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Nonconvergence of the Wang-Landau algorithms with multiple random walkers
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This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple
random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified
by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS).
The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical
temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum
approximation. In each case, the error is obtained separately for each walker at a fixed time, t ; then, the average
over m walkers is performed. It is observed that the error goes as 1/

√
m. However, if the number of walkers

increases above a certain critical value m > mx , the error reaches a constant value (i.e., it saturates). This occurs
for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate
than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers
above a critical value mx , since it does not reduce the error in the calculation. Therefore, the number of walkers
does not guarantee convergence.
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I. INTRODUCTION

The Wang-Landau (WL) algorithm is currently one of the
most widely used variations of the Monte Carlo simulation
method introduced in recent years [1–3]. It belongs to the
broader class of flat-histogram Monte Carlo simulations,
aimed at obtaining an estimate of the density of states (DOS)
g(E) of a system with high accuracy [g(E) represents the
number of possible states or configurations with energy E].

Recent studies have proposed improvements and sophis-
ticated implementations of the WL algorithm [4–19]. The
convergence properties of the original WL formulation have
been an issue of controversy. In fact, several studies show that
the saturation of the final error persists [i.e., the difference
between the simulation estimates for g(E) and the exact
values] regardless of the simulation effort employed. This
problem was first pointed out by Yang and de Pablo in
Ref. [15]. Several authors [5,7,8,16,17] have also analyzed the
WL convergence. In particular, Zhou and Bhatt [5] presented
an argument for its convergence.

It is well known that the exponential decrease of the
modification factor F = ln f (which is defined below) with
the number of iterations is the reason for the saturation of
the error in the original WL algorithm, so that in the final
sampling stages, the error to estimate g(E) is essentially
constant. To overcome this limitation, a new version of the
WL algorithm has been introduced in Refs. [20–23], in which
the modification factor is scaled down as 1/t instead of
exponentially. The 1/t algorithm has been applied successfully
to several statistical systems [24–33]. Very recently, a new
version of the WL algorithm, the stochastic approximation
Monte Carlo [34,35], which uses the 1/t strategy, was applied
successfully to semiflexible polymers chains.

The convergence of the 1/t algorithm has been discussed
in previous work [8,21,23]. In fact, it has been demonstrated
analytically [21] that the entropy S(E,t) = ln g(E,t) can be
expressed as a series in which F (t) is the kernel; in those
algorithms where Fk = Fk−1/l (with any value of l > 1),

the resulting series converges to a finite value, and then the
error reaches a constant value (saturates in time). On the
contrary, in those algorithms where the modification factor
depends on time as F (t) = t−γ with γ � 1 (the optimum
choice is γ = 1), the series is divergent and the calculated
density of states approaches asymptotically the exact values as
≈t−γ /2.

Recently, the tomographic sampling method was modified
with use of the 1/t scheme. The tomographic algorithm was
originally implemented using, in effect, a modification factor
F = ln f that does not change with time [13]. It was shown
that convergence is improved by using F ∼ 1/t in this method
as well [23]. In addition, the authors demonstrated that there
is convergence in the case in which 0 < γ � 1 by using an
analytical argument applied to the simple two-state model.

Nevertheless, numerical studies show that the error in
the 1/t algorithm decays as 1/

√
t , and to our knowledge

this has not been improved upon. Therefore, whenever the
modification factor F decreases exponentially with the number
of iterations, the algorithm does not converge, regardless of
any modification of the WL algorithm. That is, the error
in calculating the DOS approaches a constant value (i.e., it
reaches saturation), as was proved analytically in Refs. [21,23].

A general comment on the use of WL algorithm: despite
the problems of convergence, it is well known nowadays
that the WL method works very well in getting a first
approximation of the density of states, and it is then used as
an ingredient of a controlled numerical scheme (any type of
multihistogram method). However, instead of being a critique
to the original WL algorithm, any new contribution that
helps to understand the behavior of the method and solve the
problem of convergence should be considered.

In Refs. [36–39], Landau and co-workers introduced a
massive parallel WL sampling based on the replica-exchange
framework for Monte Carlo simulations. They introduced m

random walkers in an energy subwindow. They emphasized
that the estimated density of states converges to the true one
with an increasing number of iterations, and the simulation
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is terminated when the modification factor reaches a minimal
value ffinal. They demonstrated the advantages and general
applicability of the method for the simulation of complex
systems. They also showed that this algorithm is extremely
efficient and that its parallel implementation is straightforward.
This practice reduces the error during the simulation with
1/

√
m, where m is the number of independent walkers in the

energy sub-window.
A similar strategy to reduce the error with the number of

walkers was implemented in Refs. [40,41]. Parallel imple-
mentation of other multihistogram methods was introduced in
Ref. [42].

Although the method has been implemented in a massive
parallel sampling in systems with multiple windows, it is easy
to apply to a system with a single window. Thus, even when
the error saturates for a single random walk, the average of m

random walkers seems to converge to the exact value, i.e., the
error seems to depend on 1/

√
m.

In this paper, the validity of this assumption is discussed.
Toward that end, a simple implementation of the algorithms
is performed to calculate the DOS and other observables
such as the critical temperature in the Ising model and the
number π by numerical integration. The Ising model and
numerical integration are used as a laboratory test for different
reasons, i.e., (i) the DOS is known, at least for small systems;
(ii) the observable can be obtained with high precision; and
(iii) if it does not converge for trivial systems such as that
mentioned above (which presents a relatively well-behaved
energy landscape), it seems unlikely that it will converge
in a more complex system. The remainder of this paper is
organized as follows: In Sec. I, the algorithms and different
quantities are introduced, as well as the definition of the errors
for the different models. In Sec. II, the algorithms and their
implementations are discussed. The results and the conclusions
are presented in Secs. III and IV, respectively.

II. ALGORITHMS AND THEIR IMPLEMENTATIONS

The density of states in energy, g(E), measures the energy
degeneracy of the admissible states of a system, from which
the partition function Z can be calculated:

Z(T ) =
∑

ρ

e−E[ρ]/kBT =
∑
E

g(E)e−E/kBT , (1)

where ρ stands for a state or configuration in which the
system can reside, kB is the Boltzmann constant, and T

is the temperature. The first sum runs over all possible states of
the system, whereas the second sum runs over all possible total
energies and it can only be calculated once g(E) is known.
While g(E) is temperature-independent and only depends
on the definition of the Hamiltonian, Eq. (1) allows for the
calculation of the temperature-dependent Z via the corre-
sponding Boltzmann factors. One also defines a dimensionless
entropy S(E) ≡ kB ln g(E). An important consequence is the
possibility of calculating the thermodynamic quantities at any
temperature with the sole knowledge of g(E). For example,
the average energy 〈E〉 is

〈E(T )〉 = 1

Z

∑
E

g(E)Ee−E/kBT , (2)

and the heat capacity CV can be calculated as

CV (T ) = 〈E2〉 − (〈E〉)2

kBT 2
. (3)

These thermodynamic observables provide a measure to
identify and locate phase transitions, and hence to understand
critical phenomena.

The standard WL algorithm [1–3] estimates the DOS using
a single random walker in an energy range [Emin,Emax]. During
the simulation, trial moves are accepted with a probability P =
min[1,g(Eold)/g(Enew)], where Eold(Enew) is the energy of
the original (proposed) configuration. The estimation of g(E)
is continuously adjusted and improved using a modification
factor f [i.e., g(E) → f × g(E)], which starts with f0 > 1
and progressively approaches unity as the simulation proceeds.
A histogram, H (E), keeps track of the number of visits to each
energy E during a given iteration. When H (E) is sufficiently
f lat [43], the next iteration begins with H (E) reset to zero
but keeping the estimate of g(E) from the previous iteration,
and f is reduced by some predefined rule (e.g., f → √

f ).
The simulation ends when f reaches a sufficiently small value
fstop, at which point the accuracy of g(E) is proportional to√

fstop for sufficiently flat H (E). The 1/t algorithm works
as the original WL algorithm, but as soon as F = ln(f ) �
1/t , F → 1/t ; thereafter, F (t) = 1/t is updated at each event
(here, t is the Monte Carlo time defined as t = n/N , where n

is the number of attempted changes of state, or steps, and N is
the energy range). In other words, for a characteristic time, the
modification factor F goes from exponential to power decay.
For more details, see Ref. [23].

To assess its applicability, feasibility, and performance, the
1/t and the WL m-random walkers are applied to the two-
dimensional Ising model on square lattices, as well as the
calculation of the number π by numerical integration.

The two-dimensional Ising model on a square lattice with
linear size L = 8 and periodic boundary conditions is used for
the calculation of the DOS and the critical temperature. The
size of the system is similar to the size of a single window
in the replica exchange Wang-Landau sampling [36,37,39].
Despite the size, this is sufficient for the purposes of this
study. However, in order to show the effect of the size on the
behavior of the error, the study is also applied to a window
of N = 300, which belongs to a larger system size L = 64.
Monte Carlo multidimensional integration using the WL and
1/t algorithms is also implemented to calculate the number
π [18,22,44].

Before discussing the results, it is necessary to explain how
to calculate the errors of the quantities to be measured. In this
paper, the error in the calculation of the DOS as a function of
the number of walkers m and time t , is defined as:

εS(t,m) = 1

N

∑
E

∣∣∣∣
SE(t,m) − Sexc

E

Sexc
E

∣∣∣∣, (4)

where Sexc
E is the exact value of the DOS for the energy E.

The average over the number of walkers m is indicated by the
overbar, which is given by

SE(t,m) = 1

m

m∑
i

SE,i(t). (5)
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Similarly, one proceeds with the error in the calculation of the
observable X(t,m):

εX(t,m) =
∣∣∣∣
X(t,m) − Xexc

Xexc

∣∣∣∣, (6)

where

X(t,m) = 1

m

m∑
i

Xi(t), (7)

and the corresponding standard deviation is

σm =
√

X(t,m)2 − (X(t,m))
2
. (8)

From the above equations, the errors as a function of time
for m walkers can obtained. To smooth the curves, which
usually present some noise, we perform an average over p

independent realizations. The average is indicated by angular
brackets and is defined as

〈ε(t,m)〉 = 1

p

p∑
i

εi(t,m). (9)

Similarly, for the mean value,

〈X(t,m)〉 = 1

p

p∑
i

Xi(t,m), (10)

and the standard deviation,

σp =
√

〈X(t,m)
2〉 − 〈X(t,m)〉2. (11)

III. DISCUSSION

First, the convergence properties of the WL and the 1/t

algorithms as a function of time t , for a single walker, are
discussed. The error in the calculation of the DOS as a function
of time, t , for a two-dimensional Ising model, with linear size
L is obtained from the above equations. Note that, for m = 1,
the error in the DOS [Eq. (4)] and in the observable [Eq. (6)]
is in agreement with the definition given in Refs. [20–23],
and σm=1 = 0. In this case, the range of the energy is N =
L2 − 1. The exact density of states, as well as the exact critical
temperature for the Ising model, with a given system size is
obtained by using the methodology developed by Beale in
Ref. [45]. Similarly, one can obtain the error in the calculation
of the number π , as discussed in Refs. [18,22,44].

In Fig. 1, different errors are shown as a function of time,
using the WL and 1/t algorithms. As described in Ref. [23],
the 1/t algorithm presents two temporal regimes: (i) the first
stage of the simulation, where the 1/t algorithm coincides
with the WL algorithm, and the error decreases sharply; and
(ii) the second stage, when Fi < 1/t . Time t = tx separates
the two regimes and coincides with the saturation time of the
WL algorithm (where the error becomes constant). This time
is shown in Fig. 1 with a vertical solid line. The saturation
time for a two-dimensional Ising model with L = 8 is tx ≈
140 000 MCS, using an 80%-flatness criterion. As expected,
for Figs. 1(a) and 1(b), tx coincides, while the corresponding
saturation time for the calculation of π with the WL algorithm
is tx = 74 000 MCS. On the other hand, the slope of the curves
corresponding to the 1/t algorithm goes as 1/

√
t . The times t1,

(a)

(b)

(c)

FIG. 1. Behavior of the error as a function of time using the WL
algorithm (long dashed line) and the 1/t algorithm (solid line) for
a single walker. The data correspond to (a) the DOS and (b) the
critical temperature, obtained from the peak location of the specific
heat for a two-dimensional Ising model; and (c) the calculation of the
number π using multidimensional integrations. The critical time tx ,
corresponding to the saturation of the error using the WL algorithm,
is shown in the figures (vertical solid line). The times t1, t2, t3, t4,
and t5 correspond to the times at which the algorithm is stopped to
start the m walkers; these are indicated with vertical dashed lines.
The slope of the curves corresponding to the 1/t algorithm goes as
1/

√
t . The data represent the average of 200 independent realizations

(p = 200).

t2, t3, t4, and t5 are characteristic times (indicated with vertical
dashed lines) that will be used later.

Next, let us discuss the effect of the flatness criteria in the
measurement of the error. Figure 2 shows the behavior of the
error as a function of the modification factor ln f for increasing
values of the flatness criteria for the WL algorithm. From this
figure, it is clear that no matter how flat the histogram is, the
error always reaches a constant values, i.e., it saturates, even
for a very high value of the flatness criterion (99.9%).

Figure 3 shows the behavior of the modification factor
F (t) as a function of time for two flatness criteria [Fig. 3(a)]
and the corresponding error in the calculation of the critical
temperature [Fig. 3(b)]. Note that for t < tx , the error curve
corresponding to WL 80% is below that corresponding to WL
90%. After that, for t � tx , the behavior is reversed, that is, the
curve corresponding to WL 80% is above that corresponding
to WL 90%. This can lead to an erroneous evaluation of the
accuracy and precision. In fact, if the error is calculated at
t < tx , it is found that the error of WL 90% is greater than that
of WL 80%; however, if t > tx , the behavior is the opposite.
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FIG. 2. The error as a function of the flatness criteria calculated
for the WL algorithm. The curves are shown in decreasing order
with 50%, 80%, 90%, 95%, 99%, and 99.9%, respectively. The data
correspond to the critical temperature, obtained from the peak location
of the specific heat for a two-dimensional Ising model with L = 8,
and it is the average of 200 independent realizations (p = 200).

Next, we discuss the range of validity of the conjecture of
Zhou and Batt [5], which assumes that the error is proportional
to

√
ln fk , i.e., for a fixed value of fk , the error will be the same

for any flatness criteria.
To visualize this, the value of fk is fixed in Fig. 3(a)

(for example, k = 13, which corresponds to ln fk = 1.2208 ×
10−4, horizontal dotted line) in such a way that the intersection

(a)

(b)

FIG. 3. (a) Behavior of F (t) = ln f , and (b) the error in the
calculation of the critical temperature for a two-dimensional Ising
model εTc

(t), calculated by using the WL algorithm for 80% and 90%
flatness criteria, and 1/t algorithms. Vertical solid lines represent
the saturation times for the WL algorithm (t80

x ≈ 140 000 MCS and
t90
x ≈ 430 000 MCS). The times tA ≈ 58 000 MCS, tB ≈ 105 000

MCS, and tC ≈ 3 × 106 MCS as F (t) = ln f13 = 1.2208 × 10−4

are described in the text. The data represent the average of 200
independent realizations (p = 200).

(a)

(b)

(c)

FIG. 4. Behavior of the mean value of the critical temperature
as a function of time and the confidence interval for (a) the WL
algorithm and (b) the 1/t algorithm (a magnification of the curve
is shown in the inset). In (c), the behavior of the standard deviation
for both algorithms is shown. The fitting of the 1/t curve gives a
slope of 0.493(2). The data represent the average of 200 independent
realizations (p = 200).

between the horizontal line and the F (t) curves with 80%
and 90% occurs at times tA and tB , respectively. These times
are less than tx . The errors corresponding to these times, in
Fig. 3(b), are the same, confirming the conjecture. However,
for t > tx [for example, tC in Fig. 3(a)], the conjecture cannot
be applied because of the saturation of the error in the WL
algorithm. Then, one can say that, for the WL algorithm, the
error is proportional to

√
ln fk , provided that the time t < tx ;

in other words, the conjecture of Zhou and Bhatt is valid for
ln fk � 1/t . In contrast, for the 1/t algorithm, the Zhou and
Batt conjecture is valid for all time.

From the above, the determination of tx is of fundamental
importance, and it can be obtained not by using the WL
algorithm but by using the 1/t algorithm instead.

To compare the statistical and systematic errors for a single
walker, one proceeds to calculate the mean value of the
observable over p independent realizations using Eq. (10)
and the corresponding standard deviation σp using Eq. (11)
(remember that m = 1).

Figure 4 shows the behavior of the mean value of the
critical temperature as a function of time and the confidence
interval (〈Tc〉 ± σp√

p
) for both WL [Fig. 4(a)] and 1/t [Fig. 4(b)]

algorithms. In the inset of Figs. 4(a) and 4(b), a magnification
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(a)

(b)

FIG. 5. Best-fit Gaussians for the histograms of the critical tem-
peratures obtained using (a) the WL algorithm with the 80%-flatness
criterion, and (b) 1/t algorithms. Each of the curves corresponds to
p = 100 000 independent runs. The curves are ordered from bottom
to top according to the times defined in Fig. 1. Note that for the WL
case, the curves collapse into each other for t > tx .

of the curves is shown. As observed, the standard deviation,
which is a measurement of the statistical error, presents
different behavior according to the algorithm used. In fact,
σ for the WL algorithm decreases for t < tx ; after that, for
t > tx it reaches a constant value. On the contrary, σ for the 1/t

algorithm always decreases, and for t > tx it decays as 1/
√

t ,
as shown in Fig. 4(c). The statistical error decreases with time
for the 1/t algorithm, while it remains constant for the WL
algorithm. It is important to note that for the WL algorithm,
both the error measured by Eqs. (4) and (9) [Fig. 1(b)] as
well as the standard deviation, Eq. (11) [Fig. 4(c)], reach a
constant value for t > tx . The unusual behavior of the standard
deviation as a function of time has been discussed in Ref. [23].

To confirm this effect, Fig. 5 shows the best-fit Gaussian for
the histograms of the critical temperature obtained at times t2,
t3, t4, and t5, which are defined in Fig. 1, for the sampling using
(a) the WL algorithm using the 80%-flatness criterion, and
(b) the 1/t algorithm; each histogram is obtained for p =
100 000 independent runs. The vertical line corresponds to the
exact temperature obtained with data from Ref. [45]. To ensure
a proper comparison, the scales are the same in both figures.

In Figs. 6(a) and 6(b), an enlargement of the curves
is shown. To compare them, the curves are adequately
normalized.

It is observed that for t > tx (t3,t4,t5), the curves corre-
sponding to the WL algorithm are superimposed [Figs. 5(a)
and 6(a)], which is in agreement with the discussion above,

(a)

(b)

FIG. 6. Magnification of the curves described in Fig. 5. All the
curves are normalized to 1 for comparison purposes.

i.e., the standard deviation is constant. On the contrary, for
the 1/t algorithm, the standard deviation decreases with time
[Figs. 5(b) and 6(b)]. Note that at t = t2, the curves coincide
within statistical error. This is due to the fact that this takes
place in stage (a) of the 1/t algorithm, which coincides with
the WL algorithm. In the rest of this section, the dependence
of the errors as a function of the number of walkers m, for a
fixed value of time t , is discussed.

To get the DOS and the observables using the so-
called m-random-walkers algorithm, one proceeds as follows:
(a) the running time is fixed to a certain value, t = t ′, and
then S(E,t = t ′) = ln g(E,t = t ′) is obtained for all values
of E; (b) the algorithm is executed by m independent
random walkers; and (c) the quantities of interest are averaged
adequately.

The error in the calculation of the DOS as a function of
the number of walkers, using the WL and 1/t algorithms,
is shown in Figs. 7(a) and 7(b), respectively, where t ′ takes
the following values: t1 = 3 × 104 MCS, t2 = 1 × 105 MCS,
tx = 1.4 × 105 MCS, t3 = 3 × 105 MCS, t4 = 1 × 106 MCS,
and t5 = 3 × 106 MCS (indicated by vertical dotted lines in
Fig. 1).

As observed, the error decreases with the number of walkers
as 1/

√
m, and for a certain value of m it loses this functionality,

approaching a constant value, i.e., the error is saturated with the
number of walkers. However, this behavior presents different
characteristics depending on the algorithms used.

For t < tx , the 1/t algorithm is still in the WL regime
(see Fig. 1). Therefore, it should be expected that the
errors are statistically the same. In fact, this is confirmed in
Figs. 7(a) and 7(b), where the error curves corresponding to
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(a)

(b)

FIG. 7. Behavior of the error as a function of the number of
walkers for the calculation of the DOS, using the WL algorithm
(a) and the 1/t algorithm (b). In both figures, the curves are shown in
decreasing order according to the times t1, t2, tx , t3, t4, and t5, which
are defined in Fig. 1. The dotted line with slope 1/

√
m is shown

for comparison. The data represent the average of 100 independent
realizations (p = 100).

t1 = 3 × 104 MCS and t2 = 1 × 105 MCS (the first two curves
from top to bottom) are the same. The error decreases with the
number of walkers as 1/

√
m for m � 100 for the top curve, and

for m � 400 for the next curve; then it loses this functionality,
approaching a constant value. In other words, there is a critical
number mx that separates these two regimes, such that, for
m < mx , the error goes as 1/

√
m, and for m � mx , the error

reaches a constant value (saturation value).
Although this behavior is observed in all cases, the error

calculated by the WL algorithm for t � tx has a peculiar
characteristic, i.e., all the error curves collapse into a single
curve [see Fig. 7(a)]. That means that, for t � tx , mx is the same
for all curves, while in the 1/t algorithm, the error curves do
not collapse [see Fig. 7(b)], and therefore mx increases with
time.

It is important to note that the WL algorithm does not
determine the saturation time, tx , which is critical when
running the algorithm properly, since for longer times it
becomes an unnecessary calculation. Therefore, the WL
algorithm could be inefficient, since for t � tx the error curves
collapse into one, regardless of the number of walkers used.
For example, in this particular system (a two-dimensional
Ising model with size L = 8, periodic boundary conditions,
and using the 80%-flatness criterion), the saturation time
is tx ≈ 140 000 MCS and the critical number of walkers is
mx ≈ 400. By simple inspection of the figure, it seems to be
impossible to obtain an error below 10−4 in the calculation
of the DOS using the WL algorithm, either by increasing the
running time (t > tx) or the number of walkers (m > mx).

This behavior is also observed in the calculation of the
critical temperature Tc with the number of walkers m [see
Figs. 8(a) and 8(b)], and in the continuum approximation, i.e.,

(a)

(b)

FIG. 8. Behavior of the error as a function of the number of
walkers for the calculation of the critical temperature using the WL
algorithm (a) and the 1/t algorithm (b). The parameters are the same
as in Fig. 7. The data represent the average of 100 independent
realizations (p = 100).

the multidimensional numerical integration to calculate the
number π [see Figs. 9(a) and 9(b)].

The effect of the size of the system on the behavior of error
in the calculation of the DOS can be important for real systems.
However, the characteristics described above are expected to
be the same for small systems. That is, if there is a number of
walkers mx to which the error saturates for a small system, this

(a)

(b)

FIG. 9. Behavior of the error as a function of the number of the
walkers for the calculation of number π , using the WL algorithm
(Fig. 9a) and the 1/t algorithm (Fig. 9b). In both figures, the curves
are shown in decreasing order according to the times t1,t2,tx,t3,t4 and
t5, defined in Fig. 1. The parameters are the same as in Fig. 7. The
data represent the average of 100 independent realizations (p = 100).
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(a)

(b)

FIG. 10. Behavior of the error as a function of the number of
walkers for the calculation of the DOS for a window of 300 energy
sites, corresponding to a two-dimensional Ising model with size L =
64, using the WL algorithm (a) and the 1/t algorithm (b). The data
represent the average of 100 independent realizations (p = 100).

must occur to a larger system. To confirm this, in Fig. 10 the
behavior of the error in the calculation of the DOS is shown
as a function of m for a window of N = 300 energy sites,
corresponding to a two-dimensional Ising model with size L =
64. The energy range is between (−0.29,0] (energy per sites).
This is a usual size of window used in this particular case. As
shown, the general behavior is the same as that described in
the previous cases.

Figure 11(a) shows the behavior of the mean value of the
critical temperature Tc as a function of m at a fixed time
t5 = 3 × 106 MCS, using WL (open symbols) and 1/t (filled
symbols) algorithms; the error bars (Tc ± σm√

m
) are also shown.

The data represent one realization (p = 1). The exact value
of the critical temperature, T exc

c , is indicated with a horizontal
line.

The mean value calculated by the WL algorithm is farther
away from the exact value of Tc than that calculated by the 1/t

algorithm. The standard deviation remains constant in both
cases. The value of σ for the WL algorithm is always greater
than that corresponding to the 1/t algorithm; this is confirmed
in Fig. 11(b). Looking at Fig. 11(a), one can observe that the
systematic error, which is a measure of the distance between
the average value of the calculated critical temperature and
the exact one, is greater than the statistical error for increasing
values of m for both algorithms.

With respect to understanding the reason for the saturation
of the DOS to the number of walkers, in Fig. 12 we show the
behavior of the normalized DOS as a function of E/L2. Note
that the DOS is normalized to the mean value. Different values
of m are used (in the figure, the values of m increase from top
to bottom at E/L2 = 0) at fixed time t ′ = 10 000. Note that
the DOS approaches some limiting value S(t) = Slim(t ′) (thick
black line), which differs from the exact one (dotted line). It
is interesting to note that the growth of the DOS is skewed,

(a)

(b)

FIG. 11. (a) Behavior of the mean value of the critical temper-
ature, Tc, as a function of the number of walkers m for the WL
algorithm and the 1/t algorithm, calculated at fixed time t = t5; the
confidence interval is also shown for both curves. (b) Behavior of
the standard deviation as a function of m for both the WL and 1/t

algorithms. Filled (empty) symbols represent 1/t (WL) procedures,
respectively.

because it overestimates the most likely energy configurations
(central part of the energy range) and underestimates the less
likely energy configurations (left and right parts of the energy
range). If one measures the DOS as a function of m, the value
of S(t ′,m) will approach Slim(t ′) and not the exact value, as
1/

√
m (thin black line in Fig. 12). For m > mx , the mean

FIG. 12. Density of state (DOS) for a fixed value of t ′ = 10 000
MCS, and different values of m (m = 10,20,30,40, . . . ,200,2000,
from top to bottom in E/L2 = 0). In this case, the critical value of
the number of walkers is mx = 100. The exact value of the DOS is
denoted by a dotted line.
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value will not be altered by new measurements because they
will not differ from it. That is, the mean value is more accurate,
but it differs from the exact one, i.e., the exactness does not
change for m > mx .

For t ′ < tx , Slim(t ′,m) changes with time for both algo-
rithms. However, for t ′ > tx the behavior is very different. In
fact, for the WL algorithm, Slim(t ′,m) does not change in time
(it is frozen). Then, regardless of the number of walkers used
to calculate it, the mean value is also saturated. In other words,
mx does not change, and the error curves collapse into a single
one [see Fig. 7(a)].

On the contrary, for the 1/t algorithm, for t ′ > tx , Slim(t ′,m)
approaches asymptotically the exact value. The longer the
time, the closer to the exact value. Therefore, mx changes
with the value of t ′.

From the above, it is clear that by increasing the running
time, the 1/t measurement can be improved, but not the WL
measurement, since for t > tx any measurement will saturate.
On the other hand, it makes no sense to increase the number
of walkers above a critical value mx , since it does not reduce
the error in the calculation. Therefore, the number of walkers
does not guarantee convergence.

Summarizing, for a single random walker one can write

lim
t→∞ εWL(t) → const (12)

for the WL algorithm, and

lim
t→∞ ε1/t (t) → 0 (13)

for the 1/t algorithm; while for m-random walkers,

lim
m→∞ εWL(t,m)|t=t ′ → C1, (14)

and for the 1/t algorithm,

lim
m→∞ ε1/t (t,m)|t=t ′ → C2, (15)

where C1 and C2 are constants that fulfill the following
conditions: for t < tx , C1 = C2, while for t > tx , C1 > C2.

IV. CONCLUSIONS

Before presenting the conclusions about the convergence
problem of the m-random walkers, it is convenient to revisit the
convergence properties of a single random walker. It has been
demonstrated analytically that the exponential decrease of the
modification factor, F = ln f , with the number of iterations is
the reason for the saturation of the error in the WL algorithm
with a single random walker.

One important conclusion that has not been mentioned
before is that for the WL algorithm, the error is proportional to√

ln fk , provided that the time t < tx ; in other words, the con-
jecture of Zhou and Bhatt is only valid for ln fk � 1/t . By con-
trast, for the 1/t algorithm, the conjecture is valid for all time.

An interesting feature of the single random walker is
the comparison between the statistical and systematic errors.
The first one is proportional to the standard deviation, while
the second one is proportional to the distance between the
mean value and the exact one. As discussed in the text,
one can observe that the standard deviation for the WL
algorithm for t > tx remains constant, while for the 1/t

algorithm it decreases as 1/
√

t . Thus, the statistical error

for the WL algorithm is greater than that corresponding to
the 1/t algorithm. On the other hand, the systematic error
corresponding to the WL algorithm remains constant, while
for the 1/t algorithm it decreases as 1/

√
t [see Fig. 1(b)].

There are convergence problems associated with the build-
ing of the density of states, and consequently the calculation
of different observables, by using entropic sampling methods
(WL and 1/t algorithms) with multiple random walkers. In
fact, if the error is calculated using m experiments (walkers)
at a fixed time, t , it decreases with the number of walkers
as 1/

√
m until it reaches a certain value of walkers m = mx

from which it saturates. This critical number mx separates
these regimes, such that, for m < mx , the error goes as 1/

√
m,

and for m � mx , the error reaches a constant value (saturation
value). The critical value mx depends on the characteristics of
the system (size, interactions, connectivity, etc.).

The saturation of the error with the number of walkers is
observed in the WL algorithm as well as in the 1/t algorithm.
However, there are substantial differences for both algorithms.

As observed, the critical value mx is lower in the WL
algorithm than in the 1/t algorithm. Moreover, the saturation
for the 1/t algorithm occurs at a very high number of walkers.
On the other hand, the WL algorithm presents a peculiar
behavior, that is, for t � tx , all the error curves calculated
by the m-walkers collapse into a single curve, while in the
case of the 1/t algorithm the error curves do not; therefore, it
makes no sense to run the WL algorithm for t > tx .

It is shown that the statistical error is reduced with the
number of walkers. However, the systematic error depends on
the algorithm. It is also shown that the WL algorithm presents a
systematic error that is not reduced with the number of walkers;
the precision increases but not the exactness.

For a given system, the WL algorithm cannot calculate the
DOS with greater accuracy than a certain value, even when
the time is increased (t tends to infinity) or the number of
walkers is increased (m tends to infinity). However, with the
implementation of the 1/t algorithm, the error will always be
reduced because there is no saturation in time.

Summarizing, one can claim that the 1/t algorithm is
convergent. That is, the error in calculating the density of states
versus time tends to zero as t tends to infinity. This was previ-
ously demonstrated numerically [20] and analytically [21,23].
In contrast, the WL algorithm is not convergent, i.e., the error
saturates at a finite time.

The 1/t algorithm is always more efficient than the WL
algorithm, even when it is as a function of the number of
walkers. However, to calculate the DOS with high accuracy
by using the 1/t algorithm, it is better to run the algorithm
as a function of time and not as a function of the number of
walkers.

In conclusion, it makes no sense to increase the number of
parallel programs (number of walkers) above a critical value
mx , since it does not reduce the error in the calculation. The
number of walkers does not guarantee convergence.
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