Azα2–3Galβ signature on SA acceptor glycoconjugates. So far, this method allowed 

the identification of TS targets on the surface of different cell types [79], as well as the 

undertaking of structural/functional studies on T. cruzi membrane composition and 

dynamics [29, 64, 116–119]. This method, together with other tools able to shed new 

structural/functional light into TS biology will pave the way to the identification of novel 

and appealing targets for intervention in Chagas disease
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BOX 1:

Experimental evidence supporting trypomastigote trans-Sialidases (TS 
and/or iTS) as major virulence factors during Trypanosoma cruzi infections.

• There is a strict correlation between strain virulence and TS expression

• TS/iTS are involved in the adhesion/invasion of the target cells

• TS is involved in trypomastigote protection from immune mechanisms and in 

the escape from the parasitophorous vacuole into the infected cell cytoplasm, 

where it differentiates and replicates.

• TS/iTS (and also SAPA repeats) induce major alterations in the host immune 

system.

• Administration of recombinant TS into naïve animals recapitulates several 

physiopathologies associated to acute T. cruzi infection such as 

thrombocytopenia and alterations of the histoarchitecture of the spleen, 

thymus and ganglia.

• Appearance of TS-neutralizing antibodies (TS-NtAbs) in T. cruzi infected 

mammals correlate with a decrease in parasitemia; and passive transfer of TS-

NtAbs into mice ameliorates histological findings upon challenge.

• Ectopic-expression of TS/iTS molecules enhances parasite virulence.
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Highlights

• T. cruzi strain virulence correlates with trans-sialidase (TS) expression

• TS is involved in T. cruzi adhesion/invasion of mammalian target cells

• TS induces major alterations in mammalian host immune system

• In naïve animals, TS recapitulates physiopathologies induced during infection

• TS-neutralizing antibodies ameliorate histological damages upon T. cruzi 
infection
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FIGURE 1: 
Possible evolution of trans-Sialidase genes in T. cruzi.
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FIGURE 2: Structural and biological features of molecules belonging to the Group I of T. cruzi 
Gp85/trans-Sialidases.
Schematic representation of predicted TS molecules expressed by trypomastigote (TS and 

iTS, above) and epimastigote (eTS, below) forms of T. cruzi. For trypomastigote TS, identity 

of residue 342 discriminates between enzymatically active TS (Tyr) and inactive iTS (His) 

molecules. The position of predicted signal peptide, membrane-anchoring sequence, and 

typical bacterial sialidase motifs (Asp-boxes, FR[I/D]P tetrapeptide) is indicated. The 

sequences of the adhesive FLY motif (VTVxNVxLYNR, where x means any amino acid) 

and of a typical SAPA repeat (DSSAHGTPSTPV) are also shown. (?) means that the nature 

of the eTS membrane anchor has not been yet experimentally addressed. For trypomastigote 

TS molecules, the major biological effects of the N-terminal, catalytic region and of the 

SAPA repeats are indicated below. The structure of the catalytic region of TS, showing the 

presence of two independent domains (the catalytic one and a lectin-like one) connected by a 

α-helix is shown in the inset. GPI, glycosylphosphatidylinositol.
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