PHYSICAL REVIEW B 81, 092502 (2010)

Direct determination of the collective pinning radius in the cuprate superconductor
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We study the onset of the irreversible magnetic behavior of vortex matter in micron-sized Bi,Sr,CaCu,Og, s
single crystals by using silicon micro-oscillators. We find an irreversibility line appearing well below the
thermodynamic Bragg-glass melting line at a magnetic field which increases both with increasing the sample
radius and with decreasing the temperature, paradoxically implying the existence of a reversible vortex solid.
We show that at this irreversibility line, the sample radius can be identified with the crossover length between
the Larkin and the random-manifold regimes of the vortex-lattice transverse roughness. Our method thus
allows to determine, as a function of temperature and applied magnetic field, the minimum size of a vortex
system that can be collectively pinned, or the so-called three-dimensional weak collective pinning Larkin

radius, in a direct way.
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The frustrating competition between elasticity and disor-
der is at the root of the universal glassy behavior displayed
by many physical systems. These include periodic systems
such as charge-density waves'? and Wigner crystals® or in-
terfaces, such as magnetic*~® and ferroelectric’ domain walls,
liquid menisci,® and fractures.” Among these systems, super-
conducting vortex lattices provide an exceptional test ground
for the theory of elastic objects embedded in a random
quenched environment since their density and interactions
can be experimentally tuned.

Larkin and Ovchinikov!? demonstrated the unavoidable
impact of arbitrarily weak disorder on an otherwise perfect
elastic lattice. To produce a measurable pinning however, a
weak disorder has to act in a minimum region of space in
order to compete with the elasticity which dominates the
physics at smaller scales. It is the finiteness of the so-called
Larkin lengths which fundamentally explains the mere exis-
tence of pinning and measures its effective strength on the
extended system.!! In the modern elastic theory, designed to
correctly describe the large-scale static and dynamical uni-
versal behavior of elastic manifolds, the Larkin lengths are
the fundamental input for making quantitative predictions for
a given experimental system. Determining the Larkin
lengths, in general, and for a vortex lattice in a high-7,. su-
perconductor, in particular, remains a difficult challenge
however. Indirect empirical estimates based on transport
properties such as the critical current or the creep barriers are
an alternative but they spoil precise comparisons between
experiments and theory. Recently, an experimental finite-size
analysis was applied to determine the characteristic dynami-
cal length, predicted by the (bulk) elastic theory, controlling
the domain-wall creep motion in ferromagnetic nanowires.®
Here we report a finite-size study in micron-sized supercon-
ductors showing how collective pinning arises from weak
disorder at the so-called vortex-matter Larkin radius that we
determine in a direct way.

The elastic theory characterizes the translational order by
the roughness function W(r)=([u(r)-u(0)]?), with u(r) the
vortex displacement field with respect to the perfect lattice.
For the Bragg-glass (BG) phase,!? expected for weak pinning
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at low enough temperatures, a logarithmic growth of W is
predicted at large distances. At short distances however, we
have a Larkin regime where displacements grow as
W~r*4 with d=3 the internal dimension of the elastic
manifold. A crossover to the random-manifold (RM) regime
at a distance r,. occurs when displacements are comparable to
the pinning force range r,, such that W(r,) ~ r[2,. For a super-
conductor with vortices directed along the direction Z of an
external magnetic field, this crossover defines the longitudi-
nal (L.=|r..Z]) and transverse (R.=|r.—L.Z|) Larkin
lengths. Besides describing a geometrical crossover, the Lar-
kin lengths also determine the size of the minimum bundle of
vortices that can be individually pinned by the quenched
disorder.'?

We fabricated Bi,Sr,CaCu,0g, s (BSCCO) samples with a
procedure similar to that of Wang et al.'®* Disks of radii
R,=6.75, 13.5, and 25 um, and d=1 um of thickness and
critical temperatures 7,=84.2, 85.3, and 89.6 K, respectively,
were made up by lithography and ion etching and then glued
to high-Q silicon torsional micro-oscillators.'*!> Scanning
electron microscope images of two samples are shown in
Fig. 1.

When a external magnetic field is applied perpendicular to
the superconducting planes and the torsional axis, the change
in the resonant frequency Av, of the oscillator is proportional
to the applied field times the magnetization of the sample
and is independent of the excitation amplitude in the linear-
response regime.'®

In Fig. 2, we plot the results obtained for R;=13.5 um
under two different protocols. In the field-cooled (FC) pro-

FIG. 1. Scanning electron microscope images of two samples
mounted in the silicon micro-oscillators. Left (right) sample of ra-
dius 13.5(25) um. Scale bar: 50 um.
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FIG. 2. (Color online) Change in the resonant frequency of the
oscillator as a function of temperature (1=7/T) for the sample of
radius 13.5 um with an magnetic field of 176 Oe applied perpen-
dicularly to the superconducting planes in a ZFC (dots) and FC
(stars) experiment. Inset: Aw, as a function of H at
T/T=0.58 for two sample diameters. These measurements allow
the determination of the size-dependent irreversibility line.

tocol, we cool the sample below its critical temperature at an
applied field of 176 Oe while registering Av, (upper curve).
In the zero-field-cooled (ZFC) protocol, we cool the sample
at zero field up to the lowest temperature, apply the same
field as before, and then measure Av, while warming up the
sample (lower curve). The onset of irreversibility can be de-
fined at the merging of both curves. Similar data can be
obtained from fields loops at constant temperature as shown
in the inset of Fig. 2. Two features can be readily observed:
the clear size dependence of the irreversibility line and the
wide spanning in temperature of the reversible state com-
pared to that of bulk samples.!” Phenomenologically, revers-
ibility is reached when thermal fluctuations overcome the
strongest pinning mechanism present in the sample. It has
been argued that in this material, geometrical'®!® or surface
barriers?’ were responsible for irreversibility. Several aspects
of the data point against these as the cause of the irrevers-
ibility. Geometrical and surface barriers decreases as the as-
pect ratio (diameter/thickness) increases.”! Our data shows
the opposite behavior, irreversibility is enhanced as the
sample aspect ratio grows as can be directly seen in the inset
of Fig. 2. Moreover, our data does not comply with the pre-
dictions given for the temperature dependence of the geo-
metrical barrier and its scaling with the first penetration
field.?! As it can observed in the inset of Fig. 2, it does not
comply with the expected shape of the magnetization loops
for a surface barrier characterized by a zero magnetization
(i.e., Av,~0 in our case) in the returning field branch.?> We
show, in the following, that these puzzling finite-size effects
can be explained, however by a different and more funda-
mental mechanism.

The observation that the irreversibility lines we find ap-
pear well below the melting line suggests the intriguing ex-
istence of a reversible vortex solid. Since such a conclusion
is inconsistent with the fact that pinning (and thus irrevers-
ibility) is always relevant at large enough length scales,!%-!2
we shall analyze the onset of irreversibility as the finite-size
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FIG. 3. (Color online) Scaling of the irreversibility field (Ref.
23) through the identification of the Larkin radius with the sample
radius at the onset of irreversibility. Inset: nonscaled data for
samples of different radii.

crossover at the vortex-lattice Larkin length. For an applied
field parallel to the ¢ axis, and neglecting the compression
modulus contribution, we can use the Larkin-Ovchinikov
perturbative result,'”

a(z) Lz} 12

3 2
a R
W(r) = r§64[l_0:| |:P + 7

where the so-called single-vortex collective pinning length /.

(1)

absorbs the effective pinning strength,!! a0=(%)”2 is the
lattice constant, N the penetration length, and € the aniso-
tropy parameter.'! At zero temperature, r,= & for point im-
purities, with & the vortex core radius. At high temperatures
however, fast futile thermal vortex motion induces a growth
in r,, thus effectively smoothing the microscopic disordered
potential. Equation (1), which is valid for L.=L>\?/ea,
and R.=R>N\/e (we neglect the dispersivity in the tilt
modulus'®!"), yields

3
Rcz%{i], L=2R, @
do do

for the transverse and longitudinal Larkin lengths, respec-
tively. Pinning, metastability and thus irreversibility (and the
failure of the perturbation theory) sets in at these length
scales. Above R, and/or L., glassy properties are manifested.
In principle, reversible behavior can be thus recovered in
samples of dimensions L,XR,, such that R, <R, and
L,<L,, provided that they still contain a large number of
vortices R,/an>1. Assuming that this is the situation in our
samples, we can get the radius-dependent irreversibility line
B{(T,R,) from the equality R,=R.B;,T), assuming
that L.>L,, Using Eq. (2) we get, B{(T,R,)
~ o[/ N 3l(.(T)‘2Rf/ 3, where we have made the tempera-
ture dependence of the different parameters explicit (we ne-
glect the temperature dependence of N and use its average
value). In Fig. 3, we show that the predicted scaling
Bi~Rf/ 3 produces a good collapse of the irreversibility point
as a function of temperature, for different R,. This supports
our identification of the sample size R, at the onset of
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irreversibility with the Larkin radius, although the condition
R >N/ € is not strictly satisfied for all our samples. Note also
that since R,> L, the assumption L.=R.\/ay>L, is auto-
matically satisfied, as R,/L;>a,/\ for our measurements. In
Fig. 3, we also show that our results can be well described by
the expression, By(R,,T) ~R>? exp(—2T/T,), with a charac-
teristic temperature T,~25 K. Interestingly, Wang et al.'?
have reported size effects at the second magnetization peak
in BSCCO controlled by the same exponential temperature
dependence, with a characteristic temperature of 22.5 K,
very close to our value. In our calculations, the temperature
dependence of B; is exclusively attributed to the parameter /.,
as [.(T) ~exp(T/T,). In order to grasp the physical meaning
of this result, we can assume that [, represents [as it indeed
does in Eq. (1) at zero temperature] the Larkin length of an
isolated vortex at finite 7. An exponential sensitivity
exp[ CT*] is consistent with the marginality of the pinning of
an elastic string in a three-dimensional disordered medium,
and it has been predicted, with C a constant and « an expo-
nent which depends on the precise nature of the disorder
correlator function.'':>* In particular, the value =1 has been
predicted®* for high-T, superconductors for vortex displace-
ments u satisfying é<<u <<\, suitable for our case. More in-
terestingly, the value of T, we get is very close to the one
observed in creep? (~20 K), ac-transverse
permeability?®2®  (~22 K), and  critical  current
measurements®’ (~20 K) in samples of the same material
but with radii one and two orders of magnitude bigger than
ours, using the expected relations of these different quantities
with [.."! Being To~ U,,, with U, the single pancake pin-
ning energy,” the anomalies observed near T, are commonly
attributed to the crossover between a strong zero-
dimensional pinning regime (when [, becomes smaller than
the layer spacing and thus pancakes pin individually) and a
weak three-dimensional (3D) pinning regime (see Kierfield?
for a recent discussion). The temperature dependence of I,
and the fact that for 7> T, we can use 3D weak collective
pinning [Eq. (2)], both relying on bulk pinning properties
rather than on border effects, support our identification of the
Larkin radius.

Our empirical estimate R.(B,T)=~R,[B/BR,,T)]*?
~B¥? exp(T/2T,), for the weak nondispersive pinning re-
gime, implies that in the phase-space region we analyze, very
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big BSCCO samples are necessary to achieve the vortex-
matter thermodynamic limit for 7,<7T=<T,, with T,, the BG
melting temperature. This is relevant for the predicted
crossover in the vortex-lattice roughness, from the RM to the
asymptotic BG regime!> at the characteristic scale
R,=R.(ay/r,)"¢, with {~0.2 the random-manifold rough-
ness exponent.’>3! If we can roughly identify the renormal-
ized pinning range with the thermally induced displacement,
ro~(u?);,"" the Lindemann criterion with constant ¢, ~0.2
lead us to an upper bound for the pinning range, r,=cja.
We thus get RaZRCcZ” {~10°R,. If we evaluate this expres-
sion at T and B~ B/(T,R,), where we have shown that
R.=R, for our three samples, we find that R, is on the order
of 1 cm. Our naive estimate thus indicates that the
asymptotic logarithmic growth, characteristic of the BG
phase, can be only achieved in huge samples in the region of
the phase space we analyze. This striking result seems to be
however consistent with magnetic decoration experiments>’
displaying the random-manifold roughness up to
distances R=~80a,, for which W(R) %0.05(1(2) in the
range B~70-120 G. Note that the naive extrapolation of
the latter to R,, such that W(R,)=a? gives R,~ O(mm), in
fair quantitative agreement with our previous estimate. These
results indicate the remarkable possibility of detecting, in
normal samples, the crossover from the RM to the BG re-
gime at temperatures 7, <7 below the irreversibility line as a
finite-size crossover when R,(B,T)=~R,. This would
provide an independent experimental tool, different from
neutron diffraction,® magnetic decorations,>® or creep
measurements,? to test the predicted geometrical features of
the BG phase'? in these materials.

We have experimentally determined, in a direct way, the
minimum size of an elastic vortex lattice that can be pinned
by weak disorder, by analyzing finite-size crossover effects
in micron-sized high-7.. superconductors. This kind of study,
complemented with micron-scale transport measurements
can lead to a better understanding of the rich multiscale
physics of pinned vortex lattices, and of the universal prop-
erties they share with other pinned elastic manifolds.
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