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Abstract

It is well known that five-point function in Liouville field theory provides a representation of solutions of theSL(2,R)k
Knizhnik–Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to stu
aspects of the spectral flow symmetry ofŝl(2)k affine algebra and its action on the observables of the WZNW theory
illustrate the usefulness of this method we rederive the three-point function that violates the winding number inSL(2,R) in a
very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik–Zamolo
equation.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Spectral flow symmetry of̂sl(2)k affine algebra induces the identification between some states belong
discrete representations ofSL(2,R)k ; namely, the identification between states of the of representationsD±

j and

D∓
k/2−j (see Ref.[1]; see also Ref.[2] for previous studies on spectral flow symmetry). At the level of four-p

correlation functions, such identification is realized by identities between different solutions of the Kniz
Zamolodchikov equation (KZ) (see Ref.[3]). In Ref. [4] it was pointed out that the description of the four-po
functions of theSL(2,R)k CFT in terms of the Liouville five-point function leads one to interpret the action o
spectral flow as yielding a simple Liouville reflection transformation. Hence, this “Liouville description” o
SL(2,R)k correlators turns out to be a useful tool to work out the details of certain symmetries of KZ eq
which, otherwise, would remain hidden within the original picture.

✩ Based on a talk given at the Workshop on Non-Perturbative Gauge Dynamics (SISSA, Trieste, 2005).
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Actually, the aim of this Letter is that of studying the manifestation of the spectral flow symmetry as en
in the symmetries of the four-point correlators by means of this method. Moreover, we extend the discussio
case of otherZ2 transformations.

1.1. The method

1.1.1. The five-point function in Liouville field theory
Let us begin by considering the quantum Liouville field theory of central chargec = 1+6Q2, with Q = b+b−1.

The Liouville fieldϕ(z) transforms under holomorphic coordinate transformationsz → z′ as follows:

(1)ϕ(z) → ϕ(z′) = ϕ(z) + Q log

∣∣∣∣ dz

dz′

∣∣∣∣
and satisfies the asymptotic behaviorϕ(z) + 2Q log|z| ∼ O(1) for large |z|. This specifies the boundary cond
tions for the theory on the sphere (see[5] for an excellent review). Here, we want to consider correlation funct
involving local primary operatorsVα(z) with conformal dimension∆α = α(Q − α). These operators can be r
alized by the exponential formVα(z) ∼ e

√
2ϕ(z), where the Liouville field that satisfy the free field correla

〈ϕ(z)ϕ(0)〉 = −2 log|z|. These obey

(2)VQ−α(z) = Rb(α)Vα(z),
〈
Vα(z1)Vα(z2)

〉 = |z1 − z2|−2α(Q−α)Rb(α),

whereRb(α) is the Liouville reflection coefficient, given by

(3)Rb(α) = −
(

πµb−2b2 �(1+ b2)

�(1− b2)

)1+b−2−2αb−1

b−2�(2bα − b2)�(1+ b−2 − 2b−1α)

�(2b−1α − b−2)�(1+ b2 − 2bα)
,

and where the Liouville cosmological constantµ can be chosen asµ = π−2 for convenience. A consequence
(2) is the following operator-valued relation

(4)
〈
Vα1(z1)Vα2(z2) · · ·VαN

(zN)
〉 = Rb(α1)

〈
VQ−α1(z1)Vα2(z2) · · ·VαN

(zN)
〉
,

and the same for any of theN vertex operators.
For our purpose, we are interested in the five-point function (N = 5). This will be denoted as

(5)ALiouville
α1,α2,α5,α3,α4

(x, z) = 〈
Vα2(0)Vα1(z)Vα5(x)Vα3(1)Vα4(∞)

〉
.

The conformal blocks of this correlators and the connection with the analogous quantities in WZNW theo
discussed in detail in[10].

Now, let us move to the WZNW theory which is the second ingredient for the method to be used.

1.1.2. The four-point functions in the SL(2,R)k WZNW model
We consider theSL(2,R)k WZNW model. In particular, we concern about the four-point function. This

servable is constructed by a sum over the conformal blocks of the theory. Conformal blocks are solution
Knizhnik–Zamolodchikov equation labeled by the internal quantum numberj that is interpreted as the momentu
of the interchanged states in the factorization procedure. Here, we are interested in correlators of the form

(6)AWZNW
j1,j2,j3,j4

(x, z) = 〈
Φj2(0,0)Φj1(x, z)Φj3(1,1)Φj4(∞,∞)

〉
that involves the local primary fieldsΦj(x, z). These operators are associated to the analytic continuation o
ferentiable functions on theH+

3 = SL(2,C)/SU(2). The complex variablex permits to order the representatio
of SL(2,R) as follows:

(7)J a(z)Φj (x, z′) = 1
′ Da

xΦj (x, z) + · · · ,

(z − z )
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wherea ∈ {±,3} correspond to theSL(2,R) generatorsJ a , realized by

(8)D−
x = x2∂x − 2jx, D+

x = ∂x, D3
x = x∂x − j.

This representation is often employed in the applications to string theory inAdS3 space since it provides a cle
interpretation of theAdS3/CFT2 correspondence (see[6] for a detailed description of functionsΦj(x, z) within
this context).

1.1.3. The Fateev–Zamolodchikov correspondence
Once correlation functions in both Liouville and WZNW theories were introduced, we undertake the t

connecting them. Certainly, it is feasible to express the four-point functionsAWZNW
j1,j2,j3,j4

in terms of the five-poin

functionsALiouville
α1,α2,− 1

2b
,α3,α4

(including a particular fifth stateα5 = − 1
2b

); namely,

(9)AWZNW
j1,j2,j3,j4

(x, z) = Xk(j1, j2, j3, j4|x, z)Fk(j1, j2, j3, j4)ALiouville
α1,α2,− 1

2b
,α3,α4

(x, z),

wherecb represents ajµ-independent numerical factor whose explicit form can be found in the literature (s[4,
7–10]); besides, the quantum numbers of both correlators are related by

(10)2α1 = b(j1 + j2 + j3 + j4 − 1), 2αi = b
(
j1 − j2 − j3 − j4 + 2ji + b−2 + 1

)
,

beingi ∈ {2,3,4}, and

(11)2α5 = −b−1, b−2 = k − 2.

The normalization factors are given by

Xk(j1, j2, j3, j4|x, z) = |x|−2α2/b|1− x|−2α3/b|x − z|−2α1/b|z|−4(b2j1j2−α1α2)|1− z|−4(b2j3j1−α3α1),

(12)Fk(j1, j2, j3, j4) = cb

(
πb2b2 �(1− b2)

�(1+ b2)

)1+j1−j2−j3−j4 4∏
µ=1

Υb(2jµb − b)

Υb(2αµ)
,

where theΥb function is defined as follows:

logΥb(x) = 1

4

∫
R>

dτ

τ
(Q − 2x)2e−τ −

∫
R>

dτ

τ

sinh2( τ
4(Q − 2x)

)
sinh

(
bτ
2

)
sinh

(
τ
2b

) .

This function presents the zeros atx ∈ −bZ�0 − b−1
Z�0 andx ∈ bZ>0 + b−1

Z>0.

1.1.4. Remarks
Normalization factor(12) is the appropriate to connect the correlators of both models, leading to the c

structure constants when one of the momenta tends to zero. Besides, the scaling(
πb2b2 �(1− b2)

�(1+ b2)

)1+j1−j2−j3−j4

corresponds to having set the Liouville cosmological constant to a specific value, namely,µ = π−2. Such factor
is not symmetric under permutations of the symbol{j1, j2, j3, j4}, as the map(10) is not; this is to make the KPZ
scaling of both correlators to match.

We can also understand the presence of the fifth vertex atx with momentumα5 = − 1
2b

. This is certainly related
to the existence of degenerate representations ofSL(2,R)k (i.e., those representations containing null states in
modulo). Some of these representations are those having momentumj such that 1− 2j = m ∈ Z>0. According to
the conformal Ward identities, the correlators involving an operatorΦ 1−m (x, z) are annihilated by the differentia
2
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x (and similarly for∂m

x̄ ). This corresponds to the fact that, if 1− 2j1 is a positive integer, thenΦj1(x, z)

turns out to be a polynomial of degreem − 1. Besides,(10) implies that, when realizing the Liouville correlat
(5) in terms of the Coulomb gas-like prescription, the amount of screening charges to be employed is
n = −2j = m − 1. Hence, a simple computation leads to obtain(

D+
x

)m
Xk

(
(1− m)/2, j2, j3, j4

∣∣x, z
)
ALiouville

α1,α2,− 1
2b

,α3,α4
(x, z)

(13)= |z|−4b2j1j2|1− z|−4b2j1j3∂m
x

m−1∏
r=1

∫
d2wr |wr |−4α2b|1− wr |−4α3b|z − wr |−4α1b|x − wr |2 = 0,

which is immediately obeyed due to the fact that the integrand is a polynomial of degreem − 1 in x (and the same
for x̄); and this is a direct consequence of the OPEe

√
2α5ϕ(x)e

√
2bϕ(wr ) ∼ |x −wr |2+· · · which holds forα5 = − 1

2b
.

The Liouville description of WZNW correlators was successfully employed in working out several details
non-compactSL(2,C)k/SU(2) CFT. For instance, the crossing symmetry of the theory was proven in[9] and some
aspects of the singularities in the WZNW observables were understood by means of this method (for insta
[10] and[4]). Conversely, the act of thinking the four-point correlators(6) as a five-point function of other CF
(i.e., the Liouville CFT) permitted to understand the arising of certain poles at the middle of the moduli
namely, atz = x. In terms of the function(5) these poles are understood as coming from the factorization
when the operatorsVα1(z) andVα5(x) coincide.

1.2. Outline

We will study solutions of the Knizhnik–Zamolodchikov equation by means of their connection with corre
in Liouville theory. The Letter is organized as follows. In the next section we analyze the action of the spect
symmetry on the four-point correlation function in the WZNW model. We explicitly show how the identific
between states of discrete representationsD±

j andD∓
k/2−j of SL(2,R)k turns out to correspond to the Liouvil

reflection of one particular vertex operator. This was pointed out in[4]. This simple observation leads us to reder
the formula for the three-point violating winding amplitude inAdS3. The key point in doing this is the normalizatio
(12), which encodes the information of the WZNW structure constants.

In Section3 we apply the method of describing WZNW correlators in terms of their Liouville analogu
study other symmetries of KZ equation. Then, we are able to prove some identities between exact solut
rather simple way. This permits to visualize hidden symmetries of the KZ equation turning them “expectab

2. Spectral flow symmetry and the Knizhnik–Zamolodchikov equation

2.1. The three-point function violating the winding number

First, let us consider the following 4-point correlation function in theSL(2,R)k WZNW model:

(14)AWZNW
k/2,j,j3,j4

(x, z) = 〈
Φj(0,0)Φk/2(x, z)Φj3(1,1)Φj4(∞,∞)

〉
.

This particular quantity represents the three-string scattering amplitude inAdS3 space for the case of non-conserv
total winding number. This was computed in[11], and the calculation employs the inclusion of the additio
(auxiliary) vertexΦk/2(x, z) which is often called “spectral flow operator” or “conjugate representation o
identity operator”.
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By using the correspondence(9) and (10), we find the following expression:〈
Φj(0,0)Φk/2(x, z)Φj3(1,1)Φj4(∞,∞)

〉
= Xk(k/2, j, j3, j4|x, z)Fk(k/2, j, j3, j4)

(15)×
4∏

ν=1

Rb(αν)
〈
VQ−α2(0)VQ−α1(z)V− 1

2b
(x)VQ−α3(1)VQ−α4(∞)

〉
,

where 2α1 = b−1(j + j3 + j4 + b−2/2), 2α2 = b−1(j − j3 − j4 + 3b−2/2 + 2), 2α3 = b−1(−j + j3 − j4 +
3b−2/2 + 2) and 2α4 = b−1(−j − j3 + j4 + 3b−2/2 + 2). A crucial observation is that, according to(10), the
conditionj1 = k/2 implies the constraint

∑4
µ=1 αµ = 5

2b−1 + 3b. Hence, the corresponding Liouville five-poi
function can be realized by using a Coulomb-gas-like prescription with no insertion of screening charges
due to the fact that the identity

∑4
ν=1(Q − αν) + nb − 1

2b
= Q is obeyed precisely forn = 0. Then, we have th

realization〈
e
√

2(Q−α1)ϕ(z)e
√

2(Q−α2)ϕ(0)e
√

2(Q−α3)ϕ(1)e
− 1√

2b
ϕ(x)

e
√

2(Q−α4)ϕ(∞)
〉

= |z|4(Q−α1)(α2−Q)|1− z|4(Q−α1)(α3−Q)|x − z|2b−1(Q−α1)|x|2b−1(Q−α2)|1− x|2b−1(Q−α3),

and, from(10), we eventually find

Xk(k/2, j, j3, j4|x, z)
〈
e
√

2(Q−α1)ϕ(z)e
√

2(Q−α2)ϕ(0)e
√

2(Q−α3)ϕ(1)e
− 1√

2b
ϕ(x)

e
√

2(Q−α4)ϕ(∞)
〉

(16)= |x|2(−j1−j2+j3+j4)|1− x|2(−j1+j2−j3+j4)|z|2j2|1− z|2j3|x − z|2(k−j1−j2−j3−j4),

wherej1 = k/2 andj2 = j . Plugging(16) into (15) and rewriting the normalization factorFk(k/2, j, j3, j4) by
using

(17)Υb(Q ∓ x) = ±Υb(x)
�(bx)�(b−1x)

�(±bx)�(±b−1x)
b2x(b±1−b),

(18)Υb

(
b±1 + x

) = Υb(x)
�(b±1x)

�(1− b±1x)
b±1∓2b±1x,

we get the following expression:〈
Φj(0,0)Φk/2(x, z)Φj3(1,1)Φj4(∞,∞)

〉
= ck

(
π

�
(
1− 1

k−2

)
�

(
1+ 1

k−2

))1−j−j3−j4
�

(
1+ 1−2j

k−2

)
�

(2j−1
k−2

)
× |x|2(− k

2−j+j3+j4)|1− x|2(− k
2+j−j3+j4)|z|2j2|1− z|2j3|z − x|2( k

2−j−j3−j4)

(19)× G(1− k/2+ j − j3 − j4)G(j − k/2+ j3 − j4)G(j − k/2− j3 + j4)G(k/2− j − j3 − j4)

G(−1)G(1− k + 2j)G(1− 2j3)G(1− 2j4)
,

where thek-dependent functionG is defined as usual, namely,

(20)G(x) = Υ −1
b (−bx)b−b2x2−(b2+1)x,

and ck is certainj -independent factor which is completely determined by(17) and (20). Expression(19) is in
exact agreement with the result obtained by Maldacena and Ooguri for the three-point violating winding co
(cf. Eqs. (5.25), (5.33) and (E.14) of Ref.[11]). In fact, after Fourier transforming the expression above (with
appropriate regularization realized by a factor limx→∞ |x|2k) one gets the scattering amplitude of the three-st
process that violates the winding number conservation inAdS3 space (see also[12]).
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It is remarkable that our deduction of(19) does not make use of the decoupling equation satisfied by the c
lators that include a degenerate state withj1 = k/2. However, this information is implicit in the derivation abo
since it is codified in the factorFk(k/2, j, j3, j4). Furthermore, the fact that the structure constants develop a
singularity when one of the vertex involved in the OPE carries momentumj1 = k/2 is manifested in the conditio
n = 0 above.

Recently, another relation between Liouville and WZNW theories was used to describe the string sc
amplitudes inAdS3 [13–15]. In [14], the three-point function(19) was shown to be directly connected to t
Liouville structure constant. It is worth mentioning that the connection of both theories employed here is a d
one which, unlike the one in[13], is local in the five Liouville insertions on the sphere.

2.2. Spectral flow and identities between exact solutions

First of all, let us notice that we can always consider a rescaling of the Liouville cosmological constantµ (and
the WZNW coupling constantλ as well; see[16]) in such a way that the KPZ factor in(9) can be made to disappea
This corresponds to shifting the zero mode of the fieldϕ in an appropriate way. We adopt such convention her

2.2.1. Identification between states of discrete representations
Now, let us defineJ̃µ = k

2 − jµ. As it was pointed out in[4], the transformationjµ → J̃µ corresponds to
reflecting the (four) quantum numbers in the Liouville correlation function, namely,αµ → Q−αµ. Then, according
to (4), we find

AWZNW
j1,j2,j3,j4

(x, z) = Xk(j1, j2, j3, j4|x, z)

Xk(J̃1, J̃2, J̃3, J̃4|x, z)

Fk(j1, j2, j3, j4)

Fk(J̃1, J̃2, J̃3, J̃4)

4∏
ν=1

Rb(αν)AWZNW
J̃1,J̃2,J̃3,J̃4

(x, z)

(21)

with
Xk(j1, j2, j3, j4|x, z)

Xk(J̃1, J̃2, J̃3, J̃4|x, z)
= |z|2(j1+j2−k/2)|1− z|2(j1+j3−k/2)|x|2(j4+j3−j2−j1)

× |1− x|2(j4−j3+j2−j1)|x − z|2(k−j1−j2−j3−j4).

Notice that a factor|x − z|2(k−j1−j2−j3−j4) arises. This implies the existence of a singularity at the pointx = z.
The arising of this singularity in the solutions of the KZ equation was pointed out in Ref.[11]. Similar singularities
appear in the solutions studied in[17], where an expansion in powers of(x − z) was considered. This was als
discussed in[10] and[3], where the factors developing poles atx = z were studied in a similar context (cf. Eq. (4
of Ref. [10]). Moreover, in[4] logarithmic singularities atx = z for the configurationk = j1 + j2 + j3 + j4 were
analyzed by using the same techniques.

As it was remarked in[11], “[t]he presence of the singularity atz = x is very surprising from the point of view
of the worldsheet theory since this is a point in the middle of the moduli spaces. [. . . ] The interpretation of this
singularity is again associated with instantonic effects”. In Ref.[15], this “instantonic effects” in the worldshe
theory were studied in relation with Liouville theory as well, tough in a different framework.

On the other hand, the normalization which connects both solutions takes the form

(22)
Fk(j1, j2, j3, j4)

Fk(J̃1, J̃2, J̃3, J̃4)

4∏
ν=1

Rb(αν) = c̃k

4∏
µ=1

�
(
1+ 1−2jµ

k−2

)
�

(2jµ−1
k−2

) ,

wherec̃k is ak-dependent factor, determined by(17). This presents poles located at 2jµ = 1+ (m + 1)(k − 2) for
any non-negative integerm. Besides, the zeros of this normalization factor arise at 2jµ = 1− m(k − 2).

2.2.2. Formulae: Acting on two states
Let us notice that making the changeα1 → Q − α1, α2 → Q − α2, leavingα3 andα4 unchanged, is equivalen

to transformingj1 → k/2 − j2 andj2 → k/2 − j1. In doing this, the factorXk(j1, j2, j3, j4|x, z)/Xk(J̃2, J̃1, j3,
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j4|x, z) stands, and this develops a factor|x − z|2(k−j1−j2−j3−j4). Indeed, such factor appears every time the tra
formations of indicesjµ correspond to reflecting the second Liouville vertexVα1(z). Then, we get

(23)AWZNW
j1,j2,j3,j4

(x, z) = Rb(α1)Rb(α2)Fk(j1, j2, j3, j4)Xk(j1, j2, j3, j4|x, z)

Fk(J̃2, J̃1, j3, j4)Xk(J̃2, J̃1, j3, j4|x, z)
AWZNW

J̃2,J̃1,j3,j4
(x, z).

Actually, this identity motivates the way of computing the violating winding correlator(19), since it precisely
involves a transformationj1 = k/2→ J̃1 = 0, j2 = j → J̃2 = k/2− j of its quantum numbers.

3. Hidden Z2 symmetry transformations in the four-point function

3.1. Liouville reflection and KZ equation

Now, we can study a different (tough closely related) class of symmetry transformation. Let us definĴµ =
1
2

∑4
ν=1 jν − jµ+2, with µ = {1,2,3,4} andjµ = jµ′ if µ = µ′ mod4. The non-diagonal involutionjµ → Ĵµ is,

according to(10), equivalent to doingα3 → Q − α3. This disentangles the symmetry transformation enablin
to understand it as a simple reflection(4). Consequently, we find the simple relation

AWZNW
j1,j2,j3,j4

(x, z) = Xk(j1, j2, j3, j4|x, z)

Xk(Ĵ1, Ĵ2, Ĵ3, Ĵ4|x, z)

Fk(j1, j2, j3, j4)

Fk(Ĵ1, Ĵ2, Ĵ3, Ĵ4)
Rb(α3) AWZNW

Ĵ1,Ĵ2,Ĵ3,Ĵ4
(x, z)

(24)

with
Xk(j1, j2, j3, j4|x, z)

Xk(Ĵ1, Ĵ2, Ĵ3, Ĵ4|x, z)
= |z| 1

k−2 (j1−j2)
2− 1

k−2 (j3−j4)
2|1− z| 1

k−2 (j2−j4)
2− 1

k−2 (j1−j3)
2

× |1− x|2(j4−j3+j2−j1).

In Ref.[3], Nichols and Sanjay proposed that both sides in Eq.(24)“can, presumably by uniqueness of the soluti
be identified [. . . ]; at least up to some overall scale”. The identity above proves such affirmation presenting
precise overall scale, which is found to be

(25)
Fk(j1, j2, j3, j4)

Fk(Ĵ1, Ĵ2, Ĵ3, Ĵ4)
Rb(α3) = ĉk

4∏
µ=1

G(1− 2Ĵµ)

G(1− 2jµ)
,

whereĉk is certaink-dependent factor. The factor above develops poles at
∑4

ν=1 jν − 2jµ+2 = (1− m) − n(k − 2)

as well as at
∑4

ν=1 jν − 2jµ+2 = (n + 2) + (m + 1)(k − 2), for any (m,n) pair of non-negative integers.
Besides, analogous identities are obtained by consideringαi → Q − αi with i ∈ {2,3,4}, corresponding to

j1 → 1

2
(j1 + j2 + j3 + j4 − 2ji), ji → 1

2
(j1 + j2 + j3 + j4 − 2j1),

(26)jj → 1

2
(j1 + j2 + j3 + j4 − 2jk), jk → 1

2
(j1 + j2 + j3 + j4 − 2jj ),

for any even permutation of the symbol{i, j, k}.
The conciseness of our deduction of(24) turns out to be surprising. In Ref.[8] Andreev stated the validit

of such an identity and considered that the problem of “understand[ing] what underlies this mysterious r
remained open. Regarding this, it was suggested that “[m]ay be there is a hidden symmetry in the theory”.(24)
manifestly shows that such hidden symmetry actually corresponds to the Liouville reflection realized by(9).
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3.1.1. A working example
The relation(24) also enables us to write down the explicit form of certain particular correlators. For ins

a simple computation leads to〈
Φj2(0,0)Φj1(x, z)Φj1+j2+j4(1,1)Φj4(∞,∞)

〉
= Fk(j1, j2, j1 + j2 + j4, j4)Rb(bj1 + Q/2)|z|− 4

k−2j1j2|1− z|− 4
k−2j1(1−j1−j2−j4)|1− x|−4j1,

which is worked out in easy way since, as before, it is associated to a Liouville correlator with no inser
screening charges. Besides, this correlator can be interpreted in terms of the operator product expansion of
tial operators in theSL(2,C)k/SU(2) WZNW model. Certainly, the asymptotic form of the differential functio
on H+

3 is governed by exponential functions which, for the configuration above, correspond to the expe
value

(27)
〈
e

√
2

k−2j2φ(0)
e

√
2

k−2j1φ(z)
e

√
2

k−2 (1−j3)φ(1)
e

√
2

k−2j4φ(∞)〉
.

In a stringy theoretical context, this represents a four-string scattering process inAdS3 in which the third vertex
(having a massm ∼ j3 in the largek description) has a particular behavior with respect to the boundary vari
(x3, x̄3) of the space on which the dual CFT is formulated (cf. Section 3 of[11] for a detailed discussion on th
largek interpretation of this exponential functions).

3.2. Ak-dependentZ2 symmetry transformation

Now, let us analyze a combination of the spectral flow and theZ2 symmetry transformations considered abo
More precisely, let us perform the chargeα1 → Q − α1. In terms of theSL(2,R) quantum numbers, this corre
sponds to doingjµ → Jµ = 1

2

∑
ν=1 J̃ν − J̃µ. Hence, the following equality between correlators is found to ho

(28)AWZNW
j1,j2,j3,j4

(x, z) = Xk(j1, j2, j3, j4|x, z)

Xk(J1, J2, J3, J4|x, z)

Fk(j1, j2, j3, j4)

Fk(J1, J2, J3, J4)
Rb(α1) AWZNW

J1,J2,J3,J4
(x, z),

where

(29)
Xk(j1, j2, j3, j4|x, z)

Xk(J1, J2, J3, J4|x, z)
= |z| 4

k−2 (J1J2−j1j2)|1− z| 4
k−2 (J1J3−j1j3)|z − x|2(k−j1−j2−j3−j4).

Here, the factor|z − x|2(k−j1−j2−j3−j4) stands again. In terms of the original indicesjµ this transformation reads

j1 → 1

2
(k + j1 − j2 − j3 − j4), j2 → 1

2
(k − j1 + j2 − j3 − j4),

(30)j3 → 1

2
(k − j1 − j2 + j3 − j4), j4 → 1

2
(k − j1 − j2 − j3 + j4).

On the other hand, the relative normalization has the form

(31)
Fk(j1, j2, j3, j4)

Fk(J1, J2, J3, J4)
Rb(α1) = ck

4∏
µ=1

G(1− 2Jµ)

G(1− 2jµ)
.

Involution (30) is a new symmetry of KZ equation, which results uncovered when is interpreted as a simple
formation(4). This enables us to write down the explicit expression of another special case; namely,〈

Φj2(0,0)Φj1(x, z)Φj1+k−j2−j4(1,1)Φj4(∞,∞)
〉

(32)= Fk(j1, j2, j1 + k − j2 − j4, j4)Rb(bj1 + Q/2)|z|− 4
k−2j1j2|1− z|− 4

k−2j1(1−j1−k+j2+j4)|z − x|−4j1,

which, again, can be thought of as the operator product expansion(27) of the operators in theSL(2,C)k WZNW
model. This solution confirms the appearance of the factor|x − z|2(k−j1−j2−j3−j4) in the expression of sever
four-point functions[11].
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4. Discussion

Most of what we know about non-compact WZNW model is based on analogies with the Liouville field t
Moreover, the Fateev–Zamolodchikov dictionary(9) turned out to be one the principal tools in working out
formal aspects of this class of conformal models.

Here, we have made use of the relation between correlators in both Liouville and WZNW theories to
several identities between exact solutions of the Knizhnik–Zamolodchikov equation. Of course, such identi
in principle, be proven by explicit manipulation of the KZ equation, at least up to aj -dependent overall factor[3].
However, the method of proving them by means of the connection with Liouville CFT turns out to be surpr
concise and exploits the fact that the structure of the OPE of the models is encoded in the normalization fac(12).
The derivation of the three-point function violating the winding number conservation we presented here tu
to be a good example of this conciseness.
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