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ABSTRACT

We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time
series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation
entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier).
The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear
from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational
noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in
practical contexts.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142500

Ordinal patterns, i.e., the permutations that have to be applied
to segments of a time series to sort their values, have been shown
to be an invaluable instrument to analyze the nature of dynami-
cal systems, both numerical and experimental. Some limitations
are nevertheless inherent. Specifically, the amount of informa-
tion captured by each segment is constrained by its length;
yet, working with longer segments requires the availability of
even longer time series, in order to reach statistically significant
results. Instead of considering longer segments, a natural solution
involves the analysis of how the ordinal patterns of consecutive
(but not overlapping) segments are related, i.e., the analysis of
the transitions between these ordinal patterns. We here leverage
on this concept to propose a novel plane representation, describ-
ing the global and local predictability of these ordinal transi-
tions. We show how the location of a time series in this plane
is related to the properties of its dynamics, e.g., non-linearities
and self-correlations, and can thus be used to discriminate dif-
ferent dynamical systems. The sensitivity of this method is such
that it is able to correctly characterize chaotic maps that are indis-
tinguishable from stochastic processes by using other approaches
based on ordinal patterns. We further apply this methodology to

real-world time series, representing natural (sunspots dynamics),
technical (lasers), and economical (stock markets) systems.

I. INTRODUCTION

Time series analysis and characterization is relevant to a broad
range of research domains, as indicated by the variety of time series
studied in different areas of science. One of the main challenges
is to establish whether the underlying dynamical process that gen-
erates the time series is either deterministic or stochastic. Several
methodologies have been proposed for such a purpose. Particularly,
the analysis of time series by recourse to information theory tools
together with ordinal patterns1,2 have been shown to be a powerful
approach.3–6 With the same goal in mind, recent works have focused
on time series characterization through complex networks, such as
(i) proximity networks,7 based on mutual proximity of different
segments of the time series, (ii) visibility and horizontal visibility
graphs,8,9 and (iii) transition networks. The latter approach is based
on mapping a time series to a Markov chain by defining nodes as
some motifs determined by a symbolization technique. Over the
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many schemes proposed to symbolize a time series, ordinal patterns
stand out because of their simplicity, robustness in noisy environ-
ments, and, most importantly, their sensitivity to time causality.
While ordinal transition networks have initially been proposed by
Small,10 the application of ordinal transition probabilities to time
series analysis without a direct appeal to the concept of networks
is even earlier.11

The pioneering work of Small10 proposes the discrimination
between chaotic maps, flows and stochastic systems by identifying
the ordinal pattern length that maximizes the amount of informa-
tion in the network; this approach, however, lacks a quantitative
criterion for distinguishing the dynamics. Recently, a lot of effort
has been directed to the analysis of continuous dynamical systems.
To name a few, Sun et al.12 have combined ordinal transitions with
symbols obtained from different amplitude levels for characterizing
dynamical transitions; McCullough et al.13 introduced a time-lagged
generalization of an ordinal network in order to characterize peri-
odic and chaotic dynamics; and Zhang et al.14 have introduced an
ordinal partition transition network for multivariate time series.

The aim of the present study is to come back to the basic
by pursuing the distinction between deterministic and stochastic
dynamics via an entropic quantification of the ordinal transitions.
This is motivated by the fact that even when ordinal patterns have
been shown to be able to distinguish the time series nature for a
large list of chaotic maps and representative stochastic systems, there
are still some misclassifications.15 Following this line, Borges and
co-workers16 introduced a method based on the probability of self-
transitions or loops. They propose to fit the loop probability as a
function of the time lag with a non-linear model. If the curve does
not fit well, the data are classified as chaotic. Here, we propose to use
what we believe is one of the most simplest approaches for character-
izing a time series dynamics: the concept of entropy. We introduced
a two-dimensional representation space defined by the permutation
entropy of the network and the minimum value of the permutation
entropy of the nodes, in order to combine global and local dynamical
information. By resorting to a list of representative chaotic maps and
stochastic systems, we accomplish a distinction between different
dynamical behaviors by assigning a position in this informational
plane to each system under study. Several practical applications have
also been added to illustrate the goodness of this ordinal network
tool.

II. ORDINAL NETWORKS FROM A TIME SERIES

A. Ordinal patterns

Given a one-dimensional time series, X = {xt; t = 1, . . . , M},
the extraction of ordinal patterns first requires the definition of
two parameters: the order of the permutation symbols D > 2 (D ∈
N, the pattern length) and the lag τ (τ ∈ N, the time separation
between the values). Next, the time series can be mapped into sub-
sets of length D of consecutive (τ = 1) or non-consecutive (τ > 1)
values, generated by (t) ≡ (xt, xt+τ , . . . , xt+(D−2)τ , xt+(D−1)τ ), which
assigns to each time t the D-dimensional vector of values at times t,
t + τ , . . . ., t + (D − 1)τ . Clearly, more temporal information is
incorporated into the vectors as D increases. Subsequently, each
element of the vector from zero to D − 1 is replaced by a num-
ber related to its relative ranking—i.e., the smallest value by one

and the largest one by D. Equal values in the time series are usu-
ally ranked according to their temporal order. This is justified if
the values of X have a continuous distribution so that equal values
are very unusual.17 Taking into account that there are D! possible
permutations for a D-dimensional vector, the condition M � D!
must be satisfied in order to obtain a reliable statistics.1 Bandt and
Pompe suggest in their cornerstone paper to work with 3 ≤ D ≤ 7
and τ = 1. Nevertheless, it has been demonstrated that the analysis
with lagged data points, i.e., τ ≥ 2, can be useful for reaching a bet-
ter comprehension of the underlying dynamics.4,18,19 Essentially, by
changing the value of the lag τ , different time scales are being con-
sidered, as this parameter physically corresponds to multiples of the
sampling time of the signal under analysis.

All ordinal patterns can eventually appear in a time series gen-
erated by a stochastic process with M → ∞. Particularly, when
dealing with correlated stochastic processes, some ordinal patterns
may not appear due only to statistical limitations. Temporal cor-
relations in the data make some ordinal patterns more probable
than others; hence, longer datasets are needed to observe all the
ordinal patterns.20 In this context, unobserved ordinal patterns in
a time series caused by finite size effects are usually referred as
missing.20 In the case of time series generated by deterministic
dynamics, not all possible ordinal patterns can effectively be materi-
alized into orbits, which in a sense makes them forbidden. This fact
was analytically demonstrated for deterministic one-dimensional
maps.21–23 The existence of forbidden patterns has also been numer-
ically concluded for a large representative set of chaotic maps15 and
for discrete sampled continuous chaotic dynamics.24–26

B. Ordinal transitions

By counting the number of times each ordinal pattern πi

appears in the symbolic series divided by the total number of ordinal
patterns L, we can compute a probability distribution function

pi =
#(πi)

L
, i ∈ [1, D!], (1)

where #(πi) stands for the cardinality of πi. For a time series of
length M, the number of patterns generated is L = M − (D − 1)τ .
The transition probability between two non-overlapped ordinal
patterns, pi→j, where i and j can take any value of the set {1, . . . , D!},
is defined as follows:

pi→j =
#(πl = i, πl+1 = j)

#(πl = i)
, l ∈ [1, L − D × τ ]. (2)

Here, we consider self-transitions. All transition ordinal probabil-
ities are expected to be equal to 1/D!, corresponding to a Markov
process between pattern pairs,11 for a totally uncorrelated time series
with M → ∞. The condition L � D! × D! must hold in order to
have good statistics. The probability matrix of Eq. (2) could be
thought as a weighted adjacent matrix of the network. Figure 1(a)
illustrates how to create non-overlapped ordinal transitions from a
simple example for D = 3 and τ = 1. A graphical representation of
the six possible patterns is shown in Fig. 1(b), following the con-
vention of Parlitz et al.27 to list the ordinal patterns. Figure 1(c)
shows the ordinal transition probability matrix for the example data
sequence depicted in Fig. 1(a). Edges assigned between the nodes
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FIG. 1. An example to illustrate the methodology of mapping a time series into a ordinal network. (a) Non-overlapping ordinal transition construction from a time series
using D = 3 and τ = 1, (b) graphical representation of ordinal patterns for D = 3, (c) ordinal transition probability matrix pi→j , and (d) ordinal network constructed from the
example in (a). (e) Forbidden and possible ordinal transitions if overlapping transitions are considered.

based on the temporal succession of the non-overlapped ordinal
patterns are depicted in Fig. 1(d).

Naturally, the observed ordinal transitions are directly condi-
tioned by the existence of forbidden patterns. Consequently, if NFP

represents the number of forbidden ordinal patterns for a determin-
istic time series, the number of forbidden ordinal transitions will be
at least (2D! × NFP) − N 2

FP. This value gives a lower bound because
in addition to those unobserved ordinal transitions directly coming
from forbidden ordinal patterns, there could be more unrealizable
ordinal transitions due to either determinism or finite size effect.
As an illustrative example, we focus on the chaotic dynamics of the
logistic map for r = 4. Ordinal transition probabilities for D = 3,
τ = 1, and M = 107 are depicted in Fig. 2. It is known from the-
ory that this chaotic dynamics has one forbidden ordinal pattern
(π6) when using D = 3,22 which implies (2 ∗ 3! × 1) − 12 = 11 for-
bidden ordinal transitions (highlighted with red dots). However, a
numerical simulation suggests a total of 16 forbidden ordinal tran-
sitions and, thus, that five additional ones are due to determinism
(highlighted with white dots). Furthermore, it is expected to find
chaotic maps for which forbidden ordinal transitions are observed
for a given value of D even though no forbidden ordinal patterns
exist for that pattern length. For instance, this is the case of the linear
congruential map for D = 5, which will studied in detail in Sec. III.

It is important to point out that, when considering overlapping
to build the ordinal transition between ordinal patterns from a data
sequence, there exist forbidden transitions coming from the way
in which the ordinal transitions are constructed. Figure 1(e) illus-
trates this fact for D = 3 and τ = 1. Considering the example data
sequence, the possible ordinal patterns which can follow the first
one {312} are determined by the overlap. Thus, only three ordinal
patterns can materialize: {123}, {132}, or {231}, leaving the rest of

possible permutations as forbidden. Due to this fact, any dynam-
ics have forbidden ordinal transitions when an overlapping scheme
is implemented. Actually, totally uncorrelated dynamics are char-
acterized by non-equiprobable ordinal transition probabilities. We
have considered a non-overlapping recipe in order to avoid this
drawback.

FIG. 2. Ordinal transition probabilities for the logistic mapwith a control parameter
r = 4, which gives a totally chaotic dynamics, for D = 3, τ = 1, and M = 107.
Red dots indicate null probability ordinal transitions coming from forbidden ordinal
patterns while white dots point out the “new” forbidden ordinal transitions.
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C. Ordinal transition entropy

When considering a probability distribution function (PDF),
this can be characterized by resorting to the classical Shannon
entropy. Particularly, the Shannon entropy evaluated on the ordinal
pattern PDF, given by Eq. (1), corresponds to the so-called permu-
tation entropy.1 Similarly, the permutation entropy of the node i is
defined in its normalized form as

Hi = −
1

ln D!

D!∑

j=1

pi→j ln pi→j, i ∈ [1, D!], (3)

which follows the concept of node entropy as defined by West
et al.28—note that self-transitions are being considered here. Each
entropy value Hi quantifies the randomness of locals transitions.
The conditional permutation entropy29 is defined as

Hn =
D!∑

i=1

piHi, (4)

which is the expected value of the entropy of the node i as averaged
over the stationary distribution of the ordinal network, pi [Eq. (1)].30

Hereafter, we will refer to the conditional permutation entropy as
the permutation entropy of the network, since it characterizes the
ordinal network from a global perspective. For more details about
different metric definitions of an ordinal network and how they
relate to each other, please see Ref. 30.

In this work, we introduce a representation space by referring
to local vs global ordinal transition entropic quantifiers. Its hori-
zontal and vertical axes are the permutation entropy of the network
and the minimum permutation entropy of the nodes, respectively.
If the system under analysis lies in a very ordered state, being thus
characterized by few ordinal patterns and, consequently, few ordinal
transitions, its associated position in the plane will be at the bottom,
near the left corner, since it will have forbidden ordinal transitions
producing several null values of the permutation entropy of the
nodes (min(Hi) = 0), together with low value of the permutation
entropy of the network (Hn → 0). For deterministic systems, one
expects that, if they have forbidden ordinal patterns for the selected
pattern length, they locate at the bottom of the plane but showing
medium-to-high values of the network permutation entropy. On
the other hand, for a very disordered system, the entropic metrics
will be located near to the top right corner, since all ordinal transi-
tions are expected to be almost equiprobable. To get insight into this
entropic representation plane, we have performed a simulation of
105 random transition probability matrices, with D = 2 and hence
four possible transitions, and with elements of the transition matri-
ces drawn from uniform distributions in the range [0, 105]. Note
that this is not meant to simulate a random process, which would
yield normally distributed values; instead, these matrices represent
all possible outcomes of the analysis. Results are shown in Fig. 3,
where it can be observed that the diagonal creates an upper bound
and all instances span below it.

III. NUMERICAL APPLICATIONS

In this section, we focus on the distinction between stochas-
tic and chaotic systems. Concretely, we tackle the following chaotic
maps:31

(1) Logistic map: xn+1 = r xn(1 − xn) in the chaotic regime
r = 4, with initial condition x0 = 0.1 and Lyapunov exponent
λ = ln[2];

(2) Sine map: xn+1 = A sin(πxn) (A = 1), with initial condition
x0 = 0.1 and Lyapunov exponent λ ' 0.689 067;

(3) Cubic map: xn+1 = A xn(1 − x2
n) (A = 3), with initial condition

x0 = 0.1 and Lyapunov exponent λ ' 1.098 612 288 3;
(4) Cusp map: xn+1 = 1 − A

√
|xn| (A = 2), with initial condition

x0 = 0.5 and Lyapunov exponent λ = 0.5;
(5) Gauss map: xn+1 = 1/xn, mod(1), with initial condition x0 being

an uniformly independent identically distributed (iid) random
variable ∈ (0, 1) and Lyapunov exponent λ ' 2.373 445;

(6) Linear congruential generator: xn+1 = A xn + B mod(C)
(A = 7141, B = 547 73, C = 259 200), with initial condition
x0 = 0 and Lyapunov exponent λ = ln |A| = 8.873 608 101;

(7) Sinai map: xn+1 = xn + yn + δ cos(2πyn) mod(1), yn+1 = xn

+ 2yn mod(1) (δ = 0.1), with initial conditions x0 = 0.5,
y0 = 0.5, and Lyapunov exponents λ1 ' 0.959 46, λ2

' −1.077 14;
(8) Dissipative standard map: xn+1 = xn + yn+1 mod(2π), yn+1

= byn + k sin(xn) mod(2π) (b = 0.1, k = 8.8), with initial con-
ditions x0 = 0.1, y0 = 0.1, and Lyapunov exponents
λ1 ' 1.469 95, λ2 ' −3.772 54;

(9) Arnold cat map: xn+1 = xn + yn mod(1), yn+1 = xn + kyn

mod(1) (k = 2), with initial conditions x0 = 0, y0 = 1/
√

2, and

Lyapunov exponents λ = ± ln[ 1
2
(3 +

√
5)];

FIG. 3. Locations of 105 simulated random transition probability matrices with
D = 2 in the proposed representation space.
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FIG. 4. Ordinal transition probabilities using D = 5 andM = 107 for linear stochastic systems: k-noises with (a) k = 0 (white noise), (b) k = 2 (Brownian motion), (c) k = 3
(high temporal correlated noise), fBm with (d) H = 0.3, (e) H = 0.5, and (f) H = 0.8, and fGn with (g) H = 0.3, (h) H = 0.5, and (i) H = 0.8. The equiprobability value
(1/5! = 0.0083) is depicted with an arrow in (a) as a reference. Red pixels indicate unobserved transitions.

(10) Holmes cubic map: xn+1 = yn, yn+1 = −bxn + dyn − y3
n

(b = 0.2, d = 2.77), with initial conditions x0 = 1.6, y0 = 0, and
Lyapunov exponent λ1 ' 0.594 58, λ2 ' −2.204 02.

It is worth stressing here that some of these chaotic maps have been
shown to be particularly problematic to discriminate from stochas-
tic processes by using other approaches based on ordinal patterns
[chaotic maps (5) to (9)15] or based on ordinal networks [chaotic
maps (4) and (10)16].

Moreover, we have considered a discrete system which presents
intermittency: chaotic bursts together with laminar regions:32

(11) Schuster maps: xn+1 = xn + xz
n mod(1), with initial conditions:

x0 iid random variable ∈ (0, 1). As the parameter z decreases, so
do the laminar regions. In particular, we used z = 5/2, 2, and
3/2.

Additionally, we have considered three kinds of stochastic systems:

(12) Stochastic nonlinear correlated system,33 given by

xn+1 = a νn + b νn−1(1 − νn), (5)

where νn is a iid random variable ∈ (0, 1), a = 3, and b = 4.34

Also, two linear stochastic systems:
(13) Fractional Brownian motion (fBm) and their increments, frac-

tional Gaussian noise (fGn).35 They are characterized by the
Hurst exponent H ∈ (0, 1). These processes exhibit temporal
correlation for any value of H except for H = 1/2, for which
a random walk and a white Gaussian noise are obtained for

the former (fBm) and the latter (fGn) model, respectively. For
H > 1/2, these processes are long-term correlated, i.e., persis-
tent. On the other hand, when H < 1/2, they present short-
term correlations, i.e., they are antipersistent. It is possible to
define a generalized power spectrum of the form φ ∝ |f|−α , with
α = 2H + 1, 1 < α < 3 for fBm and α = 2H − 1, −1 < α < 1
for fGn. To simulate the fBm and fGn time series, we used the
function wfbm of MATLAB, which is based on the algorithm
proposed by Abry and Sellan.36

(14) Noises with 1/fk power spectrum. Starting from a pseudoran-
dom variable with Gaussian distribution probability function,
the desired power spectrum is obtained by the Fourier filter-
ing method. Here, the degree of temporal correlations is directly
proportional to k.

For all the stochastic systems considered, 100 independent realiza-
tions of length 107 data points were generated with H ∈ (0, 1) with
a step 0.05 for the fBm and their increments and k ∈ [0, 3] with the
same step for the k-noises. Hereafter, the results reported are the
mean over those realizations. For each chaotic map, the same ini-
tial conditions and the parameter values detailed by Sprott31 were
used, and the first 105 iterations were discarded to avoid transients
behaviors. Considering that we are dealing with discrete systems and
neither fBm nor fGn have characteristic temporal scales, the time lag
is set to τ = 1.

Ordinal transition probabilities for the linear stochastic sys-
tems, represented by pi→j, for D = 5 and M = 107 are shown in

Chaos 30, 063101 (2020); doi: 10.1063/1.5142500 30, 063101-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Ordinal transition probabilities using D = 5 and M = 107 for (a) logistic map, (b) linear congruential map, (c) stochastic nonlinear system, (d) Gauss map, (e)
dissipative standard map x, and (f) Sinai map x. The equiprobability value (1/5! = 0.0083) is depicted with an arrow in (b) as a reference. Red pixels indicate unobserved
transitions.

Fig. 4. It can be appreciated that for a k-noise with k = 0 and
for fGn with H = 1/2 all the ordinal transition probabilities are
equiprobable (1/D!), as expected since both correspond to com-
pletely uncorrelated dynamics. On the contrary, in the presence of
temporal correlations (long-term k > 0, H > 1/2 and short-term
H < 1/2), privileged ordinal transitions are observed. In particular,
higher probabilities are found for the ordinal transitions of all pat-
terns to the all-increasing ({12 345}) and all-decreasing ({54 321})
ones. Vertical bands are also observed. The regularity observed
in the transition matrix for fBm and their increments comes
from the symmetry of the ordinal patterns previously reported by
Sinn and Keller37 The k-noises seem to share this regularity for
k > 0 (vertical bands). Similar results are observed for D = 3 and
4, not shown here. Figure 4(c) shows that there are a considerable
number of unobserved transitions (red pixels). Even for long time
series, it is normal to find missing ordinal transitions because of
the highly persistent dynamics. We have confirmed that this num-
ber of unobserved ordinal transitions decreases to zero for longer
realizations.

Figure 5 shows the ordinal transition probabilities for some
representative chaotic maps and for the nonlinear stochastic sys-
tem. The logistic map illustrates a case for which most of the
ordinal transitions are unobserved due of its forbidden ordinal
patterns, NFP =89 over 5! = 120 possible ordinal patterns, giv-
ing 13 439 unobserved ordinal transitions (highlighted in red)
coming from the forbidden ordinal patterns. There are only
525 possible ordinal transitions, and some of them have a very

high probability of occurrence (∼0.6). The number of unob-
served ordinal transitions as a function of the data length, for
all chaotic maps is listed in Table I. One opposite case, is the
Gauss map—see Fig. 5(d)—for which all possible ordinal tran-
sitions occur, but at the same time, the matrix pi→j shows a
clear structure indicating frequent and unlikely ordinal transi-
tions. The same affirmation stands for the dissipative standard
map—see Fig. 5(e). For the linear congruential map, its ordinal
transition probabilities show a more complex structure, having
2962 unobserved ordinal transitions scattered “randomly” in the
matrix—see Fig. 5(b). Surprisingly, this map presents unobserved
ordinal transitions while lacking forbidden ordinal patterns, for
5 ≤ D ≤ 7.15 The same affirmation stands for Sinai and Arnold
cat maps, with the difference that they present forbidden ordinal
patterns for D ≥ 6.15 Last, the results for the nonlinear stochas-
tic correlated system are shown in Fig. 5(c). In contrast with the
results obtained for linear stochastic processes, although regular-
ities are unobserved, a clear structure emerge. We hypothesize
that this is related to the intrinsic nonlinearity. We can conjec-
ture that a transition matrix showing symmetrical structures, as
those seen on Fig. 4, comes from a reversible system, as the lin-
ear stochastic ones studied here. However, we cannot ensure that
any reversible system will produce a transition matrix with sym-
metrical structures. Similar qualitative structures are found for
D = 3 and 4, except for the linear congruential map, for which
equiprobable ordinal transitions are found for D = 3. As mentioned
before, this map is indistinguishable from an uncorrelated
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FIG. 6. (a) min(Hi ) vsHn using D = 5 and τ = 1 for all the numerical systems studied in this work. (b) Zoom of the upper right corner.

time series by the approach introduced by Rosso et al.,15

yet ordinal transition probabilities are able to detect its determinism
for D ≥ 5.

With the aim to characterize the ordinal transitions, the per-
mutation entropy of the network, Hn [Eq. (4)], was estimated, to
quantify the global disorder in the matrix pi→j. This is complemented
by the minimum permutation entropy per node, min(Hi), which
accounts for unobserved or very highly probable ordinal transitions.
These results are depicted in Fig. 6. All linear stochastic systems
locate near the diagonal. For the k-noises, as the temporal correla-
tion increases, both quantifiers decrease, as expected. fBm and fGn
locations overlap with the one for the k-noises. Particularly, times
series from fGn exhibit high entropic values—see Fig. 6(b). Both
k-noise with k = 0 and fGn with H = 1/2 represent a totally uncor-
related noise and, consequently, both quantifiers are maximal—in
agreement with the equiprobable transition probability matrices
observed in Figs. 4(a) and 4(h).

Chaotic maps are placed below the linear stochastic systems.
Particularly, logistic, sine, cubic, cusp, and Holmes cubic maps
locate at the bottom part of the plane with medium/high entropic
values. The presence of forbidden ordinal patterns (see last column
of Table I) leads to null values of min(Hi). On the other hand, when
a chaotic map has no forbidden ordinal patterns, forbidden/missing
ordinal transitions for a given D can still happen—see Table I. The
location obtained for the linear congruential map is the most sur-
prising, since it is not only possible to discriminate it from white
noise, but also from correlated stochastic processes, for D ≥ 5. This
is the first time that a discrimination between this “pathological”
chaotic map and linear stochastic processes is achieved by a rep-
resentation space defined through quantifiers using the Bandt and

Pompe methodology. It is worth mentioning that Borges et al.16 dis-
tinguish this map from stochastic systems by using a non-linear
fitting approach of the loop probability with τ . Schuster’s maps
exhibit null values of min(Hi) due to their determinism and lam-
inar regions. As the parameter z decreases, so does the size of the
laminar regions; consequently, the entropy of the network increases,
approaching a location in the vicinity of the chaotic maps. Finally, it
is observed that the nonlinear stochastic map shares location with
some of the considered chaotic maps. From this result, we can con-
clude that this representation space is able to distinguish between
linear and non-linear stochastic dynamics. Note that meanwhile the
observation of the matrix pi→j and its unobserved ordinal transitions
(Table I) does not deliver a clear discrimination of the underling
dynamics, the representation space does.

In order to study the characterization with this representation
plane in a more practical scenario, we analyze two relevant situations
when dealing with real-world data: finite size effect and observa-
tional noise. First, we study the convergence of the permutation
entropy of the network as a function of the time series length. These
results are depicted in Fig. 7 for (a) white Gaussian noise, (b) logistic
map, and (c) a fBm with H = 0.8 (as a representative example of a
correlated stochastic dynamics). Clearly, as D increases, a larger data
sequence is needed to converge to a stable value of the metric. A sim-
ilar behavior with the time series length is found for the minimum
entropy of the nodes. The convergence of the quantifier seems to be
slower for a stochastic dynamics. Up to D = 5, a data length of 105

can be set so that a reliable value of Hn can be estimated.
Finally, to recreate a noisy environment, white Gaussian noise

of zero mean was added to the original simulated logistic dynam-
ics with 107 data points. Different noise levels (NLs), defined by
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TABLE I. Number of unobserved ordinal transitions for different time series length using D= 5. The last column shows the number of forbidden ordinal patterns.

# unobserved ordinal transitions for M =
Map 103 104 105 106 107 #fp (107)

Logistic 13 996 13 876 13 875 13 875 13 875 89
Sine 14 003 13 881 13 875 13 875 13 875 89
Cubic 13 509 9 967 7 906 7 846 7 846 28
Cusp 14 154 13 915 13 785 13 785 13 785 89
Gauss 13 522 9 211 2 364 59 0 0
Linear congruential generator 13 446 8 517 3 687 2 962 2 962 0
Sinai x 13 493 8 863 3 163 1 430 1 131 0
Sinai y 13 444 8 069 1 074 171 106 0
Dissipative standard x 13 482 8 511 675 0 0 0
Dissipative standard y 13 455 8 073 198 0 0 0
Arnold cat x 13 470 8 246 1 637 523 411 0
Arnold cat y 13 465 8 219 1 589 522 412 0
Holmes cubic x 13 815 12 618 11 600 11 200 11 094 22
Holmes cubic y 13 815 12 618 11 600 11 200 11 094 22
Schuster z = 5/2 14 399 14 181 14 235 13 663 13 219 72
Schuster z = 2 14 399 13 963 13 403 13 052 13 011 72
Schuster z = 3/2 13 930 13 248 13 026 13 010 13 010 72
Stochastic non-linear correlated system 14 400 14 400 14 400 251 0 0

FIG. 7. Evolution ofHn as a function of the time seriesM with D = 3, 4, 5, 6, and
7, for (a) white Gaussian noise, (b) logistic map, and (c) fBm with H = 0.8. Mean
and standard deviation (showed as error bars) over 100 independent realizations
are depicted.

the ratio between the standard deviation of the noise and the orig-
inal data, were considered. These results are depicted in Fig. 8.
As the noise level increases, the position of the noisy logistic map
moves from the bottom part of the plane to the linear stochastic
line. Only for very high noise levels (NL ∼ 1) the localization over-
laps with that obtained for the linear stochastic systems. Even when
NL = 1, the noisy chaotic dynamic can be distinguished from a
totally uncorrelated dynamic—see the inset in Fig. 8.

FIG. 8. min(Hi ) vsHn using D = 5 for the noisy logistic dynamics. k-noises are
included as a reference for linear stochastic systems. The inset corresponds to a
zoom of the upper right corner of the plane.
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IV. EXPERIMENTAL APPLICATIONS

To illustrate the performance of the proposed representation
plane with real-world data, we have applied it to four different
experimental scenarios.

A. Chaotic laser data

We have first considered real-world data coming from an
opto-electronic oscillator with delay. This experimental system can
generate intensity pulsations that are typical for the Ikeda scenario,
including a period doubling route to chaos.38,39 Here, we focus on the
chaotic dynamics of the system.19 The data have been acquired with
a sampling rate of fs = 500 MSamples/s and a resolution of 8 bits,
for a time long enough to obtain 25 time series of one million data
points each. For further details of the experiment, please see Ref. 19.
This experimental dataset is a good example of a chaotic dynamic
contaminated with observational noise, which is mainly originated
from the digitization of the oscilloscope; it is, therefore, perfect to
validate our findings on noisy chaotic dynamics.

Since the bandwidth of the experimental system is narrower
than the one of the detection apparatus, we benefit from the over-
sampling to smooth the original time series.19 We perform a simple
moving average using different window lengths in order to clean the
observational noise. These results are shown in Fig. 9. As expected,
the original raw measured data locate near the linear stochastic ref-
erence due to the observational noise. On the other hand, as the
window size of the moving average increases, the location of the
quantifiers evolves in a way similar to the one obtained for the noisy
logistic dynamics—see Fig. 8. By filtering the observational noise,
the proposed representation space is able to capture the determin-
ism of the measured time series, until reaching medium values for

FIG. 9. min(Hi ) vs Hn using D = 5 for the chaotic laser data. Average of the
quantifiers over 25 independent realizations are depicted. Locations of fBm with
the same length (M = 106 data points) are included as a reference of linear
stochastic systems.

the network permutation entropy and small values for the minimum
permutation entropy of the nodes.

B. Stock markets

One of the tenets of financial economics is the so-called
efficient-market hypothesis, according to which prices in efficient
stock markets should follow random walks.40 However, deviations
from this ideal model, violating either the independence or Gaussian
assumptions, have been found in empirical studies.41–44 Moreover,
it has been shown that stock market indices have a multifractal
nature.42 Here, we consider the logarithmic price returns of 48 stock
market indices of different countries. All data were collected from
the Datastream platform.45 Daily prices starting on January 3, 2000
and ending on May 27, 2016 are considered (4280 observations).
These stock markets are classified as developed (20 stock market
indices), emerging (17 stock market indices) or frontier (11 stock
market indices) using the Morgan Stanley Capital Index.46

Results from the integrated logarithmic price returns are
depicted in Fig. 10(a). It can be observed that most of the mar-
kets locate below the fBm reference and, therefore, below the linear
stochastic reference. Additionally, we have analyzed 100 indepen-
dent shuffled realizations of the logarithmic price returns, in order

FIG. 10. min(Hi ) vsHn for developed (blue circles), emerging (red squares), and
frontier (green diamonds) stock markets for D = 4 for (a) integrated log prices
returns and (b) integrated shuffled realizations. Locations of fBm with the same
length (M = 4280 data points) are included as a reference of linear stochastic
processes (mean and one standard deviation, showed as error bars, over 100
independent realizations are shown for each Hurst exponent).
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to destroy all linear and nonlinear correlations but maintaining the
same amplitude probability distribution. The analysis of the inte-
grated surrogate is depicted in Fig. 10(b). It is observed that the
position of the quantifiers still locates all markets below the lin-
ear stochastic reference. We hypothesize that the departure from
the fBm model reflects the presence of a “static non-linearity” due
to the probability distribution of the data,47 which also is the source
of the multifractal nature of the data. These results are in line with
those found by implementing a totally different methodology.48

C. Laser beam wandering

Any laser beam that propagates through the turbulent atmo-
sphere experiments perpendicular displacements to the initial
unperturbed direction of propagation.49 This phenomenon is com-
monly known as laser beam wandering because of the dancing that
the beam performs over a screen. Particularly, it has been empiri-
cally confirmed for isotropic and anisotropic mixtures of hot and
cold high-speed air flows that the integrated fluctuations of the laser
centroid coordinates can be modeled by a fBm with a Hurst expo-
nent in the range 1/2 < H < 1, depending on the velocity of the air
flows.50 Thus, this seems to be a good example of a measured linear
stochastic process.

We here consider an experiment consisting of a laser beam
propagating though artificial turbulence. Fluctuations of the cen-
troid position along the vertical and horizontal axes were recorded
at 500 Hz for a fix turbulence intensity. Ten independent measure-
ments of length M = 104 data points for eight fans equal speeds
were obtained. For further details about the experiments, please see
Ref. 50. Results obtained from the integrated measured fluctuations
are shown in Fig. 11. It can be observed that both horizontal and

FIG. 11. min(Hi ) vsHn forD = 4. Average over ten independent measurements
are depicted for horizontal and vertical coordinates, with each point corresponding
to a different flow velocity. Locations of fBm with the same length (M = 104 data
points) are included as a reference of linear stochastic processes (mean and one
standard deviation, showed as error bars, over 100 independent realizations are
shown for each Hurst exponent).

vertical coordinates overlap with the fBm process, independently
of the air flow velocities. This result permits us to confirm that
the fluctuations of the centroid coordinates are compatible with a
persistent linear stochastic process.

D. Sunspot number

The best known property of the sunspot number time series
is its approximate 11 year cycle. However, a lot of effort has been
focused on the characterization of the fluctuations mounted on these
cycles.51–54 Particularly, Hu et al.53 have shown a multifractal behav-
ior of the fluctuations with a Hurst exponent equal to 0.74 for short
scales.

Here, we analyzed the monthly International Sunspot Num-
ber series available at the SIDC’s website.55 The dataset used in
the present analysis spans the January 1749–September 2019 period
(3249 data points). Following the work of Zhou and Leung,52 we
have filtered the monthly sunspot time series by implementing
empirical mode decomposition56 and focused on the fourth residual
signal.52,54 Additionally, we have estimated 100 independent surro-
gate realizations by implementing the iterative amplitude adjusted
Fourier transform (IAAFT), in order to produce surrogates with
the same amplitude probability distribution and power spectrum,
but with potential higher order correlations being randomized.57 We
have analyzed the integrated fluctuations for the filtered data and its
surrogates. These results are shown in Fig. 12. It is observed that the
position of the quantifiers locates the sunspot time series far from
the linear stochastic reference (fBm). On the other hand, its surro-
gates locate very close to a fBm with H > 0.7. This value of the Hurst
exponent is in accordance with those previously reported.51–54 From
these analyses, we can conclude that the fluctuations of the sunspot

FIG. 12. min(Hi ) vsHn (D = 3) for the filtered sunspot time series and its sur-
rogate (mean and one standard deviation over 100 independent realizations are
depicted). Locations of fBm with the same length (M = 3249 data points) are
included as a reference of linear stochastic processes (mean and one standard
deviation, showed as error bars, over 100 independent realizations are shown for
each Hurst exponent).
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time series present non-linear correlations, which is consistent with
the observed multifractal nature.

V. CONCLUSIONS

By leveraging on the ordinal patterns transitions to con-
struct an ordinal transition network, we have introduced here a
two-dimensional representation space, defined by the minimal per-
mutation entropy of the nodes vs the permutation entropy of the
network, aimed at capturing local and global features of the dynam-
ics, respectively.

We have contrasted the characterization of chaotic and
stochastic dynamical behaviors, represented by finite time series.
The numerical analysis of some representative chaotic and stochas-
tic systems supports the claim that a distinction can be made
between linear stochastic systems and non-linear determinis-
tic/stochastic dynamics by referring to their planar location in our
representation space. Linear stochastic systems considered here
overlap near the diagonal and seem to create an upper bound in
the plane. On the other hand, chaotic maps and the non-linear
stochastic dynamics locate below this linear limit. We also found
that this characterization is still observed when chaotic time series
are contaminated with observational noise, even for high levels of
this contamination. Furthermore, several experimental applications
confirm the numerical results and illustrate the applicability of the
proposed characterization plane.
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