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Dynamics of the Entanglement between Two Oscillators in the Same Environment
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We provide a complete characterization of the evolution of entanglement between two resonant
oscillators coupled to a common environment. We identify three phases with different qualitative long
time behavior: There is a phase where entanglement undergoes a sudden death. Another phase (sudden
death and revival) is characterized by an infinite sequence of events of sudden death and revival of
entanglement. In the third phase (no sudden death) there is no sudden death of entanglement, which
persists for a long time. The phase diagram is described and analytic expressions for the boundary
between phases are obtained. These results are applicable to a large variety of non-Markovian environ-
ments. The case of nonresonant oscillators is also numerically investigated.
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Entanglement is responsible for the most counterintui-
tive aspects of quantum mechanics. It is not only a source
of surprises but also a useful physical resource: it is the key
ingredient for teleportation and is believed to be the origin
of the power of quantum computers. Disentanglement due
to the interaction with external reservoirs was extensively
studied for systems of qubits (with common or independent
environments) [1-4]. In such a context, a peculiar phe-
nomenon was noticed in [5]: Entanglement can disappear
in a finite time (’sudden death” SD of entanglement). Here
we study the evolution of the entanglement between two
oscillators interacting with a common environment.
Entanglement dynamics for such kinds of systems was
analyzed before and a variety of results is available. For
example: It was shown that the environment may com-
pletely disentangle an initial entangled state (inducing a
sudden death of entanglement) [6—8]. The evolution of the
same type of initially entangled state was analyzed when
the two oscillators interact with a common bath under a
simplifying assumption: the Markovian approximation [9—
11]. In that case, a condition for the existence of an
asymptotic entangled state was deduced [9]. If such a
condition is not satisfied (see below) sudden death takes
place. Also, it was shown that the interaction with a com-
mon environment opens the door to the creation of an
entangled state from an initial separable state [11]. Most
of these works were done under some sort of Markovian
approximation. More recently, the non-Markovian regime
was analyzed [12—15]. Under special conditions a simple
result emerged: The final state remains entangled but half
of the initial entanglement is lost [14].

Our work provides a unified picture to understand the
origin of the different qualitative behaviors (““phases’) that
characterize the evolution of entanglement for long times.
We will fully characterize these phases of the evolution and
obtain equations describing the boundary between them.
For this purpose we will use a well-known tool: the exact
master equation for quantum Brownian motion [16]. We
consider two harmonic oscillators (x; and x,) bilinearly
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coupled between them and with a collection of harmonic
oscillators [16—19]. The total Hamiltonian is H = Hg +
H;, + H.,,, where

2+ 2 1

Hg wIx? + w3x3) + mcpx;x,,
2m
N, 2
T m
H. B = "o+ 22l 1
o = 3 (e i 1)

N
Hint = (-xl + x2) Z Cnqn-
n=1

Using coordinates x. = (x; * x,)/+/2, the Hamiltonian
transforms  into  Hg = (p3 + p%)/2m + m(w* x> +
0 x%)/2 +mcy_xix_, where i = (0?+ w})/2=
c1p and ¢, = (0} — 3)/2. This model can be exactly
solved assuming that the initial state of the environment is
thermal with initial temperature 7' [16]. The resonant case
(w| = w,), where the x. oscillators are decoupled, is the
simplest: The exact master equation for the reduced den-
sity matrix of the two oscillators p is (h = 1) [16,19]:

p =< [Hr p1 = iy(xs, {p-. o]
- D(t)[x+’ [X+, P]] - f(t)[x+’ [P+: P]] (2)

Here, the renormalized Hamiltonian is Hp = Hg +
méw?(t)x% /2. The coefficients Sw?(¢), y(t), D(t) and
f(¢) depend on the spectral density of the environment,
defined as J(w) = Y ,c26(w — w,)/2m,w,, and also on
its initial temperature. The explicit form of these coeffi-
cients is rather cumbersome and was studied in detail
elsewhere [16,20]. We will focus on the Ohmic environ-
ment with a spectral density J(w) = 2myowl(w — A)/ .
The high frequency cutoff A defines a characteristic time
scale A ™! over which the coefficients y(f) and Sw?(¢) vary.
For times > A~! these two temperature independent
coefficients settle into asymptotic values: y(f) — y =
27y, and dw?(t) = —4mAvy/m. The time dependent fre-

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.220401

PRL 100, 220401 (2008)

PHYSICAL REVIEW LETTERS

week ending
6 JUNE 2008

quencies O ,(1) = w7, + dw?(1)/2 approach cutoff inde-
pendent values only if the bare frequencies w;, have an
appropriate dependence on the cutoff. The coupling con-
stant ¢ , must also be renormalized in the same way so that
the time dependent coupling Cy,(1) = ¢;, + Sw?(t)/2 ap-
proaches a finite cutoff independent value. The behavior of
the diffusion coefficients D(r) and f(¢) is more complicated
and depends on the initial temperature. For the moment we
just need to mention here that for realistic environments
these coefficients approach asymptotic values after a
temperature-dependent time (which equals A~! only in
the high temperature regime). A word on notation: upper
case letters will be used to denote renormalized quantities.
The time label will be omitted when referring to the
asymptotic value of the corresponding function (i.e.,
denotes the asymptotic value of the renormalized fre-
quency of the oscillators, etc.).

From the master equation (2) we can derive simple
evolution equations for the covariance matrix V;;(¢) =
Tr(p(D){r;, riD)/2 = Tr(p()r)Tr(p(D)r;), where i, j=
I,...,4,and 7= (x_, p_, x4, py). Some of these equa-
tions are particularly illuminating: In fact, equations for the
covariances split into two blocks of 2 X 2. The evolution of
the first block formed with the second moments of x_ and
p_ corresponds to a free oscillator with frequency Q _(¢).
The evolution of the second block, formed with the second
moments of x; and p., satisfies

4B 2 ori)) - -2+ 20,
2 X2 2
% d;t2+> + ’)/(l) d<d+> Qz(t)< +> <{;J;> f(t) (4)

These equations contain most of the necessary information
to analyze the evolution of the entanglement between
initial Gaussian states. To solve them we need the time-
dependent coefficients that appear in the master equation.
But, remarkably, we can use the above equations to under-
stand the qualitative behavior of entanglement. For this, we
only need to assume that the time dependent coefficients in
(2) approach asymptotic values. In such case, there is a
stable stationary solution where the dispersions A%x, =

(x2) and A%p, = (p3) are
D D f
Ap. = |2 QAx, = |—— -1
P+ 2y’ oh 2m?y m ©®)

Entanglement for Gaussian states is entirely determined by
the properties of the covariance matrix V;;. In fact, a good
measure of entanglement for such states is the logarithmic
negativity E 5 [21-24]:

Ea = max{0, — InQv,,ip)}, (6)

where v, is the smallest symplectic eigenvalue of the
partially transposed covariance matrix. There are known

expressions for £ for Gaussian states which we used as
initial conditions. Thus, it is useful to mention them here:
The two-mode squeezed state, obtained from the vacuum
as exp(—r(aira;r — a,a,))|0), has Ep = 2|r|. This is a
minimum uncertainty state with dispersions satisfying
8x,8p, = 6x_8p_ = 1/2. The squeezing r determines
the ratio between  variances: mQdx,/dp, =
Sp_/(mQéx_) = exp(2r). As r — oo the state localizes
in the p, and x_ variables approaching an ideal EPR state
[25]. Another initial state we will consider is a separable
squeezed state for which mQéx,,/8p;, = exp(2r).

The evolution of entanglement for general initial
Gaussian states can then be simply analyzed by using the
previous results. For the resonant case, the x_ virtual
oscillator decouples exactly. Using the Eqs. (3) and (4)
we see that Ax, and Ap, approach asymptotic values
after a time scale 1/, fixed by the dissipation rate. After
that time, the covariance matrix in the (x,, x_) bases has a
2 X 2 block with oscillatory functions (corresponding to
the x_ oscillator) and another 2 X 2 block, corresponding
to the x, virtual oscillator, which is diagonal. Using this
form for the covariance matrix (and changing basis to
obtain covariances of the original x;, oscillators) it is
simple to compute the following logarithmic negativity

E () = max{0, Ep + AEAG(1)}. @)

Where G(#) is a function with period /€ _ in{—1, 1}. The
mean value E 5 [26] and the amplitude AE 5 are

Ep = max{r, rgg} — 1In(Ax, Ap.,),

AE 5 = min{r, re).

Here r is the initial squeezing factor defined as r = |5 .
In(m)_ 5

equlhbrlum state for the x,-oscillator defined as r.; =

|3 In(mQ_ ﬁ%)l. The dispersions Ax, and Ap, are the

)| ric 18 related to the squeezing factor of the

asymptotic values (5).

These simple results will enable us to draw general
conclusions about the dynamics of entanglement for long
times. Three qualitatively different scenarios emerge: First,
entanglement may persist for arbitrary long times. This
phase, which we call “NSD” (for no-sudden death), is
realized when the initial state is such that £ — AE 5 >
0, which translates into |r — rqyl > InRQAx, ApL)/2 =
S,. Then, there is a phase where entanglement undergoes
an infinite sequence of events of ‘“sudden death and re-
vival”’ (SDR) [27,28]. This SDR phase occurs if the initial
state is such that |E.| = r = —E, + 2ry, where E, =

rait — S, Finally, a third phase characterized by a ﬁnal
event of ““sudden death” (SD) of entanglement may be
realized . The condition for the SD phase is r = —E...

Depending on the properties of the environment (initial
temperature, damping rate, etc) an initial state with squeez-
ing r will belong to one of the three phases. For the Ohmic
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environment we used exact expressions for the coefficients
D and f [20] to obtain the phase diagram shown in Fig. 1.
Areas corresponding to each of the three phases are dis-
played and, as a reference, we show the temperature de-
pendence of S, and 7.

It is worth mentioning some features of the phase dia-
gram, that provide complete information about the asymp-
totic behavior of entanglement. The low temperature NSD
phase is purely non-Markovian and nonperturbative. Its
area shrinks as the damping rate decreases. This phase
includes the coherent states, that can become entangled
at very low temperature. The zero temperature line is also
interesting: It contains states in the NSD phase for small
and large squeezings. However, for an intermediate range
of squeezings centered about r;states belong to the SDR
phase. To the contrary, the high temperature region of the
diagram is quite different. Thus, for high temperatures we
have E. < 0 (which implies that coherent states do not get
entangled) and also r;; — 0 (which implies that the region
covered by the SDR phase becomes narrower). Thus, for
high temperatures initial states with large squeezing (r >
In(2Ax,Ap,)/2 = S,) retain some of their entanglement
while those with squeezing factors smaller than the critical
value S, suffer from sudden death. This is almost the same
condition obtained previously for persistence of entangle-
ment in the Markovian regime [9]. However, our analysis
shows that the boundary between SD and NSD phases is
rather subtle: for any finite temperature the two phases are
separated by a very narrow portion of SDR phase (the
amplitude of the oscillations, 7., decreases as temperature
grows). This is not the only interesting non-Markovian
effect identified by our analysis. Thus, it is remarkable
the relevant role played by the anomalous diffusion in

0

FIG. 1. Phase diagram for Ohmic environment () = 1, y, =
0.15, A =20, m = 1, C;, = 0). The SD, NSD, and SDR phases
describe the three different qualitative long time behaviors for
the entanglement between two oscillators. For temperatures
above the one for which S, = r.; the SDR phase is centered
about the dashed line S, and has a width given by the dotted line
reit- Below this temperature the role of S, and r.; are inter-
changed. SDR separates the SD and NSD phases. The low
temperature NSD island is non-Markovian and nonperturbative.
E 5 in the NSD phase is the distance to the dashed line for r >
Teit> and the distance between the dashed and dotted lines for

< .
r= rcnt *

the master equation: The SDR phase, the entanglement
oscillations in the NSD phase and the possibility of entan-
gling initial coherent states are effects that dissapear when
f/D — 0 (for example, in the high temperature limit).
Thus, the final entanglement of initial coherent states is a
constant E,. that decreases when f — 0 and grows with vy,
(as the final state localizes more in the x, coordinate). A
final comment on the phase diagram: The NSD phase is
characterized by a nonvanishing asymptotic entanglement
that can be quantified from the phase diagram itself. The
average value of the logarithmic negativity is simply the
distance to the dashed line (which signals the midpoint of
the SDR phase) or just the distance between the dashed and
dotted lines for r = r .

We verified our predictions by an exact numerical solu-
tion (performed by discretizing the environment and nu-
merically solving the equations for all covariances). For an
Ohmic environment with y, = 0.15,A =20,m = 1, =
1, C;, = 0 are shown in Fig. 2. All evolutions obtained for
E 5 correspond to one of the above phases.

Our analysis can be extended to other types of system-
environment coupling: If Hy, = SV /\,,,(a:[b,, +a,bh)
an exact master equation can also be obtained (alLr and
b} are creation operators of the x, and the g, oscillators).
Such an equation can be obtained, for all spectral densities
and temperature, by symmetrizing (2) with respect to x
and p, and appropriately defining new time dependent
coefficients (the zero temperature version of such equa-
tion, which in the Markovian limit coincides with the
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FIG. 2. Logarithmic negativity for resonant oscillators in the
same environment. (a) For 7 = 0 the NSD phase appears both
for large and small squeezing. Asymptotic behavior of initially
entangled or separable states only depends on r. The amplitude
of oscillations vanishes when r — 0. (b) The SDR phase appears
for intermediate values of squeezing at zero temperature.
(¢c) T/Q = 10, the SD phase appears for small r and NSD phase
for large squeezings, oscillations in the steady state are attenu-
ated as the temperature increases.
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FIG. 3. Entanglement dynamics for nonresonant oscillators
initially in a squeezed separable state (r = 3) and T/Q = 10.
(a) Entanglement is created between nonresonant oscillators but
it banishes in finite time. (b) E 5, for different times as a function
of the frequency of the second oscillator, the resonant condition
is essential for asymptotic entanglement.

quantum optical master equation, was discussed in [14]).
Conclusions drawn from this equations differ from the
above ones in a simple way: Symmetry implies that the
anomalous diffusion term vanishes. Thus, the final state of
X, is not squeezed, i.e. ry i = 0. Also, for T = 0 we have
S, = 0 as the asymptotic state is the vacuum. Therefore,
for this type of interaction (or, equivalently, in the RWA)
the SDR phase and the low temperature NSD phase do not
exist. There are only two phases (SD and NSD), separated
by the S, line (which in this case starts at the origin of the
phase diagram). In this case, entanglement displays no
oscillations in the asymptotic regime. At zero temperature
entanglement approaches r (half the initial value in a two-
mode squeezed state).

The above properties are valid if the two oscillators are
resonant. If this is not the case the master equation is no
longer valid since the x_ and x, virtual oscillators are
coupled (i.e., x_ is no longer protected from the environ-
ment and reaches equilibrium). Figure 3, obtained from the
exact numerical solution, shows that when we move away
from resonance E 5 decays much faster. Also, the value of
Ea away from resonance shows a resonance peak that
becomes sharper as time grows.

We provided a complete picture of the behavior of
entanglement for resonant oscillators in a common envi-
ronment. The analysis applies whenever the coefficients of
the master equation approach constant asymptotic values.
This analysis may enable us to obtain simple conclusions.
For example: for super-Ohmic environments it is known
that y(r) vanishes asymptotically (in the limit of large
cutoff). Then, we predict the absence of equilibrium for
the x oscillator. In this case, we expect that entanglement
will oscillate approximately recovering its initial value
after some time. This is confirmed by our numerical simu-
lations but contradicts results reported in [14]. Finally, we
remark once again that our results for the asymptotic
entanglement are highly dependent on the validity of the

resonance condition. For nonresonant oscillators the ge-
neric fate for long times is disentanglement due to the
interaction with the environment (similar effects are in-
duced by nonlinearities). This issue will be analyzed in
detail elsewhere.
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