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Superspace is considered as space of parameters of the supercoherent states defining the
basis for oscillator-like unitary irreducible representations of the generalized supercon-
formal group SU(2m, 2n | 2N) in the field of quaternions H. The specific construction
contains naturally the supertwistor one of the previous work by Litov and Pervushin [1]
and it is shown that in the case of extended supersymmetry such an approach leads to
the separation of a class of superspaces and its groups of motion. We briefly discuss this
particular extension to the domain of quaternionic superspaces as nonlinear realization
of some kind of the affine and the superconformal groups with the final end to include
also the gravitational field [6] (this last possibility to include gravitation, can be realized

on the basis of Ref. 12 where the coset
Sp(8)

SL(4R)
∼ SU(2,2)

SL(2C)
was used in the non supersym-

metric case). It is shown that this quaternionic construction avoid some unconsistencies
appearing at the level of the generators of the superalgebras (for specific values of p and
q; p + q = N) in the twistor one.
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1. Introduction

There are three main approaches to the construction of supersymmetric theories
[2]. In the first the supersymmetry is realized on fields, while in the second directly
on the superspace. The third approach is based on the assumption of the simplest
structure elements of superspace called supertwistors [1, 3].

The particular geometrical environment of this approach, plus the explicit
covariant formulation appears as the main advantage over the standard compo-
nent one. The most important problem of the superfield approach is the explicit
formulation in terms of unconstrained superfields [3]. One way to deal with this
issue is with twistors. If one begins with twistors, the compact complex version of
the Minkowski superspace M is naturally realized as a flag space. The geometry of
the flat case corresponding to N = 1 (the minimal number of odd coordinates) turns
into the geometry of the simple supergravity model of Ogievetsky and Sokatchev
[4] after a convenient twist.

In this paper, because we are interested in the number of parameters of the
super-Lorentz transformations and the number of the Goldstone modes, we extend
the supertwistor construction of Ref. 1 to the quaternionic one. We expect that
this particular extension, that is justified by the Ogievetsky theorem [5] to the
domain of superspaces, will be bring us the correct number of fields of the stan-
dard model as the simultaneous nonlinear realization of some kind of the affine
and the superconformal groups [6–9], with the final end to include also the gravi-
tational field [6] (this last possibility to include gravitation, can be realized on the
basis of the reference [12] where the coset Sp(8)

SL(4R) ∼ SU(2,2)
SL(2C) was used in the non-

supersymmetric csase). Consequently, we close this paper with a short discussion
about the kinds of possible supergroups able to support a twistor and a quaternionic
structure.

2. Quaternionic Construction

The link between a (super) twistor space T and the (super) quaternionic one H is
through the natural symplectic structure of H (see in other contexts, for example
[11]). Because the minimal quaternionic realization is in a 2 × 2 complex matrix
structure (e.g. R⊗SU(2)), the supertwistor construction only can be implemented
for an even number of components in a matrix realization as we will show below.
Now we will construct the quaternionic superextension analog to the twistorial one
in paper [1].

2.1. Supertwistors

In the twistor theory our starting point is a complex space CM ∼ C2,4(T ). By
using the correspondence with null twistors we can successfully separate from
it, the real Minkowski space M invariant with respect to the conformal group.
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The complex space CM in its compactified form, also contains S4. For this space, the
twistor correspondence can be introduced as follows. Reality of the space S4 doesn’t
follows, as in the Minkowski case, from the nullification of some kind on twistors.
It follows from the invariance under an antilinear mapping ρ : C4 → C4, ρ2 = −1.
Then, is clear that this mapping represents the multiplication by the standard
quaternionic unit due C

4 ∼ H. Because the space S4 is not invariant under SU(2, 2)
we have to take the covering group of the complexified SU(2, 2) group. The direct
possibility is, for example, SL(4,C) which covers simultaneously SO(6,C) and S4

being consequently invariant with respect to SL(2,H): its real form which covers
SO(5, 1).

When we pass to supertwistor space there exists similar mapping in analogy with
the ρ in the non-susy case but only for N even. Then, if we assume N = 2(p+q) the
quaternionic structure can be introduced. This can be realized taking into account
that the quaternions can be written as H = C⊗ C e.g.: the first quaternionic unit
in the field of H is identified with the imaginary unit in C. Consequently, any q ∈ H

can be written as

q = a+ b̂i2, a, b ∈ C(̂i1), (1)

where C(̂i1) is the complex space with the first quaternionic generator as imaginary
unit.

To make explicit connection between the quaternionic structures in supertwistor
spaces, we only need to introduce 2 × 2 matrices by each element of the stan-
dard supertwistors operators. For instance, is clear that under conjugation any
supertwistor(standard notation, internal fermion indices dropped) (ω, π, θ) goes to
(ω = εω∗, π = επ∗, θ = εθ∗) where:

ε =

(
1

−1

)
. (2)

Remark 1. In the pure twistor theory we need to use of the correspondence with
null twistors in order to separate from the twistor complex space C2,4(T ) the real
Minkowski space M invariant with respect to the conformal group. Because in
the quaternionic case the twistor constructions don’t follows from nullification of
some kind of twistors (as in Minkowski space) but through the invariance under an
antilinear mapping ρ : C4 → C4, ρ2 = −1, (C4 ∼ H), we have not singularities of
the super-generators of the theory. Also is possible to have an alternative consistent
quantum-field theoretical construction to the ligh-cone one.

2.2. L and R subspaces

Although in the simplest case in four spacetime dimensions, it is neccesary to find
the elements from L and R subspaces invariant under the ρ map. We are interested
in the (2, 0) and (2, N) subspaces in the field of the quaternions. As is the standard

1650113-3



2nd Reading

July 1, 2016 13:19 WSPC/S0219-8878 IJGMMP-J043 1650113

D. J. Cirilo-Lombardo & V. N. Pervushin

supertwistor case, we can establish an incidendence condition to determining (2, 0)
subspace in full quaternionic form as follows:

q = wp, s = ηp, (3)

where q, p and s are quaternions (or higher-dimensional quaternionic matrices) con-
structed as in the previous paragraph, and w and η are quaternions obtained via
correspondence:

a+ b̂i2 ↔
(
a −b∗
b a∗

)
. (4)

As it is clear, we get the quaternionic superspace H(1 |N) with projective coordi-
nates on P (H(2 |N)) defined as qp−1 = w, sp−1 = η. For example, if the super-
group SL(2,H |N) acts on H(2 |N), knowing that SO(5, 1) ⊂ SL(2,H |N,H), then
we obtain the transformations of the quaternionic superspace including the S4

(Euclidean) conformal transformations. Let us to consider the complexification of
the SU(2, 2 | 2N) supergroup, namely the supergroup SL(2,H |N) ∼ SL(4,C | 2N)
and let us to take its real form which preserves the reality of the map ρ in the
sense, for example, which maps the given subspace S4 onto itself. The infinitesimal
transformation from can be written as:


δωα

δπα′

δθi

 =



lαβ +
(D +G)

2
δα
β aαβ′

ψα
j

bα′β −kβ′
α′ − (D −G)

2
δβ′
α′ ϕα′j

ξi
β χiβ′

Si
j +

2G
N
δi
j



ωβ

πβ′

θj

, (5)

where l, a, b, k are quaternion-valuated parameters. These parameters of SL(2,
H |N) are restricted by the requirement of conservation of ρ-invariant subspaces.
Finally, due to the quaternion-twistor correspondence, these transformations can
be related with the quaternion-valuated spaces EN

R , E
N
L and E0.

2.3. Quaternionic superspace

We know that the equations relating the B0 and B1 parts of the superspace in the
case of supertwistors can be in terms of quaternions as follows.

(i) The fundamental representation can be descomposed, in principle, as in the
case of [1] as

U = t · h, (6)

where h is an element of the maximal compact subgroup S(U(2m) × U(2n))
and t of the corresponding coset space SU(2m;2n)

S(U(2m)×U(2n)) . Explicitly

h = exp

[
i

(
χ 0

0 ε

)]
=

(
µ 0

0 υ

)
(7)
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and

t = exp

[
i

(
0 ν

ν 0

)]
=

1√
1− ZZ

(
I Z

Z I

)
, (8)

where

ZA
B =

[
Tanh

√
νν√

νν
ν

]A

B

(9)

with νA
B is a quaternionic matrix that can be generically represented by a

complex (2(m+p)×2(n+ q))-matrix νiα(i = 1 · · · 2(m+p);α = 1 · · · 2(n+ q))
with

νiα = J ijJ αβνjβ , (10)

where J ij ,J αβ are the (2m+ 2p; 2n+ 2q) matrices (obvious generalization of
the standard εαβ that introduces the corresponding symplectic structure [10])
such that:

J = −J T = −J † = −J −1. (11)

The convenient representation is the canonical symplectic matrix

J =



0 1

−1 0

0 1

−1 0

·
·

0 1

−1 0


(12)

consequently νiα has 4(m+ p)(n+ q) degrees of freedom.
(ii) The metric constraint is invariant under Usp(m | p) × Usp(n | q)≈SU(2m | 2p)
×SU(2n | 2q) transformations

ν′ = g · ν · h, (13)

where g, h are unitary matrices of dimension 2(m+ p), 2(n+ q) respectively.

g · Jm · gT = Jm, h · Jn · hT = Jn. (14)

This constraints and the unitarity condition are the defining propierties of the
Usp-groups, even in the SUSY case. The Lie algebra is spanned by independent
complex 2m× 2n-dimensional generators A = J ·X , with

A = −A† or X = J ·X† · J (15)

and

A · J + J ·A† = 0 or X = XT . (16)
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3. The Super-Hilbert Space

The starting point is the Lie superalgebra coming from the Poisson structure of the
Manifold:

[f, g] = f

←−
∂

∂T̃R
(ω−1)R

S

−→
∂

∂TS
g (17)

we obtain the following set of Poisson bracket relations between the quaternionic
valuated variables:

[µα
m, λβn] = δα

β δmn, [λ ·
βn
, µ

·
α
m] = δ

·
α
·
β
δnm, (18)

[−ξir, ξj
s ] = −δj

i δrs, [−ηkt, η
l
u] = −δl

kδtu. (19)

Therefore, for generalized quaternion-valuated supertwistors T, T̃ we directly
have

[T̃R, TS} = δR
S (20)

with

TR =

(
ξA

ηM

)
T̃R = (ξA,−ηM ) (21)

such that

ξA, ηM ∈ Hn. (22)

The superspace Z has the following general form (we follow notation from [1])

Z†A
B =

2n+2q︷ ︸︸ ︷(
Xa

m θi
m

χa
l λi

l

)2m+ 2p (23)

it represents the space of parameters of quaternionic supercoherent states, depend-
ing on the structure of the supercoset space. The above quaternionic supermatrix
acts over the following quaternionic supervectors

ξA = (ac,−ξi); ξA =

(
a†c
ξ†i

)}
2n+ 2q, (24)

ηM =

2m+2p︷ ︸︸ ︷
(b†m, η†l); ηM =

(
bm

ηl

)
, (25)

where we have defined

a†c =
1√
2
(λα + µ

·
α), (26)

bm = − 1√
2
(λα − µ

·
α). (27)
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The explicit superfield coherent state reads as

|ΦA···
B···(Z)〉 = eηM Z†A

M ξA |ΦA···
B···〉0, (28)

= exp[b†m(Xa
ma

†
a + θi

mξ
†
i ) + η†l(χa

l a
†
a + λi

lξ
†
i )]|ΦA···

B···〉0. (29)

The Grassmann character of the matrix coefficients, restricts the number of terms
in (28) (see appendix):

ΦA···
B···(Z) =

2p∑
n1=0

1
n1!

(b†mθi
mξ

†
i )

n1

2q∑
n2=0

1
n2!

(η†lχa
l a

†
a)n2

×
min(p,q)∑

n3=0

1
n3!

(η†lλi
lξ

†
i )

n3fA···
B···(x), (30)

where

fA···
B···(x) = eb†mXa

ma†
a |ΦA···

B···〉0. (31)

4. Quaternionic Supercoherent States

4.1. Some examples

(i) The basis in the simplest cases is the superalgebra U(1, 1 | 1,H) that contains
as subgroups U(1, 1; H) ∼ SO(1, 4) and U(1,H) ∼ SO(2). It is determined by
infinitesimal transformations preserving the scalar product qaqa−qbqb +ηe2η where
η is a standard Grassmann quaternion and e2 is the B1 part of the supermetric.

(ii) For example, a more complicated case is in the field of H with p = 2 and q = 2,
(that is the quaternionic analog of the SU(2, 2 | 8) with N = 8 = p+q → p = 4, q =
4). In this case we have the following scalar quaternionic superfield:

Φ(Z) = f(x) + θ
i

mχ
a
kf(x){mk}

(ia) + θ
i

mθ
j

nχ
a
kχ

b
l f(x){mnkl}

(ijab) (32)

which is a supermultiplet with helicities ranging up to |s| = 2 and the multiplicities
of the quaternionic N = 4 (complex N = 8) Maxwell supermultiplet. There is one
more condition to be fulfilled by the quaternionic wave function:

1
2
T̃ T |ΦA···

B···(Z)〉 = 0 (33)

because, in this particular case, T̃ T is a U(1, 1 | p + q,H) invariant quantity, this
condition transforms into:[

ŝ− 1
2
(Fξ + Fη) +

1
4
(p+ q)

]
|ΦA···

B···(Z)〉 = 0, (34)

where ŝ is the U(1, 1,H)-invariant helicity operator and Fξ, Fη are the quaternion-
valuated fermion number operators. The above condition plus the annihilation of
the vacuum by all L− and R− operators determine the structure of the lowest states
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univoquely as follows:

|ΦA···
B···〉0 = exp[b†m(Xa

ma
†
a + θi

mξ
†
i

+ η†l(χa
l a

†
a + λi

lξ
†
i )]a

†
{aa

†
b}b

†{mb†n}|0, 0〉. (35)

Remark 2. Notice that the quaternion-Casimir given by expression (33) shows
that for p = q in this H-formulation we have fundamental representation in a sharp
contrast with the purely C-supertwistor one (where the last term into the helicity
operator goes as (p− q))(see [1]).

5. Concluding Remarks and Outlook

The results concerning to this preliminary work can be enumerated in the following
points:

(1) We have been extended the supertwistor construction [1] to the quaternionic
one.

(2) We are capable to extend, accordling to this new quaternionic description,
the number of fermionic fields beyond the pure supertwistorial one avoiding
(because the division ring structure) the singularities in the representation of
the supergenerators.

(3) Some corresponding cosets (with some examples) have been identified, remain-
ing they as a characteristic subset of the quaternionic superextensions with the
full supertwistor propierties (e.g. arising from the super light cone structure).

(4) We have obtained the corresponding coherent super-quaternionic states span-
ning the super-Hilbert spaces.

In a separate paper [9], the interesting cosets from which we are able to per-
form the nonlinear realization in order to obtain the super-analog of the Borisov–
Ogievetsky one [6] (e.g. to obtain the corresponding number of Goldstone fields
for the standard model) will be discussed and an alternative to the light cone con-
struction will be perfomed. Moreover, the more important task that remains is to
perform explicitly the super-analog of the Borisov–Ogievetsky nonlinear realization
in the same way as [12] developing consequently the same analysis and physical
construction as [13].

Appendix A. Grassmann Quaternion

Theorem A.1. A Grassmann quaternion, as in the case of the standard one with
coefficient s ∈ R can be written as Ψ = A(r)eiθΣ with A and Σ matrices depending
of four different (anticommuting) Grassmann numbers, with Σ2 = 1.

Proof. A Grassmann quaternion is described by the following matrix

Ψ =

(
ψ0 + iψ3 −ψ2 + iψ1

ψ2 + iψ1 ψ0 − iψ3

)
(A.1)
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with ψa (a = 0 · · · 3) Grassmann numbers. We introduce polar coordinates as

ψ0 = r cos θ = r · 1
ψ1 = r sin θ sinφ cosχ = r · θ · φ · 1
ψ2 = r sin θ sinφ sinχ = r · θ · φ · χ
ψ3 = r sin θ cosφ = r · θ · 1


Grassmann
coefficients,

(A.2)

where r, θ, φ, χ are also Grasmann numbers. Then (35) can be written as follows:

Ψ = A(r)eiθΣ (A.3)

with

A(r) = rσ0, σ0 = I2×2, (A.4)

Σ =

(
cosφ sinφeiχ

sinφe−iχ − cosφ

)
=

(
1 φ(1 + iχ)

φ(1 − iχ) −1

)
, (A.5)

where the last matrix in the RHS of the above expression coming from the
Grassmann properties of the corresponding coefficients. Notice that automatically
Σ2 = 1, consequently the concrete construction proposed in this paper is faithful
and consistent with the J −matrix and the quaternionic supervectors ξA and ηM .
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