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Representations of Yang-Mills algebras

By Estanislao Herscovich and Andrea Solotar*

Abstract

The aim of this article is to describe families of representations of the
Yang-Mills algebras YM(n) (n ∈ N≥2) defined in by A. Connes and M.
Dubois-Violette [CD]. We first describe some irreducible finite dimen-
sional representations. Next, we provide families of infinite dimensional
representations of YM(n), big enough to separate points of the algebra.
In order to prove this result, we prove and use that all Weyl algebras
Ar(k) are epimorphic images of YM(n).
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1. Introduction

This article is devoted to the study of the representation theory of Yang-
Mills algebras. Very little is known on this subject. Our goal is to describe fam-
ilies of representations which, although they do not cover the whole category
of representations, are large enough to distinguish elements of the Yang-Mills
algebra.

In order to describe our results in more detail, let us recall the definition
of Yang-Mills algebras by A. Connes and M. Dubois-Violette in [CD]. Given a
positive integer n ≥ 2, the Lie Yang-Mills algebra over an algebraically closed
field k of characteristic zero is

ym(n) = f(n)/〈{
n∑

i=1

[xi, [xi, xj ]] : j = 1, . . . , n}〉,

*This work has been supported by the projects UBACYTX169 and X212, CONICET-
CNRS, PICS 3410 and PIP-CONICET 5099. The first author is a CONICET fellow. The
second author is a research member of CONICET (Argentina) and a Regular Associate of
ICTP Associate Scheme.
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2 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

where f(n) is the free Lie algebra in n generators x1, . . . , xn. Its associative
enveloping algebra U(ym(n)) will be denoted YM(n). It is, for each n, a cubic
Koszul algebra of global dimension 3 and we shall see that it is noetherian if
and only if n = 2. The notion of N -Koszul algebra is clearly developed in
[Ber1].

The first instance of Yang-Mills theory in physics is through Maxwell’s
equations for the charge free situation which gives a representation of the
Yang-Mills equations.

In general, the Yang-Mills equations we consider are equations for covari-
ant derivatives on bundles over the affine space Rn provided with a pseudo-
Riemannian metric g. Any complex vector bundle of rank m over Rn is triv-
ial and every connection on such bundle is given by a Mm(C)-valued 1-form∑n

i=1 Aidxi. The corresponding covariant derivative is given by ∇i = ∂i + Ai.
The Yang-Mills equations for the covariant derivative are thus

n∑

i,j=1

gi,j [∇i, [∇j ,∇k]] = 0,

where g−1 = (gi,j) .
Also, Yang-Mills equations have been recently studied due to their appli-

cations to the gauge theory of D-branes and open string theory (cf. [Ne, Mov,
Doug]).

In [HKL], the authors discuss a superized version of Yang-Mills algebras.
Our main result may be formulated as follows:

Theorem 1.1. Given n ≥ 3 and r ≥ 1, the Weyl algebra Ar(k) is an
epimorphic image of YM(n).

The key ingredient of the proof is the existence of a Lie ideal in ym(n)
which is free as Lie algebra. This ideal has already been considered by M. Mov-
shev in [Mov]. It allows us to define morphisms from the Yang-Mills algebras
onto the Weyl algebras, making use for this of the Kirillov orbit method.

Once this is achieved, the categories of representations of all Weyl alge-
bras, that have been extensively studied by V. Bavula and V. Bekkert in [BB],
are also representations of the Yang-Mills algebras. Thus, we provide several
families of representations of the Yang-Mills algebras. However, an easy argu-
ment using Gelfand-Kirillov dimension shows that this construction does not
provide all representations.

The contents of the article are as follows. In section 2 we recall the defi-
nition and elementary properties of Yang-Mills algebras and we also study the
subcategory of nilpotent finite dimensional representations, describing com-
pletely those which are finite dimensional and irreducible.
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 3

Section 3 is devoted to the description of the Lie ideal tym(n). We give
complete proofs of the fact that it is a free Lie algebra in itself. This in-
volves the construction of a model of the graded associative algebra TYM(n) =
U(tym(n)), which permits us to replace the bar complex of TYM(n) by the
quasi-isomorphic bar complex of the model of TYM(n).

Finally, in section 4 we prove our main result, Corollary 4.5, and describe
the families of representations appearing in this way.

Throughout this article k will denote an algebraically closed field of char-
acteristic zero. Given an ordered basis {v1, . . . , vn} ⊂ V of the k-vector space
V , {v∗1, . . . , v∗n} ⊂ V ∗ will denote its dual basis. Also, we shall identify g with
its image inside U(g) via the canonical morphism g → U(g).

Given an associative or Lie k-algebra A and a subgroup G of Z, we shall
denote G

AMod, ModG
A, G

Amod and modG
A the categories of G-graded left and

right A-modules, and finite dimensional G-graded left and right A-modules,
respectively, and gnilmod will be the category of finite dimensional nilpotent
left g-modules.

We will also denote G
k Alg and G

k LieAlg the categories of G-graded associa-
tive and Lie algebras, respectively. We notice that if G is trivial, each definition
yields the non-graded case.

We would like to thank Jacques Alev, Jorge Vargas and Michel Dubois-
Violette for useful comments and remarks. We are indebted to Mariano Suárez-
Álvarez for a careful reading of the manuscript, suggestions and improvements.

2. Generalities and finite dimensional modules

In this first section we fix notations and recall some elementary proper-
ties of Yang-Mills algebras. We also study the category of finite dimensional
representations, describing some of the irreducible ones.

Let n be a positive integer such that n ≥ 2 and let f(n) be the free Lie
algebra with generators {x1, . . . , xn}. This Lie algebra is trivially provided
with a locally finite dimensional N-grading.

The quotient Lie algebra

ym(n) = f(n)/〈{
n∑

i=1

[xi, [xi, xj ]] : 1 ≤ j ≤ n}〉,

is called the Yang-Mills algebra with n generators. This definition apparently
differs from the one given in [CD], where the authors consider the quotient of
the free Lie algebra f(n) by the Lie ideal K generated by the relations

{
n∑

i,j=1

gi,j [xi, [xj , xk]] : 1 ≤ k ≤ n},
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4 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

for g = (gi,j) an invertible symmetric matrix in Mn(R) and g−1 = (gi,j). The
matrix g uniquely defines a nondegenerate symmetric bilinear form on the com-
plex vector space generated by {x1, . . . , xn}. One may choose an orthonormal
basis for this bilinear form. It is not difficult to see that in fact the ideal K
does not depend on the choice of the basis. So, when k = C our definition co-
incides with the one given in [CD] once we have fixed a basis such that g = id.
For some physical applications, one may be interested in choosing a basis such
that g is Lorentzian.

The N-grading of f(n) induces an N-grading of ym(n), which is also locally
finite dimensional. We denote ym(m)i the i-th homogeneous component, so
that

(2.1) ym(n) =
⊕

j∈N
ym(n)j ,

and put ym(n)l =
⊕l

j=1 ym(n)j . The Lie ideal

(2.2) tym(n) =
⊕

j≥2

ym(n)j

will be of considerable importance in the sequel.
The universal enveloping algebra U(ym(n)) will be denoted by YM(n) and

it is called the (associative) Yang-Mills algebra with n generators. Let V (n)
be spank〈{x1, . . . , xn}〉 and R(n) be spank〈{

∑n
i=1[xi, [xi, xj ]] : 1 ≤ j ≤ n}〉 ⊂

V (n)⊗3, it turns out that

YM(n) ) TV (n)/〈R(n)〉.

We shall also consider the universal enveloping algebra of the Lie ideal tym(n),
which will be denoted TYM(n). Occasionally, we will omit the index n in order
to simplify the notation if it is clear from the context.

It is easy to see that the Yang-Mills algebra YM(n) is a domain for any
n ∈ N, since it is the enveloping algebra of a Lie algebra (cf. [Dix], Corollary
2.3.9, (ii), p. 76).

The first example of Yang-Mills algebra appears when n = 2. We shall
see in the sequel that it is in fact quite different from the other cases.

Example 2.1. Let n = 2. In this case, ym(2) is isomorphic to the
Heisenberg Lie algebra h1, with generators x, y, z, and relations [x, y] = z,
[x, z] = [y, z] = 0. The isomorphism is given by x1 *→ x, x2 *→ y.

Alternatively, ym(2) ) n3, where n3 is the Lie algebra of strictly upper
triangular 3× 3 matrices with coefficients in k. The isomorphism is now given
by x1 *→ e12, x2 *→ e23.

We see that YM(2) is a noetherian algebra, since ym(2) is finite dimen-
sional. Furthermore, since U(h1) ) A(2,−1, 0), the Yang-Mills algebra with
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 5

two generators is isomorphic to a down-up algebra, already known to be noethe-
rian.

We shall consider two different but related gradings on ym(n). On the
one hand, the grading given by (2.1) will be called the usual grading of the
Yang-Mills algebra ym(n). On the other hand, following [Mov], we shall also
consider the special grading of the Yang-Mills algebra ym(n), for which it is a
graded Lie algebra concentrated in even degrees with each homogeneous space
ym(n)j in degree 2j. In this case, the Lie ideal tym(n) given in (2.2) is also
concentrated in even degrees (strictly greater than 2). We will see that in fact
tym(n) is isomorphic (as graded Lie algebras) to the graded free Lie algebra
on a graded vector space W (n), i.e., tym ) fgr(W (n)) (cf. [Mov], [MS] and
Section 3).

These gradings of the Lie algebra ym(n) induce respectively the usual
grading and the special grading on the associative algebra YM(n). This last
one corresponds to taking the graded universal enveloping algebra of the graded
Lie algebra ym(n).

In order to understand the relation among the graded and non-graded
cases we present the following proposition for which we omit the proof:

Proposition 2.2. The following diagram of functors, where O denote
the corresponding forgetful functors,

2Z
k Mod

O
!!

Tgr

""!!!!!!!!!
fgr

##"""""""""""""""""

2Z
k LieAlg

O
!!

Ugr
$$######

2Z
k Alg

O
!!

kMod
T

%%$$$$$$$$$ %%%%%%%%% f

##%%%%%%%%%

kLieAlg
U&&&&&&&&&

kAlg

is commutative.

Remark 2.3. The forgetful functors 2Z
k LieAlg → kLieAlg and 2Z

k Alg →
kAlg preserve and reflect free objects.

The Yang-Mills algebra is not nilpotent in general, since its lower central
series

ym(n) = C0(ym(n)) ⊃ C1(ym(n)) ⊃ · · · ⊃ Ck(ym(n)) ⊃ . . .

is not finite as we will show below. However, it is residually nilpotent, that
is, ∩m∈NCm(ym(n)) = 0. This fact is a direct consequence of the follow-
ing: Cm(ym(n)) is included in ⊕j≥m+1ym(n)j , since ym(n) is graded. Also
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6 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

ym(n)/Cm(ym(n)) is a finite dimensional nilpotent Lie algebra for every m ∈
N0, since the lower central series of ym(n)/Cm(ym(n)) is

C0(ym)/Cm(ym) ⊃ C1(ym)/Cm(ym) ⊃ · · · ⊃ Cm(ym)/Cm(ym) = 0.

Let us study in detail the ideals appearing in the lower central series.
Since the ideal of f(n)

I(n) = 〈{
n∑

i=1

[xi, [xi, xj ]] : 1 ≤ j ≤ n}〉

is homogeneous, then

I(n) =
⊕

j∈N
I(n)j =

⊕

j∈N
(I(n) ∩ f(n)j).

We also notice that in the free Lie algebra,

Ck(f(n)) =
⊕

j≥k+1

f(n)j ,

so that

Ck(ym(n)) = Ck(f(n))/(I(n) ∩ Ck(f(n))) =
⊕

j≥k+1

f(n)j/(I(n) ∩ f(n)j)

=
⊕

j≥k+1

f(n)j/I(n)j =
⊕

j≥k+1

ym(n)j .

Hence, there exists a canonical k-linear isomorphism jl : ym(n)/Cl(ym(n)) →
ym(n)l. As a consequence, we see that if ym(n) is not finite dimensional, then
Ck(ym(n)) 0= 0 for k ∈ N0, and ym(n) is not nilpotent. We shall prove below
that the Yang-Mills algebra ym(n) is finite dimensional if and only if n = 2
(cf. Remark 3.14).

Since we are interested in studying representations of the Yang-Mills al-
gebra we prove the following useful lemma.

Lemma 2.4. For each l ∈ N, the surjective Lie algebra homomorphism
πl : ym(n) ! ym(n)/Cl(ym(n)), induces a surjective algebra homomorphism
Πl : U(ym(n)) ! U(ym(n)/Cl(ym(n))). Let Kl = Ker(Πl). Then, the fact that
∩l∈NCl(ym(n)) = 0 implies that

K =
⋂

l∈N
Kl = 0.

Proof. The Poincaré-Birkhoff-Witt Theorem says that, given a Lie algebra
g, there exists a canonical k-linear isomorphism γ : S(g) &→ U(g) given by
symmetrization (cf. [Dix], 2.4.5). We shall denote by εg : S(g) → k the
augmentation of S(g) given by the canonical projection over the field k.
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 7

Since the functor S(−) is a left adjoint to the forgetful functor of commu-
tative k-algebras into k-modules, it preserves colimits. In particular, we obtain
from the decomposition ym(n) = ym(n)l⊕ Cl(ym(n)) that S(ym(n)) is isomor-
phic to S(ym(n)l)⊗S(Cl(ym(n))), via the k-algebra isomorphism t induced by
the k-linear map v + w *→ v ⊗ 1 + 1 ⊗ w, where v ∈ ym(n)l, w ∈ Cl(ym(n)).
The inverse of t is multiplication v ⊗ w *→ vw.

The surjective k-linear map πl : ym(n) ! ym(n)/Clym(n)) induces a sur-
jective k-algebra homomorphism Pl : S(ym(n)) ! S(ym(n)/Cl(ym(n))). Anal-
ogously, the k-linear isomorphism jl : ym(n)/Cl(ym(n)) → ym(n)l induces a
k-algebra isomorphism Jl : S(ym(n)/Clym(n))) → S(ym(n)l). The compo-
sition Jl ◦ Pl coincides with (idym(n)l ⊗ εCl(ym(n))) ◦ t, and hence has kernel
t−1(S(ym(n)l)⊗ S+(Cl(ym(n)))) = S(ym(n)l)S+(Cl(ym(n))).

On the other hand, the following diagram

S(ym(n)) Pl ''

γ

!!

S(ym(n)/Cl(ym(n)))

γ

!!
U(ym(n)) Πl '' U(ym(n)/Cl(ym(n)))

is commutative.
As a consequence, Kl = γ(S(ym(n)l)S+(Cl(ym(n)))). Whence, using the

fact that γ is bijective,

K =
⋂

l∈N
Kl =

⋂

l∈N
γ(S(ym(n)l)S+(Cl(ym(n))))

= γ(
⋂

l∈N
S(ym(n)l)S+(Cl(ym(n)))) = 0.

The last equality can be proved as follows: taking into account that
( ⋂

l∈N
S(ym(n)l)S+(Cl(ym(n)))

)
∩ S(ym(n)l) = 0,

for all l ∈ N, and, since S(ym(n)) =
⋃

l∈N S(ym(n)l), then
⋂

l∈N
S(ym(n)l)S+(Cl(ym(n))) = 0.

Let
ψ : ym(n)/Cl(ym(n)) → gl(V ),

be a representation of the quotient ym(n)/Cl(ym(n)). It provides a repre-
sentation of ym(n) simply by composition with the canonical projection πl.
Given a morphism f between two representations V and W of the quotient
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8 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

ym(n)/Cl(ym(n)), it induces a morphism between the corresponding represen-
tations of the algebra ym(n) in a functorial way. Hence, it yields a k-linear
functor

Il : ym(n)/Cl(ym(n))Mod → ym(n)Mod,

which also restricts to the full subcategories of finite dimensional modules,
denoted by il. Moreover, since the map πl : ym(n) → ym(n)/Cl(ym(n)) is
onto, the change-of-rings functors are fully faithful.

Analogously, given l,m ∈ N, such that l ≤ m, the homomorphism of
Lie algebras πl≤m : ym(n)/Cm(ym(n)) → ym(n)/Cl(ym(n)) induced by the
canonical projection gives a k-linear functor

Il≤m : ym(n)/Cl(ym(n))Mod → ym(n)/Cm(ym(n))Mod,

which restricts to the full subcategories of finite dimensional modules. We
shall denote this restriction by il≤m. It is clear that Im≤p ◦ Il≤m = Il≤p and
Im ◦ Il≤m = Il.

Remark 2.5. The functors Il≤m and Il (l,m ∈ N) preserve irreducible
modules.

The following proposition concerning the categories of finite dimensional
modules is easy to prove.

Proposition 2.6. Let φ : ym(n) → gl(V ) be a finite dimensional nilpo-
tent representation of ym(n). Then, there exist m ∈ N and a homomorphism
of Lie algebras φ′ : ym(n)/Cm(ym(n)) → gl(V ), such that φ = φ′ ◦ πm.

Proof. Since Im(φ) is a finite dimensional nilpotent subalgebra of gl(V ),
Ker(φ) is finite codimensional and there exists m ∈ N such that Ker(φ) ⊃
⊕j≥mym(n)j . Since ⊕j≥mym(n)j ⊃ Cm(ym(n)), we get Ker(φ) ⊃ Cm(ym(n)).
Therefore φ induces a morphism

φ′ : ym(n)/Cm(ym(n)) → gl(V )

satisfying φ = φ′ ◦ πm.

Corollary 2.7. The category ym(n)nilmod of nilpotent finite dimensional
modules over ym(n) is the filtered colimit in the category of k-linear cate-
gories of the categories ym(n)/Cm(ym(n))mod of finite dimensional modules over
ym(n)/Cm(ym(n)).

Proof. Let C be a k-linear category and let Fl : ym(n)/Cl(ym(n))mod → C be
a collection of k-linear functors indexed by l ∈ N satisfying that Fm◦Il≤m = Fl,
for l,m ∈ N, l ≤ m. We shall define a k-linear functor F : ym(n)nilmod → C.

If M is a finite dimensional nilpotent representation of ym(n) given by
φ : ym(n) → gl(M), using Proposition 2.6 we see that there exists l ∈ N
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 9

such that φ = φl ◦ πl with φl : ym(n)/Cl(ym(n)) → gl(M), and hence M
can be considered as a module over ym(n)/Cl(ym(n)), denoted Ml. We define
F (M) = Fl(Ml).

The functor F is well-defined. Suppose that for another m ∈ N there
exists φm : ym(n)/Cm(ym(n)) → gl(M) such that φ = φm ◦ πm, then for m ≥ l
there is a diagram

ym/Cm(ym)

πl≤m

!!!!

φm

((''''''''''''''''

gl(M)

ym

πm

)) ))(((((((((((((((((

πl

** **))))))))

***********

φ
++*****************

ym/Cl(ym)

φl

,,+++++++++++++++++

From the definitions, all faces are commutative except maybe the one
implying φl ◦ πl≤m = φm. Since πm is surjective, the previous equality is
satisfied if and only if φl ◦ πl≤m ◦ πm = φm ◦ πm. But

φl ◦ πl≤m ◦ πm = φl ◦ πl = φ = φm ◦ πm,

so Mm = Ik≤m(Mk) and Fm(Mm) = Fm ◦ Il≤m(Ml) = Fl(Ml).
Let M and N be two finite dimensional nilpotent representations of ym(n)

by means of φ : ym(n) → gl(M) and ψ : ym(n) → gl(N) and let f : M → N
be a module homomorphism. By Proposition 2.6 there exists l ∈ N such that
φ = φl ◦ πl and ψ = ψl ◦ πl. As before, we shall denote Ml and Nl these
modules. It follows directly from the definitions that f is also a morphism
of ym(n)/Cl(ym(n))-modules, denoted fl. Take F (f) = Fl(fl). It is clearly
well-defined.

The previous proposition says that every irreducible finite dimensional
nilpotent ym(n)-module is in fact an irreducible ym(n)/Cl(ym(n))-module, for
some l ∈ N. Since the latter is finite dimensional nilpotent, it suffices to find
irreducible finite dimensional modules over this kind of Lie algebras. It is in
fact well-known that these representations are one dimensional (cf. [Dix], Coro.
1.3.13). The following lemma provides a description of them.

Lemma 2.8. Let g be a finite dimensional nilpotent Lie algebra over k.
Every irreducible finite dimensional representation of g is one dimensional.
Furthermore, the set of isomorphism classes of irreducible finite dimensional
representations of g is parametrized by (g/C1(g))∗.

Proof. Let V be an irreducible finite dimensional g-module of dimension
n ≥ 1 defined by φ : g → gl(V ). Since V is simple, Lie’s theorem tells us that
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10 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

V contains a common eigenvector v for all the endomorphisms in g (cf. [Hum],
Thm. 4.1). Then, the non trivial submodule k.v ⊂ V should coincide with V ,
for V is irreducible, so dimk(V ) = 1.

On the other hand, since gl(V ) ) k, the morphism φ : g → gl(V ) takes
values in an abelian Lie algebra, so C1(g) ⊂ Ker(φ), which in turn implies
that φ induces a morphism φ̄ : g/C1(g) → k. Conversely, given a linear form
φ̄ ∈ (g/C1(g))∗, we have a Lie algebra homomorphism φ : g → k ) gl(k), whose
kernel contains C1(g). Thus, k turns out to be a irreducible representation of
g. The lemma is proved.

Notice that any 2-dimensional representation of ym(n) is nilpotent.
From the previous lemma and Proposition 2.6, taking into account that

an irreducible finite dimensional solvable ym(n)-module is also nilpotent, we
obtain the following theorem:

Theorem 2.9. Every irreducible finite dimensional solvable representa-
tion of ym(n) is of dimension 1. Moreover, the set of isomorphism classes of
irreducible finite dimensional solvable representations of the Yang-Mills algebra
ym(n) is parametrized by (ym(n)/C1(ym(n)))∗.

Remark 2.10. The previous theorem is not only true for Yang-Mills al-
gebras but also for any Lie algebra g provided with a locally finite dimensional
N-grading, taking into account that the set of isomorphism classes of irreducible
finite dimensional solvable representations is parametrized by (g/C1(g))∗.

3. The ideal tym(n)

In this section we shall study in detail the ideal tym(n) of the Lie Yang-
Mills algebra and its associative version TYM(n). This ideal is the key point
of the construction of the family of representations we shall define. In order to
achieve this construction we need to prove that TYM(n) is a free algebra. We
shall then perform detailed computations in order to prove this fact, for which
we shall make use of the bar construction for augmented differential graded
algebras (or A∞-algebras). We suggest [Lef, Kel] as a reference. Although
some of the results of this section are mentioned in [MS], our aim here is to
give detailed proofs of the results that we will need later.

The starting point is to define k-linear morphisms di, i = 1, . . . , n, given
by

di : V (n) → V (n)
di(xj) = δij .

(3.1)
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 11

They can be uniquely extended to derivations di, i = 1, . . . , n, on TV (n).
Since, for all i, j, k = 1, . . . , n,

(3.2) di([xj , xk]) = di(xjxk − xkxj) = δijxk + xjδik − δikxj − xkδij = 0,

we see that each di induces a derivation on TV (n)/〈R(n)〉 = YM(n), which we
will also denote di.

The following proposition characterizes the algebra U(tym(n)) as a subal-
gebra of U(ym(n)) = YM(n).

Proposition 3.1. The inclusion inc : tym(n) ↪→ ym(n) induces a mono-
morphism U(inc) : U(tym(n)) ↪→ U(ym(n)) whose image is

⋂n
i=1 Ker(di).

Proof. The first statement is a direct consequence of the Poincaré-Birkhoff-
Witt Theorem (cf. [Dix], Sec. 2.2.6, Prop. 2.2.7). As it is usual, we will identify
U(tym(n)) with its image by U(inc) in U(ym(n)).

Let us prove the second statement. On the one hand, if z ∈ tym(n) =
[ym(n), ym(n)], then di(z) = 0, i = 1, . . . , n. Since tym(n) generates the algebra
U(tym(n)) and di is a derivation, each di vanishes in U(tym(n)). Hence,

U(tym(n)) ⊆
n⋂

i=1

Ker(di).

We next choose an ordered basis of tym(n) as k-vector space, denoted by
B′ = {yj : j ∈ J}. As a consequence, the set B = {x1, . . . , xn}∪B′ is an ordered
basis of ym(n). By the Poincaré-Birkhoff-Witt Theorem, given z ∈ U(ym(n)),

z =
∑

j1, . . . , jl ∈ J not equal

(r1, . . . , rn, s1, . . . , sl) ∈ Nn+l
0

cj1,...,jl

(r1,...,rn,s1,...,sl)
xr1

1 . . . xrn
n ys1

j1
. . . ysl

jl
.

Since di(xp
j ) = pxp−1

j δij and di(yjm) = 0, m = 1, . . . , l,

di(z) =
∑

j1, . . . , jl ∈ J not equal

(r1, . . . , rn, s1, . . . , sl) ∈ Nn+l
0

cj1,...,jl

(r1,...,rn,s1,...,sl)
rix

r1
1 . . . xri−1

i . . . xrn
n ys1

j1
. . . ysl

jl
.

Let us suppose that di(z) = 0, for all i = 1, . . . , n. By the Poincaré-
Birkhoff-Witt Theorem, we obtain that ri = 0, for all i = 1, . . . , n. This in
turn implies that z ∈ U(tym(n)), and the other inclusion is proved.

We shall consider the following filtration on the algebra YM(n)

F j =

{
0 if j = 0,
{z ∈ TYM(n) : di(z) ∈ F j−1,∀ i, 1 ≤ i ≤ n} if j ∈ N.

By the previous proposition, F 1 = TYM(n).

Lemma 3.2. The filtration {F j}j∈N0 defined on Y M(n) is increasing,
multiplicative, exhaustive, Hausdorff and such that xi ∈ F 2, for all i = 1, . . . , n.
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12 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

Proof. Cf. [MS], Lemma 28.

The following result is implicit in the analysis of [MS].

Lemma 3.3. Let A be an associative k-algebra with unit. Let ∂i, i =
1, . . . , n be the usual derivations on k[t1, . . . , tn] and define the derivations Di =
idA⊗∂i on the algebra A[t1, . . . , tn] ) A⊗k k[t1, . . . , tn]. Then, given polynomi-
als p1, . . . , pn ∈ A[t1, . . . , tn] such that Di(pj) = Dj(pi), for all i, j = 1, . . . , n,
there exists a polynomial P ∈ A[t1, . . . , tn] such that Di(P ) = pi, i = 1, . . . , n.

Proof. The classical proof for A = k (cf. [Cou], Lemma 2.2) works as well
in this context.

Let GrF •(YM(n)) be the associated graded algebra of YM(n) provided
with the filtration {F j}j∈N0 , and let us denote z̄ the class in GrF •(YM(n)) of
an element z ∈ YM(n).

The derivations di, i = 1, . . . , n, induce morphisms on the associated
graded algebra, which are also derivations and we shall denote them in the
same way.

Furthermore, F 1/F 0 is a subalgebra of GrF •(YM(n)), isomorphic as an
algebra to F 1 = TYM(n). From now on, we shall make use of this identifica-
tion.

Lemma 3.4. The algebra GrF •(YM(n)) satisfies the following properties:

(i) The elements x̄i, i = 1, . . . , n, commute with each other and with the
subalgebra F 1/F 0.

(ii) The elements x̄i, i = 1, . . . , n, and F 1/F 0 generate GrF •(YM(n)).

(iii) The algebra generated by the elements x̄i and F 1/F 0 is isomorphic to
(F 1/F 0)⊗k k[t1, . . . , tn]. Hence, there exists an isomorphism of algebras
(F 1/F 0)⊗k k[t1, . . . , tn] ) GrF •(YM(n)).

Proof. Cf. [MS], Lemma 29. Observe that Lemma 3.3 is necessary to
prove (ii) and (iii).

The projection ym(n) → ym(n)/tym(n) ) V (n) provides an action of the
Lie Yang-Mills algebra ym(n) on the symmetric algebra S(V (n)) such that the
restricted action of tym(n) on S(V (n)) is trivial.

In the same way as we have done for the Yang-Mills algebra, we define the
special grading of S(V (n)): we consider V (n) concentrated in degree 2 and we
identify S(V (n)) and Sgr(V (n)), where the latter is the symmetric algebra in
the category of graded k-vector spaces. The usual grading of S(V (n)) is given
by considering V (n) concentrated in degree 1.
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 13

If the Yang-Mills algebra ym(n) and the symmetric algebra S(V (n)) are
provided with the special grading, then S(V (n)) is a graded module over ym(n).

We will compute the cohomology of ym(n) with coefficients on S(V (n))
because it will be used in order to prove weak convergence of the spectral
sequence defined in Corollary 3.6.

Proposition 3.5. The Lie homology of ym(n) with coefficients in the
module S(V (n)) is given by

H•(ym(n), S(V (n))) =

{
k, if • = 0,
0, if • ≥ 2.

The homology in degree 1 is the direct sum of vector spaces Hp
1 (p ∈ N0), where

dimk(H
p
1 ) =






n (n+p−1)!
(n−1)! − (n+p)!

(n−1)!(p+1)! , if p ≤ 1,

n (n+1)!
(n−1)!2! −

(n+2)!
(n−1)!3! − n, if p = 2,

n (n+p−1)!
(n−1)!p! −

(n+p)!
(n−1)!(p+1)! − n (n+p−3)!

(n−1)!(p−2)! + (n+p−4)!
(n−1)!(p−3)! , if p ≥ 3.

Proof. We will now denote V instead of V (n).
We shall use the Koszul resolution (9) of U(ym(n)) described by [CD] for

homological computations. The complex (C•(YM(n), S(V )), d•) computing
the homology TorU(ym(n))

• (k, S(V )) ) H•(ym(n), S(V )) is given by tensoring
the Koszul resolution (9) of [CD] with S(V ) over YM(n)

(3.3) 0 −→ S(V )[−4] d3−→ (S(V )⊗ V )[−2] d2−→ S(V )⊗ V
d1−→ S(V ) −→ 0,

where the differentials are

d3(w) =
n∑

i=1

xi.w ⊗ xi,

d2(w ⊗ xi) =
n∑

j=1

(x2
j .w ⊗ xi − xixj .w ⊗ xj),

d1(w ⊗ xi) = xi.w,

for S(V ) is commutative. We have shifted some terms of the complex so the
complex (3.3) is composed of homogeneous morphisms of degree 0.

We immediately get that H•(ym(n), S(V )) = 0 if • > 3.
The complex 3.3 is the direct sum of the following subcomplexes of finite

dimensional k-vector spaces
(3.4)

0 −→ Sp−1(V )[−4]
dp−1
3−→ (Sp(V )⊗V )[−2]

dp
2−→ Sp+2(V )⊗V

dp+2
1−→ Sp+3(V ) −→ 0,

where p ∈ Z and we consider Sp(V ) = 0, if p < 0. We define

Hp
• (ym(n), S(V )) =

{
Ker(dp

•)/Im(dp−1
•+1), if • 0= 1,

Ker(dp
•)/Im(dp−2

•+1), if • = 1.
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14 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

Notice that dp
3 is injective for p ∈ N0. This is proved as follows. If

dp
3(w) = 0, then xi.w = 0, for all i = 1, . . . , n, so w = 0, because {xi}i=1,...,n is

a basis of V and S(V ) is entire. Hence, H3(ym(n), S(V )) = 0.
On the other hand, the morphism dp

1 is surjective for p ∈ N0, since, if
w ∈ Sp+1(V ), then there exists i such that w = xi.w′ (p + 1 > 0!), i.e. w =
d1(w′). The morphism d1 being homogeneous of degree 1, if w ∈ S0(V ) = k,
there does not exist w′ ∈ S(V )⊗ V such that d1(w′) = w. As a consequence,
H0(ym(n), S(V )) = k.

We will now show that H2(ym(n), S(V )) = 0. Let now w =
∑n

i=1 wi⊗xi ∈
Sp(V )⊗V (where wi ∈ Sp(V ) for i = 1, . . . , n) be in the kernel of the morphism
dp

2. Then 0 = d2(w) =
∑n

i,j=1(wix2
j ⊗ xi − wixixj ⊗ xj), and using that

{xi}i=1,...,n is a basis of V , it turns out that
∑n

j=1(wix2
j − wjxixj) = 0, for

i = 1, . . . , n. This is equivalent to

wi

n∑

j=1

x2
j = xi

n∑

j=1

xjwj , i = 1, . . . , n.

Since S(V ) is a unique factorization domain and the elements xi are prime,
this identity implies that xi divides wi, for i = 1, . . . , n.

Let w′i be such that wi = xiw′i. We can rewrite the previous equation as
follows

n∑

j=1

x2
j (w

′
i − w′j) = 0,∀ i = 1, . . . , n.

Fix i1, i2 such that 1 ≤ i1 < i2 ≤ n. Then,
∑n

j=1 x2
j (w

′
i1 − w′i2) = 0, and S(V )

being entire, we see that w′i1 = w′i2 , for all i1, i2, 1 ≤ i1 < i2 ≤ n. Let us call
this element w′. Hence, wi = xiw′.

Now, d3(w′) =
∑n

i=1 w′xi ⊗ xi =
∑n

i=1 wi ⊗ xi = w. We conclude that
H2(ym(n), S(V )) = 0.

We finally compute the homology in degree 1.
Since dp

1 is surjective, we have that

dimk(Ker(dp
1)) = dimk(Sp(V )⊗ V )− dimk(Sp+1(V ))

= n
(n + p− 1)!
(n− 1)!p!

− (n + p)!
(n− 1)!(p + 1)!

.

On the other hand, as H2(ym(n), S(V )) = 0 we know that Ker(dp−2
2 ) =

Im(dp−3
3 ). Moreover, injectivity of dp−3

3 yields that

dimk(Im(dp−2
2 )) = dimk(Sp−2(V )⊗ V )− dimk(Sp−3(V ))

= n
(n + p− 3)!

(n− 1)!(p− 2)!
− (n + p− 4)!

(n− 1)!(p− 3)!
,

for p ≥ 3.

Feb 25 2009 18:43:25 PST
Vers. 1 - Sub. to Annals



REPRESENTATIONS OF YANG-MILLS ALGEBRAS 15

If p = 0, 1, then Im(dp−2
2 ) = {0} and in case p = 2, Sp−3(V ) = {0}, so

dimk(Im(dp−2
2 )) = dimk(Sp−2(V )⊗ V ) = n.

The proposition is proved.

Corollary 3.6. The filtration {F pC•(YM(n), S(V ))}p∈Z of the complex
(C•(YM(n), S(V )), d•) of (3.3) given by

(3.5) F pC•(YM(n), S(V ))

= (0 −→ S≥−p(V ) d3−→ S≥−p(V )⊗V
d2−→ S≥−p(V )⊗V

d1−→ S≥−p(V ) −→ 0),

is increasing, exhaustive and Hausdorff, and the spectral sequence associated to
this filtration weakly converges to the homology H•(ym(n), S(V )) of the complex
(C•(YM(n), S(V )), d•).

Proof. We shall indicate the consecutive steps of the spectral sequence,
following the standard construction detailed in [Wei], Sec. 5.4. First, notice
that, since d1 and d3 are homogeneous morphisms of degree 1, and d2 is ho-
mogeneous of degree 2, then

di(F pC•(YM(n), S(V ))) ⊆ F p−1C•(YM(n), S(V )),

for i = 1, 2, 3, and

d2(F pC•(YM(n), S(V ))) ⊆ F p−2C•(YM(n), S(V )).

This in turns implies that the differentials d0
p,q are 0. Besides, as

E0
p,q = F pCp+q(ym(n), S(V ))/F p−1Cp+q(ym(n), S(V )),

the spectral sequence is concentrated in the set of (p, q) such that 0 ≤ p+q ≤ 3,
and p ≤ 0, and

E0
p,q =






S−p(V ), if q = −p,
S−p(V )⊗ V, if q = −p + 1,
S−p(V )⊗ V, if q = −p + 2,
S−p(V ), if q = −p + 3,
0 in other case.

We may picture the terms E0
•,• as it appears in Figure 3.1.

Since d0
p,q = 0 and E0

p,q = E1
p,q, it turns out that

d1
p,q =






0, if q = −p,
d−p

1 , if q = −p + 1,
0, if q = −p + 2,
d−p

3 , if q = −p + 3,
0 in other case.
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16 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

•
0

!!

•
0

!!

•
0

!!

0 0 E0
•,•

•
0!!

•
0!!

•
0!!

•
0!!

0

0 •
0!!

•
0!!

•
0!!

0

0 0 •
0!!

•
0!!

0

0 0 0 •

q --

p''0

Figure 3.1: Zeroth term E0
•,• of the spectral sequence. The dotted lines indicate

the limits wherein the spectral sequence is concentrated.

• •0.. •d1
3.. 0 0 E1

•,•

• •d2
1.. •0.. •d0

3.. 0

0 •0.. •d1
1.. •0.. 0

0 0 •0.. •d0
1.. 0

0 0 0 •

q --

p''0.. 0

Figure 3.2: First term E1
•,• of the spectral sequence.

In consequence, the second step of the spectral sequence is

E2
p,q =






S−p(V )/Im(d−p+1
1 ), if q = −p,

Ker(d−p
1 ), if q = −p + 1,

Im(d−p+1
3 ), if q = −p + 2,

Ker(d−p
3 ), if q = −p + 3,

0 in other case,

and the differentials are

d2
p,q =

{
d−p

2 , if q = −p + 2,
0 if not.

In this case,
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• • 0 0 0 E2
•,•

• • •

d1
2//,,,,,,,,,,,,,

0 0

0 • •

0//------------- •

d0
2//-------------

0

0 0 •

0//------------- •

0//-------------
0

0 0 0 •

0//-------------

q --

p''0

Figure 3.3: Step E2
•,• of the spectral sequence.

As a consequence, the third step of the spectral sequence is

E3
p,q =






H−p
0 (ym(n), S(V )), if q = −p,

H−p
1 (ym(n), S(V )), if q = −p + 1,

H−p
2 (ym(n), S(V )), if q = −p + 2,

H−p
3 (ym(n), S(V )), if q = −p + 3,

0 in other case.

Hence, the spectral sequence is weakly convergent because of Proposition 3.5.

We shall consider the graded algebra YM(n) ⊗ Λ•V (n) with the usual
multiplication and the grading given by putting YM(n) in degree zero and the
usual grading of Λ•V (n). We define a differential d of degree 1 on this algebra
by the formula

d(z ⊗ w) =
n∑

i=1

di(z)⊗ (xi ∧ w),
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18 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

where z ∈ YM(n) and w ∈ Λ•V (n). The identity d ◦ d = 0 is immediate. The
map d is a graded derivation, since

d((z ⊗ w)(z′ ⊗ w′)) = d(zz′ ⊗ w ∧ w′)

=
n∑

i=1

di(zz′)⊗ (xi ∧ w ∧ w′)

=
n∑

i=1

(di(z)z′ + zdi(z′))⊗ (xi ∧ w ∧ w′)

= (
n∑

i=1

di(z)⊗ (xi ∧ w))(z′ ⊗ w′)

+ (−1)|w|(z ⊗ w)(
n∑

i=1

di(z′))⊗ (xi ∧ w′)

= d(z ⊗ w)(z′ ⊗ w′) + (−1)|z⊗w|(z ⊗ w)d(z′ ⊗ w′).

If εym(n) is the augmentation of YM(n) and ε′ is the augmentation of
the exterior algebra Λ•V (n), we shall consider the augmentation of YM(n) ⊗
Λ•V (n) given by the usual formula ε = εym(n) ⊗ ε′. Hence, we have defined a
structure of augmented differential graded algebra on YM(n)⊗ Λ•V (n).

The next result says that this augmented differential graded algebra is in
fact a model for TYM(n).

Proposition 3.7. If we consider the algebra TYM(n) as an augmented
differential graded algebra concentrated in degree zero, with zero differential
and augmentation εtym(n), then the morphism

inc : TYM(n) → YM(n)⊗ Λ•V (n)
z *→ z ⊗ 1

is a quasi-isomorphism of augmented differential graded algebras and we will
write TYM(n) )q YM(n)⊗ Λ•V (n).

Proof. The map inc is a morphism of graded algebras, as we can easily see.
It also commutes with differentials by Proposition 3.1. Furthermore, the same
proposition also implies that inc induces an isomorphism between TYM(n) and
H0(YM(n)⊗Λ•V (n)) = Z0(YM(n)⊗Λ•V (n)), since z ∈ Z0(YM(n)⊗Λ•V (n))
if and only if z = v ⊗ 1, with v ∈ YM(n) and d(z) =

∑n
i=1 di(v) ⊗ xi = 0,

which in turn happens if and only if di(v) = 0, for all i = 1, . . . , n.
Note that inc also commutes with the augmentations.
We shall now proceed to prove that inc induces an isomorphism in co-

homology. It is thus necessary to compute the cohomology of the underlying
cochain complex (YM(n) ⊗ Λ•V (n), d). We will write the cochain complex
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REPRESENTATIONS OF YANG-MILLS ALGEBRAS 19

(YM(n) ⊗ Λ•V (n), d) as a chain complex in the usual way C• = YM(n) ⊗
Λn−•V (n).

We consider (C•, d) provided with the filtration {F•C}•∈Z defined as fol-
lows

FpCq = F p+n−q ⊗ Λn−qV (n).

Notice that {F•C}•∈Z is an increasing, bounded below and exhaustive filtration
and d(FpCq) ⊆ Fp−2Cq−1. Hence, {F•C}•∈Z is a filtration of complexes and in
turn it induces a spectral sequence whose second term is

E2
p,q = FpCp+q/Fp−1Cp+q = (Fn−q ⊗ Λn−p−qV (n))/(Fn−q−1 ⊗ Λn−p−qV (n))

) (Fn−q/Fn−q−1)⊗ Λn−(p+q)V (n)

= GrF •(Y M(n))n−q ⊗ Λn−(p+q)V (n)

) TYM(n)⊗ Sn−q(V (n))⊗ Λn−(p+q)V (n),

where the last isomorphism follows from the last item of Lemma 3.4. The
differential d2

p,q : E2
p,q → E2

p−2,q+1 can be written in the following simple way,
where V = V (n), TYM = TYM(n) and r = p + q

E2
p,q

d2
p,q '' E2

p−2,q+1

(Fn−q/Fn−q−1)⊗ Λn−rV
d̄ '' (Fn−q−1/Fn−q−2)⊗ Λn−r+1V

TYM⊗ Sn−q(V )⊗ Λn−rV
d′p,q '' TYM⊗ Sn−q(V )⊗ Λn−r+1V.

The morphism d̄ is induced by d and d′p,q is the map given by

d′p,q(z ⊗ v ⊗ w) =
n∑

i=1

z ⊗ ∂i(v)⊗ (xi ∧ w).

We see that this complex is exact except in case p = 0 and q = n. This
follows from the fact that the differential d′p,q is the TYM(n)-linear extension
of the differential of the de Rham complex of the algebra S(V (n)), whose
cohomology is zero, except in degree zero, where it equals k (cf. [Wei], Coro.
9.9.3). This implies that the spectral sequence collapses in the third step, for
the unique non zero element is E3

0,n = TYM(n). As the filtration is bounded
below and exhaustive, the Classical Convergence Theorem tells us that the
spectral sequence is convergent and it converges to the homology of the complex
(C•, d•) (cf. [Wei], Thm. 5.5.1).

Finally, H•(YM(n)⊗Λ•V (n)) = Hn−•(C) = 0, if • 0= 0, and H0(YM(n)⊗
Λ•V (n)) = Hn(C) = TYM(n).
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20 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

Let B+(−) denote the bar construction for augmented differential graded
algebras or more generally, for A∞-algebras (cf. [Lef], Notation 2.2.1.4). From
the previous proposition we obtain that B+(TYM(n)) is quasi-isomorphic to
B+(YM(n)⊗Λ•V (n)). Since the underlying complex of the bar complex of an
augmented (graded) algebra coincides with the normalized (graded) Hochschild
bar complex with coefficients in the (graded) bimodule k (cf. [Lef], Proof of
Lemma 2.2.1.9), the respective Hochschild homologies of differential graded
algebras with coefficients in k are isomorphic, i.e.

H•(TYM(n), k) = H•(B+(TYM(n)))
) H•(B+(YM(n)⊗ Λ•V (n)))
= H•(YM(n)⊗ Λ•V (n), k).

We define another filtration on the augmented differential graded algebra
YM(n)⊗ ΛV (n) by the formula

(3.6) Fp(YM(n)⊗ Λ•V (n)) = YM(n)⊗ Λ•≥pV (n).

It may be easily verified that Fp(YM(n) ⊗ Λ•V (n)) is decreasing, bounded,
multiplicative and compatible with differentials, i.e. d(Fp(YM(n)⊗Λ•V (n))) ⊆
Fp(YM(n)⊗ Λ•V (n)). Furthermore,

d(Fp(YM(n)⊗ Λ•V (n))) ⊆ Fp+1(YM(n)⊗ Λ•V (n)).

Notice that ε(Fp(YM(n)⊗ Λ•V (n))) = 0, if p ≥ 1.
As a consequence, the associated graded algebra to this filtration is an

augmented differential graded algebra, provided with zero differential and aug-
mentation induced by ε.

As before, we will consider YM(n) as an augmented differential graded
algebra concentrated in degree zero and augmentation εym(n), and Λ•V (n) as
an augmented differential graded algebra with the usual grading (i.e. given
by •) and the usual augmentation, both with zero differential. The associated
graded algebra GrF•(YM(n)⊗ Λ•V (n)) is the tensor product (in the category
of augmented differential graded algebras) of the algebras YM(n) and Λ•V (n).

The filtration (3.6) induces a decreasing and bounded above filtration of
coaugmented coalgebras on

B+(YM(n)⊗ Λ•V (n)),

which we denote F•(B+(YM(n)⊗Λ•V (n))) (cf. [Lef], Sec. 1.3.2). By its very
definition,

GrF•(B
+(YM(n)⊗ Λ•V (n))) = B+(GrF•(YM(n)⊗ Λ•V (n))).

Since the associated graded algebra GrF•(YM(n)⊗Λ•V (n)) is the tensor
product of the algebras YM(n) and Λ•V (n), then

B+(GrF•(YM(n)⊗ Λ•V (n))) )q B+(YM(n))⊗B+(Λ•V (n)).
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Again using that B+(YM(n)) is quasi-isomorphic as a graded k-vector space to
the tensor product over YM(n)e of any projective resolution of graded YM(n)e-
modules of k with k, we obtain that B+(YM(n)) )q C•(YM(n), k).

Besides, since Λ•V (n) is a Koszul algebra, B+(Λ•V (n)) is quasi-isomorphic
to S•(V (n)), where we consider S•(V (n)) as a differential graded algebra pro-
vided with the usual grading (i.e. given by •) and zero differential (cf. [PP],
Sec. 2.1, Example; Sec. 2.3).

Finally,

GrF•(B
+(YM(n)⊗ Λ•V (n))) )q C•(YM(n), k)⊗ S(V (n)).

Notice that the space on the right is the zero step of the weakly convergent
spectral sequence in Corollary 3.6.

Moreover, the spectral sequence associated to the decreasing, exhaustive,
Hausdorff and bounded above filtration F•(B+(YM(n) ⊗ Λ•V (n))) is conver-
gent. From the Comparison Theorem for spectral sequences (cf. [Wei], Thm.
5.2.12), it follows that

H•(B+(YM(n)⊗ Λ•V (n))) ) H•(C•(YM(n), S(V (n)))).

By Proposition 3.7

H•(tym(n), k) ) H•(TYM(n), k)) ) H•(B+(TYM(n)))
) H•(C•(YM(n), S(V (n)))).

(3.7)

We now recall some useful results concerning cohomology of algebras.

Proposition 3.8. Let k be a commutative ring with unit and let g be a
Lie algebra over k. If H•(g, M) = 0, for all g-module M and • ≥ 2. Then g
is a free Lie algebra.

Let W be a k-module. If M is a bimodule over the free algebra T (W ),
then H•(T (W ), M) = 0 and H•(T (W ), M) = 0, for all • ≥ 2.

Proof. Cf. [Wei], Prop. 9.1.6. and Ex. 7.6.3.

Remark 3.9. From Proposition 3.8, we immediately see that if the uni-
versal enveloping algebra U(g) of a Lie algebra g is free, then g is also free.
The converse is also clear.

Theorem 3.10. Let W be a graded k-vector space concentrated in degree
1, let I be an homogeneous ideal generated in degrees greater or equal to 2 and
let A = T (W )/I. We may write I =

⊕
m∈N≥2

Im, where Im denotes the m-th
homogeneous component. Then, for each m ≥ 2, it is possible to choose a
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22 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

k-linear subspace Rm ⊆ Im such that

I2 = R2,

Im = Rm ⊕




∑

i+j+l=m,2≤j<m

W⊗i ⊗Rj ⊗W⊗l



 .

Taking R =
⊕

m∈N≥2
Rm, the homology is

H0(A, k) = TorA
0 (k, k) = k,

H1(A, k) = TorA
1 (k, k) = V,

H2(A, k) = TorA
2 (k, k) = R.

Proof. Cf. [Ber2], Prop. 2.5.

Using Propositión 3.5, we obtain that H2(TYM(n), k) = 0. If we con-
sider the vector space V (n) as a graded vector space concentrated in degree 2,
the algebra TYM(n) = U(tym(n)) is graded, and Theorem 3.10 implies that
TYM(n) is a free graded algebra, so a fortiori, TYM(n) is a free algebra, when
we forget the grading. Furthermore, from Remark 3.9 it yields that tym(n) is
a free Lie algebra, in the graded sense or not, due to Remark 2.3.

We have proved the following theorem, which is a key result in order to
study representations of the Yang-Mills algebra.

Theorem 3.11. The Lie algebra tym(n) is free and the same holds for
the associative algebra TYM(n).

The last paragraphs of this section are devoted to a description of the
graded vector space which generates the above free algebra.

Let us call W (n) the graded k-vector space satisfying fgr(W (n)) ) tym(n),
or equivalently Tgr(W (n)) ) TYM(n), where we are using the special grading.
By Theorem 3.10, we see that H1(TYM(n), k) ) W (n) as graded vector spaces,
since all morphisms considered in this section are homogeneous of degree 0.

Using that H•(TYM(n), k)) is isomorphic to H•(ym(n), S(V (n))), by (3.7),
and that Proposition 3.5 implies the following isomorphism of graded vector
spaces

H1(ym(n), S(V (n))) )
∑

p∈N
Hp

1 (ym(n), S(V (n)))

where Hp
1 (ym(n), S(V (n))) lives in degree p + 1, we immediately see that

the homogeneous component W (n)m of degree m of W (n) is isomorphic to
Hm−1

1 (ym(n), S(V (n))).
In particular, W (2) ) H1(ym(2), S(V (2))) = H1

1 (ym(2), S(V (2))) ) k[−2]
(as k-vector spaces) and W (n) is infinite dimensional if n ≥ 3. For instance,

Feb 25 2009 18:43:25 PST
Vers. 1 - Sub. to Annals



REPRESENTATIONS OF YANG-MILLS ALGEBRAS 23

it follows easily from Proposition 3.5 that for n = 3,

(3.8) W (3) ) H1(ym(3), S(V (3))) =
⊕

p∈N0

Hp
1 (ym(3), S(V (3))),

where dimk(H
p
1 (ym(3), S(V (3)))) = 2p + 1 for p ∈ N and H0

1 (ym(3), S(V (3))))
is zero.

We recall the following definition.

Definition 3.12. (cf. [PP], [La], Ch. X, §6) The Hilbert series of a Z-
graded k-vector space V =

⊕
n∈Z Vn (also called Poincaré series) is the formal

power series in Z[[t, t−1]] given by

hV (t) =
∑

n∈Z
dimk(Vn)tn.

We will also denote it simply V (t).

We will now compute the Hilbert series W (n)(t) of W (n) provided with
the usual grading. In order to do so, we must notice that if

0 → M ′ f→ M
g→ M ′′ → 0

is a short exact sequence of graded vector spaces with homogeneous morphisms
f and g of degree 0, then

M(t) = M ′′(t) + M ′(t).

The previous identity implies that that the Hilbert series is an Euler-
Poincaré map (cf. [La], Ch. III, §8) when considering the category of graded
vector spaces with homogeneous morphisms of degree 0. As a consequence, if
we consider the Euler-Poincaré characteristic of a complex (C•, d•) of graded
vector spaces with homogeneous morphisms, which is defined as

χ(C)(t) =
∑

i∈Z
(−1)iCi(t),

it turns out that it coincides with the Euler-Poincaré characteristic of its ho-
mology (cf. [La], Ch. XX, §3, Thm. 3.1).

On the one hand, the Euler-Poincaré characteristic of the complex (3.3)
is

χC•(YM(n),S(V (n)))(t) = S(V (n))(t)− ntS(V (n))(t)

+ nt3S(V (n))(t)− t4S(V (n))(t)

=
1− nt + nt3 − t4

(1− t)n
,

since S(V (n))(t) = (1− t)−n.
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24 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

On the other hand, since the morphisms of the complex (3.3) are homo-
geneous of degree 0, its Euler-Poincaré characteristic coincides with the one of
its homology.

Since there are isomorphisms of graded vector spaces

H0(ym(n), S(V (n))) ) k,

H1(ym(n), S(V (n))) ) W (n),
H2(ym(n), S(V (n))) = H3(ym(n), S(V (n))) = 0,

the Euler-Poincaré characteristic of the homology is

χH•(C•(YM(n),S(V (n))))(t) = 1−W (n)(t).

Finally,

W (n)(t) =
(1− t)n − 1 + nt− nt3 + t4

(1− t)n
.

We have thus proved the following proposition.

Proposition 3.13. The Hilbert series of the graded vector space W (n)
with the usual grading is given by

W (n)(t) =
(1− t)n − 1 + nt− nt3 + t4

(1− t)n
.

It is trivially verified that the term of degree m of W (n)(t) coincides with
the computation of dimk(W (n)m) obtained from Proposition 3.5.

Observe that for n = 2, the Yang-Mills algebra YM(2) is noetherian.
This is a direct consequence of the isomorphism YM(2) ) U(h1) (cf. Example
2.1). Since h1 is finite dimensional, then S(h1) is noetherian, so U(h1) is also
noetherian, because its associated graded algebra S(h1) is (cf. [Dix], Corollary
2.3.8, p. 76).

However, for n ≥ 3, Yang-Mills algebras YM(n) are non noetherian. In
order to prove this fact we proceed as follows.

On the one side, YM(n) ⊃ TYM(n) is a (left and right) free extension
of algebras, which is not finite but finitely generated (cf. [Wei], Coro. 7.3.9).
One set of generators of the extension YM(n) ⊃ TYM(n) is {x1, . . . , xn}.

On the other side, since TYM(n) is a free algebra with an infinite set of
generators if n ≥ 3 (cf. Thm. 3.11, Prop. 3.13), it is not noetherian, which
implies that YM(n) is not noetherian. This is a direct consequence of the
following simple fact: If A ⊃ B is an extension of algebras such that A is a
right (resp. left) free B-module and I * B is a left (resp. right) ideal, then A.I
is a left (resp. right) ideal of A that satisfies that A.I ∩B = I. This property
directly yields that if B is not left (resp. right) noetherian, then A is not left
(resp. right) noetherian.
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Let us thus show the previously stated property for free extensions of
algebras. We shall prove it in the case that A is a right free B-module and
I * B is a left ideal, the other being analogous.

The inclusion I ⊆ A.I ∩ B is clear. We will prove the other one. Let
B = {aj}j∈J be a basis of A as a right B-module. We assume without loss
of generality that 1 = aj0 ∈ B. Since every element of A can be written as∑

j∈J ajbj , with bj ∈ B, an element x ∈ A.I ∩ B may be written as x =∑
j∈J aJcj , where cj ∈ I. But x ∈ B, so cj0 = x and aj = 0, for all j ∈ J ,

j 0= j0. Hence, x = aj0cj0 = 1cj0 = cj0 ∈ I.

Remark 3.14. The fact that YM(n) = U(ym(n)) is not noetherian for
n ≥ 3 implies that ym(n) is not finite dimensional for n ≥ 3.

4. Main theorem: relation between Yang-Mills algebras and Weyl
algebras

The aim of this last section is to prove that all the Weyl algebras Ar(k)
(r ∈ N) are epimorphic images of all Yang-Mills algebras YM(n) for n ≥ 3.
In order to do so we make intensive use of TYM(n). As a consequence, the
representations of all Ar(k) are also representations of YM(n) (r ∈ N, n ≥ 3).
These families of representations have been previously studied by Bavula and
Bekkert in [BB] and are enough to separate points of YM(n).

Since YM(3) is a quotient of YM(n), as an algebra, for every n ≥ 3, it
will be sufficient to prove that that the Weyl algebras Ar(k) are epimorphic
images of YM(3). Our first step is to give explicit bases for the quotients
ym(3)/Cj(ym(3)), for j = 1, 2, 3, 4. The elements of these bases will be useful
while defining the epimorphisms onto Ar(k).

Using the fact that YM(n) is Koszul, Connes and Dubois-Violette obtain
the Hilbert series of the Yang-Mills algebra YM(n) (cf. [CD], Corollary 3)

hYM(n)(t) =
1

(1− t2)(1− nt + t2)
.

Using the Poincaré-Birkhoff-Witt Theorem it is possible to deduce the
dimensions of the homogeneous spaces of the Yang-Mills algebra N(n)j =
dimk(ym(n)j) (j ∈ N) from the equality

∏

j∈N

(
1

1− tj

)N(n)j

= hYM(n)(t).

Connes and Dubois-Violette find in [CD] the direct formula (j ≥ 3)

N(n)j =
1
j

j∑

k=1

µ(
j

k
)(tk1 + tk2),
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26 ESTANISLAO HERSCOVICH AND ANDREA SOLOTAR

where t1 y t2 are the roots of the polynomial t2 − nt + 1 = 0 and µ(x) is the
Möbius function.

For ym(3), the sequence of dimensions N(3)j (j ∈ N) is (cf. [Sl], sequence
A072337)

3, 3, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, . . .

An ordered basis for the quotient algebra ym(3)/C1(ym(3)) of the Yang-
Mills algebra is given by

B1 = {x1, x2, x3}.

For the quotient ym(3)/C2(ym(3)), a possible ordered basis is

B2 = {x1, x2, x3, x12, x13, x23},

where xij = [xi, xj ], (i, j = 1, 2, 3). To prove that it is indeed a basis we
must only show that it generates ym(3)/C2(ym(3)) (since #(B2) = 6), which
is obtained using that xij = −xji.

The following set is a basis of ym(3)/C3(ym(3)):

B3 = {x1, x2, x3, x12, x13, x23, x112, x221, x113, x123, x312},

where we denote xijk = [xi, [xj , xk]]. We also define the set of triple indices of
B3, J3 = {(112), (221), (113), (123), (312)}.

Let us prove that B3 is a basis. As before, we only have to prove that it
generates ym(3)/C3(ym(3)). This is direct, as we can see from the Yang-Mills
relations

x332 = −x112, x331 = −x221, x223 = −x113,

and relations given by antisymmetry and Jacobi identity, i.e. xijk = −xikj ,
and x213 = x123 + x312.

The case ym(3)/C4(ym(3)) is a little more complicated. We shall prove
that

B4 = {x1, x2, x3, x12, x13, x23, x112, x221, x113, x123, x312,

x1112, x1221, x1113, x1123, x2221, x2113, x2312, x3112, x3221, x3312},

is an ordered basis, where xijkl = [xi, [xj , [xk, xl]]]. Analogously, we define the
set of indices of B4

J4 = {(1112), (1221), (1113), (1123), (2221),
(2113), (2312), (3112), (3221), (3312)}.

In order to prove that B4 is a basis it suffices again to verify that it
generates ym(3)/C4(ym(3)). On the one hand, taking into account that

[[xi, xj ], [xk, xl]] = [[[xi, xj ], xk], xl] + [xk, [[xi, xj ], xl]]
= [xl, [xk, [xi, xj ]]] + [xk, [xl, [xj , xi]]] = xlkij + xklji
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and [[[xi, xj ], xk], xl] = [xl, [xk, [xi, xj ]]] = xlkij , the set {xijkl : i, j, k, l =
1, 2, 3} ∪ B3 is a system of generators. We shall prove that it is generated
by B4. In fact, we only need to prove that it generates the set

{xi112, xi221, xi113, xi123, xi312 : i = 1, 2, 3},

because {x112, x221, x113, x123, x312} are generators of the homogeneous ele-
ments of degree 3. This last statement is direct:

x3113 = x1221, x2112 = −x1221, x2123 = x3221 + x2312 − x1113,

x1312 =
x3112 + x2113 − x1123

2
, x3123 =

x1112 + x2221 − x3312

2
.

We shall now briefly recall a version of the Kirillov orbit method by J.
Dixmier, which we will employ. We first recall that a bilateral ideal I * A
of an algebra A is called prime if I 0= A and if J, K * A/I are two nonzero
bilateral ideals of the quotient algebra A/I, then JK 0= {0}. We say that I*A is
completely prime if A/I is a domain. Observe that every completely prime ideal
is prime (cf. [Dix], 3.1.6). A bilateral ideal I * A is called semiprime if I 0= A
and every nilpotent bilateral ideal J * A/I is zero. Note that an intersection
of semiprime ideals is semiprime and every prime ideal is semiprime (cf. [Dix],
3.1.6).

On the other hand, a bilateral ideal I * A is called primitive if it the
annihilating ideal of a simple left A-module, and it called maximal if I 0= A
and if it is maximal in the lattice of bilateral ideals of A, ordered by inclusión.
Every maximal ideal is primitive (cf. [Dix], 3.1.6).

If g is finite dimensional Lie algebra, U(g) is a noetherian domain, so it
has a skew-field of fractions Frac(U(g)) (cf. [Dix], 3.1.16 and Thm. 3.6.12).
Let I * U(g) be a semiprime ideal, so U(g)/I also has a skew-field of fractions
Frac(U(g)/I). We say that I is rational if Z(Frac(U(g)/I)) = k. Every rational
ideal of U(g) is primitive and, k being algebraically closed, the converse also
holds (cf. [Dix], Thm. 4.5.7).

We have the following proposition.

Proposition 4.1. Let I * U(g) be a bilateral ideal of the universal en-
veloping algebra of a nilpotent Lie algebra g of finite dimension. The following
are equivalent:

(i) I is primitive.

(ii) I is maximal.

(iii) There exists r ∈ N such that U(g)/I ) Ar(k).

(iv) I is the kernel of a simple representation of U(g).

Proof. Cf. [Dix], Prop. 4.7.4, Thm. 4.7.9.
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If I * U(g) is a bilateral ideal satisfying either of the previous equivalent
conditions, the positive integer r (uniquely determined) such that U(g)/I )
Ar(k) is called the weight of the ideal I (cf. [Dix], 4.7.10).

Let us suppose that g is nilpotent Lie algebra of finite dimension. Given
f ∈ g∗, a polarization of f is a subalgebra h ⊂ g such that it is subordinated to
f , i.e. f([h, h]) = 0, and it is maximal with respect to the previous property (cf.
[Dix], Section 1.12). There exists a canonical way to construct polarizations,
which are called standard, of a linear form f ∈ g∗ (cf. [Dix], Prop. 1.12.10). It
is easily verified that the dimension of a polarization h of f must be (cf. [Dix],
1.12.1)

(4.1)
dimk(g) + dimk(gf )

2
.

Furthermore, h is a polarization of f on g if and only if h is a subalgebra
subordinated to f of dimension (dimk(g) + dimk(gf ))/2 (cf. [Dix], 1.12.8).
The weight of a primitive ideal I(f) is given by r = dimk(g/gf )/2 (cf. [Dix],
Prop. 6.2.2), or using identity (4.1), r = dimk(g/hf ), where hf is a polarization
of f .

We shall now explain the connection between rational ideals and polar-
izations. If f ∈ g∗ be a linear functional and hf a polarization of f , we may
define a representation of hf on the vector space k.vf of dimension 1 by means
of x.vf = (f(x)+trg/hf

(adgx))vf , for x ∈ hf and trg/hf
= trg−trhf

. Therefore,
we can consider the induced U(g)-module Vf = U(g)⊗U(hf ) k.vf . If we denote
the corresponding action ρ : U(g) → Endk(Vf ), I(f) = Ker(ρ) is a bilateral
ideal of the enveloping algebra U(g).

In the previous notation we have omitted the polarization in I(f). This
is justified by the following proposition, which states even more.

Proposition 4.2. Let g be a nilpotent Lie algebra of finite dimension,
let f ∈ g∗ and let hf and h′f be two polarizations of f . If we denote ρ :
U(g) → Endk(Vf ) and ρ′ : U(g) → Endk(V ′

f ) the corresponding representations
constructed following the previous method, then Ker(ρ) = Ker(ρ′). This ideal
is primitive.

On the other hand, if I is a primitive ideal of U(g), then there exists f ∈ g∗

such that I = I(f).

Proof. Cf. [Dix], Thm. 6.1.1, Thm. 6.1.4 and Thm. 6.1.7.

The group Aut(g) is an algebraic group whose associated Lie algebra is
Der(g). Let a denote the algebraic Lie algebra generated by the ideal InnDer(g)
in Der(g). The irreducible algebraic group G associated to a is called the
adjoint algebraic group of g. It is a subgroup of Aut(g). If a = InnDer(g), G is
called the adjoint group of g. As a consequence, the group G acts on the Lie
algebra g, so it also acts on g∗ with the dual action, which is called coadjoint.
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Theorem 4.3. Let g be a nilpotent Lie algebra of finite dimension and
let f and f ′ be two linear forms on g. If I(f) and I(f ′) are the corresponding
bilateral ideals of U(g), then I(f) = I(f ′) if and only if there is g ∈ G such
that f = g.f ′.

Proof. Cf. [Dix], Prop. 6.2.3.

The previous results imply that, for a nilpotent Lie algebra of finite di-
mension there exists a bijection

I : g∗/G → Prim(U(g))

between the set of classes of linear forms on g under the coadjoint action and
the set of primitive ideals of U(g).

We shall now use the previous method for the first quotients of the Yang-
Mills algebra ym(n) by the the ideals of the low derived sequence Cl(ym(n)) in
order to find the possible weights for each step.

Given f ∈ (ym(3)/C2(ym(3)))∗,

f =
3∑

i=1

cix
∗
i +

∑

ij

cijx
∗
ij ,

with c12 = 0, c13 0= 0 and c23 0= 0, we obtain a polarization associated to f as
follows. Consider

hf = k.x1 ⊕ k.x2 ⊕ k.x12 ⊕ k.x13 ⊕ k.x23.

Since the weight of I(f) (i.e. the positive integer n such that U(g)/I(f) )
An(k)) is equal to dimk(g/hf ) (cf. [Dix], 1.2.1, 1.2.8 and Prop. 6.2.2), we
obtain that U(ym(3)/C2(ym(3)))/I(f) ) A1(k). It is easy to show that there
are no higher weights for ym(3)/C2(ym(3)).

Any element of (ym(3)/C3(ym(3)))∗ may be written as

f =
3∑

i=1

cix
∗
i +

∑

i<j

cijx
∗
ij +

∑

(ijk)∈J3

cijkx
∗
ijk.

If c112 = c123 = 1, c113 = c221 = c312 = 0, we find a polarization associated to
f as follows:

hf = k.x12 ⊕ k.x13 ⊕ k.x23 ⊕ k.x112 ⊕ k.x221 ⊕ k.x113 ⊕ k.x123 ⊕ k.x312,

and hence U(ym(3)/C3(ym(3)))/I(f) ) A3(k). If c112 = 1, c221 = c113 = c312 =
c123 = 0,

hf = k.x2 ⊕ k.x12 ⊕ k.x13 ⊕ k.x23 ⊕ k.x112 ⊕ k.x221 ⊕ k.x113 ⊕ k.x123 ⊕ k.x312,

and hence U(ym(3)/C3(ym(3)))/I(f) ) A2(k).
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For ym(3)/C4(ym(3)), every linear functional has the form

f =
3∑

i=1

cix
∗
i +

∑

i<j

cijx
∗
ij +

∑

(ijk)∈J3

cijkx
∗
ijk +

∑

(ijkl)∈J4

cijklx
∗
ijkl.

If c312 = c2312 = c1112 = 1, and all other coefficients are zero, so, taking

hf = k.x12⊕ k.x13⊕ k.x112⊕ k.x221⊕ k.x113⊕ k.x123⊕ k.x312⊕
⊕

(ijkl)∈J4

k.xijkl,

we obtain that U(ym(3)/C4(ym(3)))/I(f) ) A4(k).
As a consequence, we have just proved that, given n such that 1 ≤ n ≤ 4,

there exists an ideal I in U(ym(3)) satisfying An(k) ) U(ym(3))/I. In fact, a
stronger statement is true:

Theorem 4.4. Let r ∈ N be a positive integer. There exists a surjective
homomorphism of algebras

U(ym(3)) ! Ar(k).

Furthermore, there exists l ∈ N such that we can choose this homomorphism
satisfying that it factors through the quotient U(ym(3)/Cl(ym(3)))

U(ym(3)) '' ''

00 00,,,,,,,,
Ar(k)

U(ym(3)/Cl(ym(3)))

11 11........

Before giving the proof of this theorem, we shall state the next corollary,
our main result, which follows readily from Theorem 4.4 and the fact that that
every U(ym(3)) is a quotient of every U(ym(n)) for n ≥ 4.

Corollary 4.5. Let r, n ∈ N be two positive integers, satisfying n ≥ 3.
There exists a surjective homomorphism of k-algebras

U(ym(n)) ! Ar(k).

Furthermore, there exists l ∈ N such that we can choose this morphism in such
a way that it factors through the quotient U(ym(n)/Cl(ym(n)))

U(ym(n)) '' ''

00 00////////
Ar(k)

U(ym(n)/Cl(ym(n)))

11 11........

The previous corollary shows the strong link between representations of
the Yang-Mills algebra YM(n) and representations of the Weyl algebra Ar(k).
Concretely, using the characterization of the category of representations over
the latter exhibited in [BB], we are able to give a description of a subcategory
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of infinite dimensional modules over the Yang-Mills algebra YM(n), for n ≥ 3,
by means of the surjection in Corollary 4.5. In order to do so, we shall briefly
recall the results presented in [BB] and we refer to it for the general definitions
of weight modules, generalized weight modules and orbits. Given an orbit O,
we denote by W(O) and GW(O) the subcategories of the categories of modules
over Ar(k) consisting of weight modules and generalized modules with support
in the orbit O, respectively.

Also, given an orbit O, Bavula and Bekkert construct certain categories
LO,nil and LO,1, whose set of objects is O, isomorphic to GW(O) and W(O),
respectively. Furthermore, if O is an orbit and M is a LO,nil-module (resp.
LO,1-module), they define an Ar(k)-module MO.

Depending on the orbit, either LO,nil or LO,1 may be isomorphic to one
of the tame categories exhibited in Figure 4.1 (cf. [BB], Sec. 2.5 to 2.7):

On the other hand, they define the following collection of modules over some of
the previous categories, which verify the properties stated in the next propo-
sition. For a given k-linear category C, we denote by Ind(C) the set of isomor-
phism classes of indecomposable finite dimensional C-modules.

Proposition 4.6. (i) The indecomposable B-modules are given by

Ind(B) = {Bn : n ∈ N},
where Bn = k[t]/(tn), for n ∈ N.

(ii) The indecomposable C-modules are given by

Ind(C) = {Cf,n : n ∈ N, f ∈ Irr(k[t]) \ {t}}.
where Cf,n = k[t]/(fn), for n ∈ N and f ∈ Irr(k[t]) \ {t}.

(iii) The indecomposable D-modules are given by

Ind(D) = {Dn,i : n ∈ N, i ∈ {1, 2}},
where Dn,i (n ∈ N, i = 1, 2) are defined in the k-vector space generated
by e1, . . . , en, such that Dn,1(1), Dn,2(2) and Dn,1(2), Dn,2(1) contain the
vector ej with odd and even indices, respectively. The action is given by
uej = ej+1 and vej = ej+1 (en+1 = 0).

(iv) The description of the indecomposable Im-modules is more involved and
we refer to [BB], Sec. 3.2. We denote by W the free monoid generated
by two letters a and b and, given m ∈ N, by Ωm the set of equivalence
classes of all non-periodic words.

Given m ∈ N,

Ind(Im) = {Im
j,w, Im

z,f : z ∈ Ωm, w ∈ W, f ∈ Ind(k[t]), j = 0, . . . ,m− 1}.
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(v) Since the category F is a quotient of I4, we consider the following F-
modules F1,x−1 = I4

aabb,x−1, F2,x−1 = I4
bbaa,x−1, F1,f = I4

abab,f , F2,f =
I4

baba,f and Fj,w = I4
j,w, for f ∈ Ind(k[t]), j = 0, . . . ,m−1, w = bp(ab)qar,

q ∈ N0, p, r ∈ {0, 1}. In this case, the class of indecomposable F-modules
is

Ind(F) = {F1,x−1,F2,x−1,F1,f ,F2,f ,Fj,w : f ∈ Ind(k[t]), j = 0, . . . ,m− 1,

w = bp(ab)qar, q ∈ N0, p, r ∈ {0, 1}}.

(vi) Using the functor Hm → Im+2, given by i *→ i, ai *→ ai y bi *→ bi, we
are able to define the family of Hm-modules Hm

j,w = Im+2
j,w , for w ∈ W ,

|w| ≤ m − j, j = 0, . . . ,m − 1. The indecomposable Hm-modules are
given by

Ind(Hm) = {Hm
j,w : w ∈ W, |w| ≤ m− j, j = 0, . . . ,m− 1}.

Proof. Cf. [BB], Sec. 3.1. to 3.4.

We may now state the results describing the subcategories of weight mod-
ules and generalized weight modules over the Weyl algebras Ar(k).

Theorem 4.7. Let us consider the first Weyl algebra A1(k). In this case,
the subcategory W(O) is tame for each orbit O. Moreover,

(i) if O 0= Z, then W(O) ) AMod and Ind(W(O)) = {AO}.

(ii) if O = Z, then W(O) ) H1Mod and Ind(W(O)) = {H1
O,j,w}.

On the other hand, the category GW(O) is tame since char(k) = 0. Be-
sides, in case O 0= Z, GW(O) ) BMod and Ind(GW(O)) = {BO,n : n ∈ N}.
Finally, if O = Z, then GW(O) ) DMod and Ind(GW(O)) = {DO,n,i : n ∈
N, i = 1, 2}.

Proof. Cf. [BB], Sec. 4.1.

Theorem 4.8. Let us consider the second Weyl algebra A2(k). Then,
W(O) is tame for each orbit O = O1 ×O2. Moreover,

(i) if O1 0= Z and O2 0= Z, W(O) ) AMod and Ind(W(O)) = {AO}.

(ii) if Oi = Z and Oj 0= Z (i, j ∈ {1, 2}), then W(O) ) H1Mod and
Ind(W(O)) = {H1

O,j,w}.

(iii) if O1 = O2 = Z, W(O) ) FMod and Ind(W(O)) equals
{FO,1,x−1,FO,2,x−1,FO,1,f ,FO,2,f ,FO,j,w}.

The subcategory GW(O) is wild for each orbit O.

Proof. Cf. [BB], Sec. 4.2.
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Theorem 4.9. Let us now consider the Weyl algebra An(k), n ≥ 3. We
shall write each orbit O = O1 × · · ·×On.

(i) If Oi 0= Z (i = 1, . . . , n), then W(O) ) AMod and Ind(W(O)) = {AO}.

(ii) If the number of non-degenerate orbits Oi is n−1, then W(O) ) H1Mod
and Ind(W(O)) = {H1

O,j,w}.

(iii) If the number of no-degenerate orbits Oi is n − 2, then W(O) ) FMod
and

Ind(W(O)) = {FO,1,x−1,FO,2,x−1,FO,1,f ,FO,2,f ,FO,j,w}.

(iv) If the number of non-degenerate orbits Oi is less than n− 2, then W(O)
es wild.

Proof. Cf. [BB], Sec. 4.3.

Finally, we shall give the proof of Theorem 4.4.
Proof of Theorem 4.4. We have studied in detail cases r = 1, 2, 3, 4. We
shall then restrict ourselves to the case r ≥ 5.

We know that ym(3) = V (3) ⊕ tym(3) as k-modules. Also, considered as
a graded Lie algebra with the special grading, the Lie ideal tym(3) is a free
graded Lie algebra (concentrated in even degrees) generated by a graded vector
space (concentrated in even degrees) W (3), that is,

tym(3) ) fgr(W (3)) and W (3) =
⊕

l∈N
W (3)2l+2,

where dimk(W (3)2l+2) = 2l + 1 (cf. Eq. (3.8)). In fact, we shall choose
a basis for the first two homogeneous subspaces of W (3) as we did previ-
ously. For W (3)4 we fix the basis {x12, x13, x23} and for W (3)6 we fix the basis
{x112, x113, x221, x123, x312}.

By Proposition 2.2,

Ugr(tym(3)) ) Ugr(fgr(W (3))) ) Tgr(W (3)),

and hence,

T (O(W (3))) = O(Tgr(W (3))) ) O(Ugr(tym(3))) = U(O(tym(3))),

where O denotes the corresponding forgetful functors.
Having a morphism of k-algebras from U(O(tym(3))) to Am(k) is the same

as having a morphism of k-algebras from T (O(W (3))) to Am(k), which in turn
is the same as having a morphism of k-vector spaces from O(W (3)) to Am(k).
The morphism of algebras will be surjective if the image of the corresponding
morphism of vector spaces contains the generators as an algebra of Am(k),
denoted by p1, . . . , pm, q1, . . . , qm as usual.
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From now on, we shall exclusively work in the non-graded case (for alge-
bras), so we will omit the forgetful functor O without confusion. However, we
will keep the canonical grading of the Yang-Mills algebra ym(3).

Let us suppose m ≥ 2. We consider the morphism of k-vector spaces

φ : W (3) → Am(k)

such that φ(W (3)4) = {0}, φ(x112) = p1, φ(x221) = p2, φ(x123) = q1, φ(x113) =
q2, φ(x312) = 0, and such that for each generator of the Weyl algebra pi

and qi (i ≥ 3), there exist homogeneous elements of degree greater than 6,
wi, w′i ∈ W (3) such that φ(wi) = pi and φ(w′i) = qi. This last condition
is easily verified, taking into account that W (3) is infinite dimensional. Of
course this means that there are a lot of choices for this morphism.

Let di and d′i be the degrees of wi and w′i, respectively. Let j be the
maximum of the degrees di and d′i, and let l = 2j+1. The morphism φ induces
a unique surjective homomorphism Φ : U(tym(3)) ! Am(k), equivalent to the
homomorphism of Lie algebras

tym(3) → Lie(Am(k)),

where Lie(−) : kAlg → kLieAlg denotes the functor that associates to every
associative algebra the Lie algebra with the same underlying vector space and
Lie bracket given by the commutator of the algebra. The latter morphism may
be factorized in the following way

tym(3) → tym(3)/Cl(ym(3)) → Lie(Am(k)),

where the first morphism is the canonical projection. Hence, the map Φ may
be factorized as

U(tym(3)) ! U(tym(3)/Cl(ym(3))) ! Am(k).

We have thus obtained a surjective homomorphism of k-algebras

Ψ : U(tym(3)/Cl(ym(3))) ! Am(k),

where the Lie algebra tym(3)/Cl(ym(3)) is nilpotent. Moreover, it is a nilpotent
ideal of the (nilpotent) Lie algebra ym(3)/Cl(ym(3)). We have, as k-modules,

ym(3)/Cl(ym(3)) = V (3)⊕ tym(3)/Cl(ym(3)).

Let I be the kernel of Ψ in U(tym(3)/Cl(ym(3))). Taking into account that
the quotient of the universal enveloping algebra U(tym(3)/Cl(ym(3))) by I is a
Weyl algebra which is simple, I is a maximal two-sided ideal, and then, there
exists a linear functional f ∈ (tym(3)/Cl(ym(3)))∗ such that I = I(f). We fix
a standard polarization hf for f , i.e., a polarization constructed from a flag of
ideals of tym(3)/Cl(ym(3)). Let f̄ ∈ (ym(3)/Cl(ym(3)))∗ be any extension of
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f , and let hf̄ be a standard polarization for f̄ given by extending the flag of
tym(3)/Cl(ym(3)) to ym(3)/Cl(ym(3)), i.e., if the flag is:

tym(3)/Cl(ym(3)) ⊂ g1 ⊂ g2 ⊂ g3 = ym(3)/Cl(ym(3)),

and we denote f̄i the restriction of f̄ to gi (i = 1, 2, 3), then

hf̄ = hf + gf̄1
1 + gf̄2

2 + gf̄3
3 .

Let g be a finite dimensional Lie algebra and h a subalgebra. Given
I * U(h) ⊂ U(g) a two sided ideal in an enveloping algebra of h, consider

st(I, g) = {x ∈ g : [x, I] ⊂ I}.
Since tym(3)/Cl(ym(3)) is an ideal of the finite dimensional nilpotent Lie

algebra ym(3)/Cl(ym(3)), according to Proposition 6.2.8 of [Dix]

st(I(f), ym(3)/Cl(ym(3))) = tym(3)/Cl(ym(3)) + g′,

where

g′ = {x ∈ ym(3)/Cl(ym(3)) : f([x, tym(3)/Cl(ym(3))]) = 0}.
For our ideal, we get immediately that x̄12, x̄13, x̄23 ∈ I, but x̄112, x̄221, x̄123

do not belong to I, since Ψ(x̄112) = p1, Ψ(x̄221) = p2 and Ψ(x̄123) = q1.
Let x ∈ ym(3)/Cl(ym(3)), then x = x′ + y, where

x′ =
3∑

i=1

cix̄i ∈ V (3),

and y ∈ tym(3)/Cl(ym(3)). Since [y, I(f)] ⊂ I(f), this implies that x ∈
st(I(f), ym(3)/Cl(ym(3))) if and only if [x′, I(f)] ⊂ I(f). Explicitly,

[x′, x̄12] =
3∑

i=1

ci[x̄i, x̄12] = c1x̄112 − c2x̄221 − c3x̄123.

If [x′, x̄12] ∈ I, then Ψ([x′, x̄12]) = 0, or,

c1p1 − c2p2 − c3q1 = 0,

but the generators of Am(k) are linearly independent, so c1 = c2 = c3 = 0,
which gives x′ = 0, implying st(I(f), ym(3)/Cl(ym(3))) = tym(3)/Cl(ym(3)).
Hence g′ ⊂ tym(3)/Cl(ym(3)). As a consequence, we obtain the inclusion
gf̄i

i ⊂ tym(3)/Cl(ym(3)), whence hf̄ ⊂ tym(3)/Cl(ym(3)). By maximality of hf

in tym(3)/Cl(ym(3)), we find that hf̄ ⊂ hf . The other inclusion is even simpler,
so hf̄ = hf .

Finally, the weight of the ideal I(f̄) is equal to

dimk((ym(3)/Cl(ym(3)))/hf̄ ) = dimk((ym(3)/Cl(ym(3)))/hf )

= dimk((tym(3)/Cl(ym(3)))/hf̄ ) + 3 = m + 3.

We have then proved that Ar(k) is a quotient of U(ym(3)), for any r ≥ 5,
and, as a consequence, for any r ∈ N.
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Remark 4.10. The previous proof does not work for ym(2), since in this
case tym(2) ) fgr(W (2)) with dim(W (2)) = 1.

Definition 4.11. Let A be an associative or Lie k-algebra, and let R ⊂
AMod be a full subcategory of the category of (left) modules over over A. We
shall say that R separates points of A if for all a ∈ A, a 0= 0, there exists
M ∈ R such that a acts on M as a non null morphism.

By Proposition 3.1.15 of [Dix], we know that an ideal I in the enveloping
algebra of a finite dimensional Lie algebra g is semiprime if and only if it is
the intersection of primitive ideals. Since U(g) is a domain, the null ideal {0}
is completely prime, and hence semiprime (cf. [Dix], 3.1.6). As a consequence,
{0} is an intersection of two-sided primitive ideals. A fortiori, the intersection
of all primitive two-sided ideals in U(g) is null, that is, the Jacobson radical
of the enveloping algebra of g is null, i.e. J(U(g)) = {0}. Analogously, since
every maximal two-sided ideal is primitive (cf. [Dix], 3.1.6), the intersection
of all maximal two-sided ideals is null.

Let W(n) be the full subcategory of U(ym(n))Mod consisting of all modules
M satisfying the following property: there exist r, l ∈ N such that the action
of the Yang-Mills algebra may be factorized as follows

φ : U(ym(n)) ! U(ym(n)/Cl(ym(n))) → Ar(k) → Endk(M).

Proposition 4.12. If n ≥ 3, the category W(n) separates points of the
algebra U(ym(n)).

Proof. Let x ∈ U(ym(n)) be a non zero element. There exists then l ∈ N
such that πl(x) ∈ U(ym(n)/Cl(ym(n))) is non zero (cf. Lemma 2.4). Since
ym(n)/Cl(ym(n)) is a nilpotent finite dimensional Lie algebra, the intersec-
tion of all maximal two-sided ideals is zero, so there exists a maximal two-
sided ideal J * U(ym(n)/Cl(ym(n))) such that πl(x) /∈ J . On the other hand,
U(ym(n)/Cl(ym(n)))/J ) Ar(k), for some r ∈ N (cf. [Dix], 4.5.8 and Thm.
4.7.9). Taking into account that the inverse image of a maximal two-sided ideal
by a surjective k-algebra homomorphism is maximal, I = π−1

l (J) is a maxi-
mal two-sided ideal in U(ym(n)) and U(ym(n))/I ) U(ym(n)/Cl(ym(n)))/J )
Ar(k). If x ∈ I, then πl(x) ∈ πl(I) ⊂ J , thus x /∈ I.

Let M be a (left) module over Ar(k), such that the image of x under
the previous isomorphisms is not zero (take for instance Ar(k)). Hence, the
previous isomorphisms induce a structure of U(ym(n))-module over M , such
that x does not act as the zero endomorphism on M . The proposition is then
proved.

Remark 4.13. Although the subcategory W(n) separates points of the
Yang-Mills algebra YM(n), it does not satisfy that every element in the cate-
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gory YM(n)Mod is isomorphic to an element in W(n). This is a consequence
of the following fact: every object of W(n) has finite Gelfand-Kirillov dimen-
sion, for, if M ∈W(n) is an induced module of a module over Ar(k), then (cf.
[MRS], Prop. 1.15, (ii); Prop. 3.2, (iii), (v))

GK-dimYM(n)(M) = GK-dimAr(k)(M) ≤ GK-dimAr(k)(Ar(k)) = 2r.

On the other hand, YM(n) having infinite Gelfand-Kirillov dimension since it
has exponential growth (cf. [CD]), there exist YM(n)-modules (e.g. the regular
module YM(n) in itself) which do not belong to W(n).
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A = k,

B = k〈t〉, t nilpotent,

C = k〈t, t−1〉,

D •1
a ''

•2

b
.. , ab nilpotent,

E •1a11 22

a21 ''
•2 a2233

a12
..

a2
11 = a12a21, a2

22 = a21a12,
a21a11 = a22a21 a12a22 = a11a12;

a11 and a22 nilpotent,

F •1
a2 ''

b1

!!

•2

b2

..

a3

!!

•0

a1

--

b4 ''
•3

b3

--

a4
..

aibi = biai = 0, i = 1, . . . , 4,
aiaj = blbm = 0, if possible,

G •1
d ''

•0
c

..

a ''
•2

b
..

ba = dc; ab and cd nilpotent,

Hm (m ∈ N) •0
a1 ''

•1

b1

.. •m−1
am ''

•m

bm

..

Im (m ∈ N) •1
a1 ''

bm

!!

•2

b1

..

a2

!!
•m

am

--

•3

b2

--

aibi = biai = 0, i = 1, . . . ,m.

Figure 4.1: List of tame categories considered in [BB]. If a set of paths is said
to be nilpotent, this means that we are considering the inverse limit of the
categories such that this set of paths is nilpotent of finite nilpotency order.

Feb 25 2009 18:43:25 PST
Vers. 1 - Sub. to Annals



REPRESENTATIONS OF YANG-MILLS ALGEBRAS 39

Departamento de Matemática
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Facultad de Ciencias Exctas y Naturales
Universidad de Buenos Aires
E-mail address: asolotar@dm.uba.ar

References

[BB] Bavula, V.; Bekkert, V. Indecomposable representations of generalized Weyl algebras.
Comm. Algebra 28, (2000), no. 11, pp. 5067–5100.

[Ber1] Berger, R. Koszulity for nonquadratic algebras. J. Algebra 239, (2001), no. 2, pp.
705–734. Corrigendum: Koszulity for nonquadratic algebras II.
http://arxiv.org/abs/math/0301172.
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[Lef] Lefèvre-Hasegawa, K. Sur les A∞-catégories. Thèse de Doctorat, Spécialité:
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