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Hochschild and cyclic homology
of Yang—Mills algebras

By Estanislao Herscovich and Andrea Solotar at Buenos Aires™

Abstract. The aim of this article is to present a detailed algebraic computation of
the Hochschild and cyclic homology groups of the Yang—Mills algebras YM(n) (n € Nx,)
defined by A. Connes and M. Dubois-Violette in [§8], continuing thus the study of these
algebras that we have initiated in [17]. The computation involves the use of a spectral
sequence associated to the natural filtration on the universal enveloping algebra YM(n)
provided by a Lie ideal tym(n) in ym(n) which is free as Lie algebra. As a corollary, we
describe the Lie structure of the first Hochschild cohomology group.
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74 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras
1. Introduction

The homological invariants of an algebra are closely related to the category of its
representations. Some properties of the category of representations of Yang—Mills algebras
have been already analyzed in [17], exploiting the Kirillov orbit method. It is well known
that Hochschild cohomology measures the existence of deformations (see [13]). The main
purpose of this article is to describe in detail Hochschild homology and cohomology of
Yang—Mills algebras, as well as their cyclic homology.

Let us recall the definition of Yang—Mills algebras given by A. Connes and M.
Dubois-Violette in [8]. For a positive integer n = 2, the Lie Yang—Mills algebra over an
algebraically closed field k of characteristic zero is

n
ym(n) = f(n)/<{zl[x,-, [xi, xi]] 2 j = 1,...,n}>,
=

where f(n) is the free Lie algebra on n generators xi,...,x,. We also define V'(n) as the
k-vector space spanned by them. The associative enveloping algebra %(nm(n)) will be
denoted YM(n). It is a cubic Koszul algebra of global dimension 3 with Poincaré¢ duality
and satisfying the Calabi—Yau property (see [5], Example 5.1).

The first instance of Yang—Mills theory in physics is through Maxwell’s equations for
the charge free situation which gives a representation of the Yang—Mills algebra.

In general, the Yang—Mills equations we consider are equations for covariant deriva-
tives on bundles over the affine space R"” endowed with a pseudo-Riemannian metric g.
Any complex vector bundle of rank m over R” is trivial and every connection on such

a bundle is given by an M,,(C)-valued 1-form > 4, dx’ with the corresponding covariant
i=1
derivative given by V; = 0; + A;. The Yang—Mills equations for the covariant derivative are

S gV, [V, Vil] = 0,

ij=1
where g~! = (¢%/). Yang—Mills equations have also been recently studied due to their
applications to the gauge theory of D-branes and open string theory (see [30], [26] and [11]).

Despite the fact that several properties of these algebras can be expressed in a geo-
metrical language, the arguments we use in the proofs appearing in this article are homo-
logical. In fact, the main proofs only require a detailed knowledge of the complexes
involved.

It is important to notice that the behaviour of the Yang—Mills algebra with two gen-
erators YM(2) is completely different from the other cases (i.e. n = 3). The algebra YM(2)
is isomorphic to the enveloping algebra of the Heisenberg Lie algebra. The computation
of its Hochschild homology and cohomology can be easily done using the Koszul complex
and we recover in this way the results obtained by P. Nuss in [31].

Bereitgestellt von | Universitaetsbibliothek Bielefeld (Universitaetsbibliothek Bielefeld)

Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 15:32



Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras 75

On the other hand, if the Yang—Mills algebra has a number of generators greater
than or equal to three, we provide detailed computations in order to describe the zeroth
and first Hochschild cohomology groups, together with the Lie structure of the latter.
Then, using this description, we compute the other Hochschild cohomology groups and
all the Hochschild and cyclic homology groups. We also recover the results announced by
M. Movshev in the preprint [26] and in his article [27]. The proofs sketched there use geo-
metrical properties of Yang—Mills algebras and they are in general not self-contained and
sometimes not complete. We hope that our approach will contribute to the understanding
of the subject. In fact, we think that the algebraic point of view is clearer. An example of
this is the study of the relations between the homology of Yang—Mills algebra and the
homology over the abelian Lie algebra of generators (e.g. the considerations before Prop-
osition 2.7, which allow us to provide simpler proofs of that proposition, Propositions 3.17
and 3.20 and Corollaries 3.21 and 3.29, among others).

In spite of these good homological properties, the computation of the Hochschild
cohomology is rather difficult and technical. Concerning the zeroth and first Hochschild
cohomology groups, we prove the following result.

Theorem 1. [Ifn = 3, the center of the Yang—Mills algebra YM(n) is k and there is an
isomorphism

HH'(YM(n)) ~ k@ V(n)[2] @ A*(V(n)[1]).

In particular, using the theorem, we may interpret the non-trivial infinitesimal sym-
metries of the Yang—Mills algebra as dilations, translations and rotations. Our interest in
the first cohomology group comes from the fact that, in the noncommutative geometrical
setting, there is a one-to-one correspondence between the classes of noncommutative vector
fields and derivations of an algebra, as it appears in [22] or [23]. We also describe explicitely
the Lie bracket on the first cohomology group.

Making use of the Koszul property of these algebras, of a corollary of Goodwillie’s
Theorem obtained by M. Vigué-Poirrier, and of the fact that the graded Euler—Poincaré
characteristic of the cyclic homology of a multigraded algebra is known (see [20]), we
describe not only the Hilbert series of the other cohomology groups, but also the ones for
the cyclic homology groups.

Our main result may be formulated as follows:

Theorem 1.1. If'n = 3, then the Hilbert series for the Hochschild homology are given

HH,(YM(n))(1) =0, if e=4,

HH;(YM(n))(t) = 1*,

HH,(YM(n)) () = (@ + 1) t* +nt?,
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HH,(YM(n))(1) = =% o(l) log(1 —nt" +nt™ — ") + (n(n — 1) — 1)¢* + 2n2°,
121

HHy(YM(n)) (1) = —1§>:1 @ log(1 — nt' + ne® — ) + (@ - 1> tn 41,

where ¢ denotes the Euler function.
Also, HH*(YM(n))(1) =0, if @ 2 4 and HH*(YM(n))(t) = t*HH3_.(YM(n))(1).
On the other hand, the Hilbert series for the cyclic homology are
HCy2a(YM(n))(t) =1, if @20,
HC3.20(YM(n))(t) =0, if @20,

HG(YM(n)) (1) = 1 4 ¢4,

HC (YM) (1) =" =D o 4,

HCy(YM(n)) (1) = =% @ log(1 — nt' +nt¥ — ) + (@ = 1)[4 +nt® + 1.
=1

The key ingredient of the proof of this theorem is the analysis of the spectral sequence
associated to the natural filtration on YM(n) provided by a Lie ideal tym(n) in ym(n)
which is free as Lie algebra [17]. Notice that since HH?(YM(n)) and HH?(YM(n)) are
not zero, deformations of YM(n) may exist, but up to the present we do not know whether
they are obstructed or not.

The contents of the article are as follows. In Section 2 we recall the definition of
Yang—Mills algebras YM(n) and some of their homological properties and we compute,
using the Koszul complex for this algebra, the complete Hochschild homology of YM(2),
recovering results by P. Nuss [31] and giving explicit bases.

Section 3 is devoted to the study of the space of generators W (n) of the free Lie
algebra tym(n), which will play an important role in the computation of the Hochschild
cohomology of the Yang-Mills algebras. We provide a complete description of the
homological properties of this space considered as both a left S (V(n))-module and a left
YM(n)-module (see Theorem 3.16), which will be useful in the sequel to describe the
corresponding homological properties of the enveloping algebra @/(tl)m(n))ad considered
as a left YM(n)-module with the adjoint action. Using the fact that tym(n) is free and non-
abelian, we compute the zeroth Hochschild cohomology group of % (r)m(n)).

In Section 4, we study the cohomology of the Yang—Mills algebra nm(n) with coef-
ficients in the augmentation ideal of % (tr)m(n))ad. The results obtained throughout this
section lead to Theorem 4.1. Its proof involves the analysis of a spectral sequence associ-
ated to the filtration on % (tr)m(n)) by powers of the augmentation ideal.
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The aim of Section 5 is the description of the outer derivations of the Yang—Mills
algebra YM(n) (see Theorem 5.11). This is done by using a spectral sequence associated
to the filtration given by powers of the ideal generated by tym(n) in YM(n) and homolog-
ical information obtained in Section 3.

Finally, in Section 6 we collect all previous results to prove our main result, Theorem
1.1.

Throughout this article k¥ will denote an algebraically closed field of characteristic

zero and all unadorned tensor products ® will be over the field &, i.e. ® = ®;. All mor-
phisms will be k-linear homogeneous of degree zero, unless the contrary is stated.

We would like to thank Jacques Alev, Michel Dubois-Violette and Jorge Vargas for
useful comments and remarks. We also thank the referee for his careful reading of the
manuscript. We are indebted to Mariano Suédrez-Alvarez for many suggestions and
improvements.

2. Definition and homological properties

In this section we fix notations and recall some elementary properties of the Yang—
Mills algebras. As reference we suggest [8] and [17].

2.1. Generalities. Let n be a positive integer such that n = 2 and let f(n) be the free
Lie algebra on n generators {xi,...,x,}. This Lie algebra is provided with a locally finite
dimensional N-grading.

Following [8], the quotient Lie algebra

(o) = i)/ { o bl 12 <)

i=1
is called the Yang—Mills algebra on n generators.

The N-grading of f(n) induces an N-grading of ym(n), which is also locally finite
dimensional. We denote by ym(n) ; the j-th homogeneous component and

1) ()’ = @ ()

The Lie ideal

(2.2) tym(n) = €>92 ym(n);

will be of considerable importance in the sequel.

Bereitgestellt von | Universitaetsbibliothek Bielefeld (Universitaetsbibliothek Bielefeld)
Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 15:32



78 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras

The enveloping algebra % (ym(n)) will be denoted YM(n). It is the (associative)
Yang—Mills algebra on n generators. If V(n) = span, {{x1,...,x,}), we see that

YM(n) ~ T(V(n))/<{R(n)>,

where T(V(n)) denotes the tensor k-algebra on ¥ (n) and

23 R =span({ Sl 12720} ) € V0

i=1

We shall also consider the enveloping algebra of the Lie ideal tym(n), which will be
denoted TYM(n). Occasionally, we will omit the index »n from the notation if it is clear
from the context.

We shall make use of the previous grading on ym(n), it will be called the wusual
grading of the Yang—Mills algebra nm(n). However, we would like to mention the special
grading of the Yang—Mills algebra ym(n), for which it is a graded Lie algebra concentrated
in even degrees with each homogeneous space ym(n) ; in degree 2j. These gradings induce
respectively the usual grading and the special grading on the associative algebra YM(n).
The last one corresponds to taking the graded enveloping algebra of the graded Lie algebra
pm(n). We will be mainly concerned with the usual grading and shall only briefly mention
the special one.

As noted in [17], the algebra ym(n) is nilpotent if n = 2, in which case it is also finite
dimensional (see [17], Example 2.1). When n = 3, ym(n) is neither finite dimensional nor
nilpotent (see [17], Remark 3.13). Also, the algebra YM(n) is a domain for any n > 2, since
it is the enveloping algebra of a Lie algebra.

There is an important collection of symmetries acting on the Yang—Mills algebra,
which we now describe. The reader who does not want to work in full generality may sim-
plify its attention to the case k = C, even though the arguments we use here are also valid
for any algebraically closed field k of characteristic zero (cf. [18]). The representation of
the algebraic group SO(n) on V(n) given by the standard action of matrices induces a rep-
resentation of the Lie algebra so(n). Furthermore, given j € N, ¥ (n)®’ is a representation
of SO(n), and then of so(n), with the diagonal action. There is then an action by algebra
automorphisms of SO(n) on T (¥ (n)), which induces in turn an action by derivations of
so(n) on T(V(n)). Both actions are homogeneous of degree 0.

It is readily verified that these actions on 7'(V(n)) preserve the ideal <R(n)>. So,
SO(n) acts by algebra automorphisms on YM(n) and so(n) acts by derivations. The latter
induces in turn an action by derivations of so(n) on ym(n). As before, all these actions are
homogeneous of degree 0.

We summarize these facts in the following proposition.

Proposition 2.1.  The standard action of SO(n) on V (n) induces an action by automor-
phisms of graded algebras on YM (n) and an action by derivations of the Lie algebra so(n) on
YM(n).
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Let Y be a graded left YM(n)-module provided with an action of so(n) which is ho-
mogeneous of degree 0. We shall say that the action of the Lie algebra so(n) is compatible
with the action of the Yang—Mills algebra if the structure morphism YM(n) — Endi(Y) is
so(n)-linear, where End(Y) is an so(n)-module with the action induced by that of Y, or
equivalently,

xX-(zy) = (x-z)y+z(x-y),

for all x € so(n), ze YM(n) and y € Y. The dot - indicates both the action of so(n) on
YM(n) and on Y. Examples of such modules are ym(n) with the adjoint action and also
the symmetric algebra S(ym(n)) with the induced action.

Since it will be useful to combine the complete collection of symmetries that are avail-
able, from now on we shall consider the category of graded left modules over the graded
Yang-Mills algebra YM(n) with the usual grading provided with a compatible action of
so(n) and call them equivariant left YM(n)-modules, without making explicit reference
to the grading or the action of so(n), unless we write the contrary. Furthermore, a homo-
geneous left YM(n)-linear morphism of degree 0 which is so(n)-equivariant between two
equivariant left YM(n)-modules will also be called equivariant. The previous definitions
apply as well for the category of YM (n)-bimodules and right YM(n)-modules.

Remark 2.2. Since V(n), considered as an abelian Lie algebra, is a quotient of
ym(n) by the Lie ideal tym(n), any graded left module Y over S(¥ (n)) becomes a graded
left module over YM(n). If Y is provided with a homogeneous action of so(n) of degree 0,
such that

xX-(zy) = (x-z)y+z(x-y),

for all x € so(n), ze€ V(n) and y € Y, then it is an equivariant left YM (n)-module. In this
case, we shall also say that Y is an equivariant left S (V(n))-module. The same applies to
right modules. []

Since YM(n) and S (V(n)) are universal enveloping algebras of Lie algebras, any
left module Y over YM(n) (resp. S(V(n))) is also a right module over YM(n) (resp.
S(V(n))) in the usual manner.

An example of an equivariant YM(n)-module is S(¥(n)), where the generators
{x1,...,x,} of ym(n) act by multiplication on S(¥ (n)), the action of tym(n) is trivial and
the action of so(n) is induced by the standard action of so(n) on V'(n).

2.2. Homology and cohomology. We recall (see [1]) that if 4 is an N-homogeneous
k-algebra (N =2) given by A4 = TV /{R), where R < V®" the N-homogeneous dual
algebra A' is defined as the quotient T'(V*)/{R™), where R+ < (V*)® ~ (F®N)* is the
annihilator of R. In this case, the left Koszul N-complex of A is

b b b
L AR (A B AR (A4]) s 4 — 0,
Bereitgestellt von | Universitaetsbibliothek Bielefeld (Universitaetsbibliothek Bielefeld)
Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 15:32

24) A4

n

x bn
N



80 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras
where (4})* < V® and the differential b; is the restriction of multiplication
a® e ® - ®e)—ae @ Qe
Notice that the differentials of the previous N-complex are homogeneous of degree 0.

From the N-complex (2.4) one can obtain complexes C, ,(A4), for 0 <r < N —2 and
r+1=<p=<N-—1,given by

Il a4 o,

|
N—p+r

25 - Tlaul,) 2 Ae

Following [1] and [3], the complex Cy_i 0(A4) is called the left Koszul complex of A
and the algebra A is called left Koszul if this complex is acyclic in positive degrees. There
are analogous definitions of right Koszul complex and bimodule Koszul complex of A, and
hence of right Koszul and Koszul algebra. Since the three definitions are equivalent (cf. [3],
Proposition 3, and [4], Theorem 4.4), we shall call them Koszul complex or Koszul algebra,
respectively.

From its very definition the Yang—Mills algebra is a cubic homogeneous algebra.
The following proposition describes its dual algebra.

Proposition 2.3.  Let YM(n) = T(V(n))/<{R(n)) be the Yang—Mills algebra with set
of generators given by {xi,...,x,}. If we denote by #* = {xj,...,x,} the dual basis of
V(n)*, then the homogeneous components of YM(n)' are

n
YM(n)y; =Cl, YM(n),= @ Cxjx;, YM(n); =Cz?,
i,j=1
n
YM(n); = V*, YM(n)y=@Cxjz,  YM(n), =0,
i=1
foralli >4 and z = Z(xl*)2 The element = is central in YM(n)'.
i=1

Proof. See [8], Proposition 1. []

From the proposition we easily obtain the following isomorphisms, which are neces-
sary for the explicit description of the differentials of the Koszul complex of the Yang-—
Mills algebra:

(YM(n)y)" = V(n),  (YM(n))" = V(n)*,
(YM(n);)" ~ R(n), (YM(n),)" =~ (V(n) ® R(n)) n (R(n) ® V(n)).
Furthermore, the following is true.

Proposition 2.4. The Yang—Mills algebra is Koszul of global dimension 3.

Proof. See (8], Theorem 1. []
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Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras 81

This proposition tells us that the Koszul complex of YM(n) is a projective resolution
of k. We shall now present its proper form in the category of graded left YM(n)-modules,
i.e. we shall give the explicit description of the minimal projective resolution of graded left-
YM (n)-modules. The modules of the resolution are also provided with a compatible action
of so(n) and the morphisms are equivariant. We consider the complex

!

(2.6) 0 — YM(n)[—4] 2 YM(n) ® V(n)[~2]

i ’

bZ bl b(;
= YM(n)® V(n) — YM(n) = k — 0,
with differential

bi(z) =Y zxi ®@x;, by(z®x;) = Z(zsz ® X; — 2zxX; ® X; + zxiX; @ X)),
i=1

J=1

bi (Z ® xi) = ZXj, b(/)(Z) = 'Sr)m(n) (Z)a
where &,,,(,) is the augmentation of the algebra YM(n).

Let Y be an equivariant left YM(n)-module. When we apply the functor
Homyw(,)(—, Y) to the resolution (2.6), we obtain the complex, which we will denote by
(C*(YM(n),Y),d),

(2.7) 0= YL YeVvmpR S ryevmE S v —o,
after having used the equivariant isomorphisms Homyw(,) (YM(n)[/], Y) ~ Y[—j] and

Homy iy (YM(n) ® V(n)[J], Y) SYVm)2-j,
S

where j € Z. The differentials are given by

P(y@x)=xy, d'(y) = ;xiy ® X,

d*(y ® x;) = 1 (XY ® Xi + X%y ® Xj — 2xi%;y ® ;).
j=1

Analogously, let Y be an equivariant right YM(r)-module. If we apply the functor
Y ®@ym(n (—) to the resolution (2.6) and we use the equivariant right YM(n)-linear isomor-
phisms Y ®yw(,) YM(n)[d] ~ Y|d] and

Y @ym(m YM(n) @ V(n)[d] = Y @ V(n)[d],

Y ®ym@m) 1 ® xi = y ® x;,
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82 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras

where d € Z, we obtain the complex, which we shall denote by (C.(YM(n), Y),d),
s b d
(2.8) 0—-Y-4—=-YRVn[-2-YR®V(n —Y—D0,

with differentials

di(y®xi) = yxi, d3(y)=> yxi®x;,
i=1
d(y ® xi) = 1 (yx] ® Xi + yxix; ® x; — 29,5 ® ;).
=1

Taking into account that V(n) is concentrated in degree 1,
Y V)]~ (Y®V(n)[j, foraljez.

Comparing (2.7) and (2.8), we see that (C*(YM(n),Y),d) and (C.(YM(n),Y),d")[4]
coincide, where (d’), = (—1)°d,. These complexes compute

Extyy, (k. Y) and TorMW(y k),
respectively. The natural isomorphisms
Ext;M(n)(k, Y) ~ H’(t)m(n), Y) and Tor'™M" (v k)~ H, (r)m(n), Y)
(see [34], Corollary 7.3.6) tell us that
H'(ym(n), Y) ~ Hy_;(ym(n), Y)[4],
for0 <i<3.
Just to state notation, if Z is a graded k-vector space, we denote by
Z(t) = HZE:Z dim(Z,)t" € Z[t~', ] its Hilbert series.

Of course, since the global dimension of the Yang-Mills algebra is 3, H'(ym(n), Y)
and Hi(t)m(n), Y) vanish for i > 3. Both Hilbert series coincide up to a shift

H'(ym(n), Y)(t) = t *Hs_;(ym(n), Y)(2).

This relation between homology and cohomology is usually referred to as Poincaré duality,
because of its resemblance to the case of closed oriented manifolds.

We can state the previous results as follows.

Proposition 2.5 (see [8], Equation (1.15)). Let Y be a left YM(n)-module, which will
be considered also as a right YM(n)-module in the usual manner. The cohomology of
ym(n) with coefficients in Y equals the cohomology of the complex (2.7), and the homology
of the ym(n) with coefficients on Y equals the homology of the complex (2.8). We have
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Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras 83

that (Co(YM(n), Y),d")[4] = (C*(YM(n), Y),d), where (d'), = (—1)°d., so in particular
H'(ym(n),Y) ~ Hs_;(ym(n), Y)[4], for 0 <i < 3.

We want to stress that the Chevalley—Eilenberg resolution (C,(ym(n)),d,) of the
equivariant left YM(n)-module k is also a projective resolution of graded left-YM(n)-
modules. The modules of the resolution are also provided with a compatible action of so(n)
and the morphisms are equivariant. If Y is an equivariant left (resp. right) YM(n)-module,
we see that the morphisms of the Chevalley—Eilenberg complex (C*(ym(n), Y),d&g) (resp.
(Co(ym(n), Y),dE")) for the cohomology (resp. homology) of nym(n) with coefficients in Y
are so(n)-linear homogeneous of degree 0.

We can easily check that the following diagram gives a morphism from the Koszul
resolution to the Chevalley—FEilenberg resolution of k:

L YM @ Aty 2L YM @ Adym 2 YM ® AZym -2 YM @ ym 25 YM <%k — 0

T I I N

e 0 —  YM[-4] —3>YM®V[—]—>YM®V —>YM —>k—>0

with vertical maps given by

(2.9) nz®x;) = Z(le ® X A X + 2@ X; A [x;,xi1]),

j=1

n
Z ®Xi/\x]'/\ [Xj,x,'].

l\)l'—‘

(2.10) 0(z) =

It is clear that these morphisms are equivariant.

Given a left ym(n)-module Y, it can be considered as a YM(n)-bimodule, which we
denote by Y. ., where the action on the right is given by the augmentation &y, of
YM(n). It is known that there are natural isomorphisms of the form

H*(ym(n),Y) ~ H*(YM(n), Y, ) and H.(ym(n),Y)~H,(YM(n),Y; )
(see [6], Theorem X.2.1).

Conversely, if Y is a YM(n)-bimodule, it can be considered as a (left or right)
ym(n)-module via the adjoint action, denoted by Y?. There are natural isomorphisms
H*(YM(n),Y) ~ H*(ym(n), Y*) and H.(YM(n),Y) ~ H,(ym(n), Y?) (see [6], The-
orem XIIL.7.1).

By the Poincaré—Birkhoff-Witt Theorem, there is a left YM(n)-linear isomorphism
given by symmetrization S(ym(n)) ~ YM(n)ad (see [10], 2.4.5, Proposition 2.4.10) and
one can check that it is equivariant. This implies that

HH*®(YM(n)) ~ H*(ym(n), S(ym(n))) and HH,(YM(n)) ~ H.(ym(n), S(ym(n))).

We point out that these isomorphisms are so(n)-linear.
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We recall that if 4 is an Ny-graded associative algebra, X is a Z-graded right
A-module and Y is a Z-graded left (resp. right) 4-module, then the homology groups
Tor[f1 (X, Y) (resp. Ext}(X,Y), for X with a projective resolution of finitely generated
modules) are in fact graded vector spaces with respect to the internal grading and we denote
by Tor;f ,( X, Y) (resp. Ext};?(X, Y)) its homogeneous component of internal degree ¢ € Z.
We apply the same notation for other homology groups, e.g. Lie algebra (co)homology and
Hochschild (co)homology groups.

Remark 2.6. We remark that if 4 is an Ny-graded associative algebra, X and Y are
Z-graded right A-modules such that X is finitely generated, then

Homy (X, Y) = Homy(X,Y),

where, as always in this article, the first member denotes the space of morphisms of

A-modules and the second one is the graded vector space expanded by homogeneous

morphisms, i.e. #om,(X,Y) = @ homy (X, Y[n]), for hom,(X, Y) the space of A-linear
neZ

homogeneous morphisms of degree zero (see [29], Corollary 2.4.4). This explains the inter-
nal grading of the Ext groups considered before.

On the other hand, if the algebra A4 is N-homogeneous Koszul, the minimality of the
bimodule Koszul complex K,(A4) of A tells us that there exists an isomorphism of com-
plexes of graded 4-bimodules C,(A4) ~ K,(A4) @ H.(A), where H,(A) is an homotopically
trivial complex. Therefore,

Hom ¢ (Co(4), M) ~ Homy«(K.(A), M) @ Hom . (H.(4), M)

(resp.

Homye(Co(A), M) ~ Homye(Ki(A), M) ® Homye(Ho(A), M)).
Since H.(A) is an acyclic complex of projective graded 4-bimodules, both
AHomye(Ho(A),M) and Homy.(H.(4), M)

have zero cohomology. Moreover, taking into account that the bimodule Koszul complex
K.(A) is made of finitely generated A-bimodules (for the k-vector spaces (A4.)" are finite
dimensional k-vector spaces), we obtain that Hom . (K, (A), M) = #Homye(K.(4), M). In
consequence, we see that the plain Hochschild cohomology coincides with the graded
Hochschild cohomology for a Koszul algebra (in fact it is sufficient to have a graded pro-
jective resolution of 4 given by finitely generated A-bimodules). Since we shall be dealing
with this kind of algebras, we are not going to make any distinction between both cohomol-
ogy theories. []

By Proposition 2.5, HH*(YM(n)) = HH3_.(YM(n))[4], for 0<e <3, and
HH*(YM(n)) = HH,(YM(n)) =0, for e >3, so one need to compute either coho-
mology or homology groups.
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Let us now focus on the case that Y is a right S(¥(n))-module, and by Remark 2.2
also a right YM(n)-module. The Chevalley—Eilenberg complex (C.(V (n), Y),dSF) is pro-
vided with a homogeneous k-linear morphism of degree 2 of the form

hy: C,(V(n),Y) — Cp1 (V(n), Y),

n
YR Xi A AX = DY @ X AX A AX,
J=1

such that dPQLIEIOh +h, 1odCE—q1dC , for all p, where q—Zx e S(V(n)).

Hence, /1 is a homotopy between the zero morphlsm and the one given by multlphcatlon by
¢ and in particular deE ohy jo deE = q.d,.

Moreover, if we define for each p such that 0 < p < n the homogeneous k-linear
isomorphism of degree n — 2p given by

i: C,(V(n),Y) — Cup(V(n), Y),

(_1)i1+'~'+ip+p

Y Xiy A AXG, YR X A AN,

where i} < -+ <y, j1 <+ < jupand {i,..., 0} U{j1,...,Jnp} ={1,...,n}, we obtain
that i, o d = hy_p 0 iy. So h, essentially 001n01des with the differential d CE , when view-
ing the i, as an identification. Notice that iyt = (- 1)"=D72;  for all 0 < p < n.

We may thus provide an alternative description of the complex C, (YM(n), Y) as
follows. First, it is direct to check that

Co(YM(n), Y) = Co(V(n),Y) and C(YM(n),Y)=C(V(n),Y).
On the other hand, the maps iy and i; give the isomorphisms
C3(YM(n), Y) = C,(V(n),Y) and G (YM(n),Y) = Gy (V(n), Y),

respectively. Furthermore, it is easily verified that d) = d %, d; =i od‘Foiy and

d=dsEohy =i ohy,y0dh oij. As a consequence, Hs (I)m(n), Y) ~ H,,(V(n), Y).
The following proposition is a generalization of Propositions 14 and 15 in [26].

Proposition 2.7. Let Y be a right S(V(n))-module (and by Remark 2.2 also a
right YM(n)-module) There is an isomorphism Hs(ym(n),Y) ~ H,(V(n), Y). Moreover,

if the element q = Zx € S(V(n)) is a nonzerodivisor on Y there is also an isomorphism

Hy (Vi) Y) = Hy(om(n), ).
Proof- The first part of the proposition has been already proved.

Suppose that ¢ is a nonzerodivisor on Y. Since d5 = iy o dF o iy, it is direct to check
that Im(ds) = i ! (Im(d°F)).
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We shall prove that Ker(d,) = i;' (Ker(d()). The equality
dz—ll o hy,_ zodclozl

yields that Ker(d») 2 i; ! (Ker(d<%)). Let us prove the other inclusion. The previous iden-
tity implies that z € Ker(d,) if and only if i (z) € Ker(h,_» 0 d°E). Hence, for an element
z € Ker(dy) we have that h,_» 0 d<5 o ii(z) =0, so

0= dclohn 2odcloll(z)—qdcloll()

and this implies that d<5 oi;(z) =0, for ¢ is a nonzerodivisor on Y. This proves that

ze iy (Ker(d<h)) and thus the other inclusion.

Since Ker(dh) = iy (Ker(d<)), Im(ds) = iy ' (Im(4 ")) and i; is an isomorphism,
the proposition follows. []

3. The module W (n)

In this section we shall study the graded vector space W (n) of generators of the free
Lie algebra tym(n).

3.1. Generalities. In [17], we proved that the Lie ideal tym(n) given in (2.2), when
considered with the special grading inherited by that of ym(n), is concentrated in even
degrees strictly greater than 2 and that it is itself a graded free Lie algebra: it is isomorphic
as graded Lie algebra to the graded free Lie algebra on a graded vector space W (n) (see
[17], Theorem 3.12). The previous grading for W (n) is called special, but we will not
make use of it in this article.

Of course, when considering tym(n) with the usual grading it is also a free Lie algebra
and its space of generators W (n) is provided with the induced grading, called wusual.

Since the Lie algebra tym(n) is free on W (n), the morphism

W(n) — tym(n)/[tym(n), tym(n)]

given by composing the inclusion and the canonical projection is an isomorphism. Fur-
thermore, since tym(n) is a Lie ideal of ym(n), tym(n)/[tym(n), tym(n)] has an action of
ym(n) induced by the adjoint action of ym(n), such that tym(n) acts trivially. Hence the
quotient tym(n)/[tym(n), tym(n)] becomes a ym(n)/tym(n)-module, i.e. a V' (n)-module,
if we identify V(n) with the abelian Lie algebra of dimension n. The S(V(n))-module
tym(n)/[tym(n), tym(n)| is graded.

On the other hand, since the action of so(n) on ym(n) is homogeneous of degree 0, it
preserves the Lie ideals tym(n) and [tym(n), tym(n)], so it induces a compatible action on
tym(n)/[tym(n), tym(n)]. Using the isomorphism W (n) = tym(n)/[tym(n), tym(n)], W (n)
becomes a graded S(V (n))-module with a compatible action of so(n) and hence an equi-
variant left (¥ (n))-module and hence a YM(n)-module, such that tym(n) acts trivially.
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From the previous discussion, we obtain an action of V(n) on W (n), which we shall
denote by x;.w, such that

(3.1) Xi-w=—[x;w + Z[v,-_rl,vlé,],
leL

for L a set of indices and some v; ;,v! ; € tym(n).

The Hilbert series of the Yang—Mills algebra YM(n) was computed in [8], Corollary
3, to be

1

M) = 7m0 mr )

In [17], Proposition 3.14, we found the Hilbert series of W (n) for the usual grading

(1—-0)"—=14+nt—n>+1¢*

(1-0"

If n = 2, it is easily checked from the previous formula that W (2) is one dimensional
and concentrated in degree 2. Moreover, it may be considered as the graded k-vector space
spanned by z = [x|,x,], and it is provided with the trivial action of S(¥(2)) and so(2).
Also, we see that tym(2) ~ k|z].

W (n) (1) =

The previous considerations may be summarized as follows.

Proposition 3.1. If k denotes the trivial equivariant S (V(Z))—module, then
W (2) ~ k[—2] as equivariant S(V (2))-modules ( for the usual grading), and it is spanned by
[xl,)Q].

On the contrary, if n > 3, the Hilbert series of W (n) tells us that it is infinite dimen-
sional, which implies that tym(n) is a free Lie algebra with an infinite number of genera-
tors. We shall present a set of generators of W (n) as S(¥(n))-module in Corollary 3.7.

Taking into account that tym(n) = f(W (n)), tym(n) is the Lie subalgebra generated
by W (n) inside Lie(T (W (n))), so we may consider another grading on tym(n), which we
call the internal weight, given by forgetting the grading of W (n) but regarding the grading
given by the tensor algebra. In other words, using that 7' (W (n)) = @ W (n)®? we may
write PeNo

tom{n) = @ tym(n)”,

for tym(n)? = tym(n) N W(n)®”. When z e tym(n)” we shall say that z has internal weight
p (not to be confused with the weight of the so(n)-modules). If we denote by p? (w) the pro-

jection of [x;, w] € tym(n) in the p-th component tym(n)”, we can write
(3.2) [xi,w] = xiw + > pl(w).
p=2

Notice that the sum is finite.
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Proposition 3.2.  The graded vector space W (n) is a graded S(V (n))-module, when
both are considered with the usual grading. Moreover, since the homogeneous element

q= f: x} € S(V(n)) acts by 0, W (n) is a graded S(V (n))/<{q>-module.
i=1

Proof. The first part has been already proved. We proceed with the second one.
From (3.1), it suffices to prove that

n

(3:3) 2 i by wl] € [tom(n), tym(n)],

for any homogeneous element w € W (n). In order to do this we shall do induction on the
usual degree d of w. If d =2, we can suppose that w = [x;,x;], with 1 < j,/ < n. In this
case,

M:

[xl) [-xh [xja le

S, iy wl] =

i=1

Il
—_

Il

Il
—_

(i, [, X1, ) + 22[[9@-, x;1, [xi, x1]] + é[xj, [z, [xi, x1]]]

n
= ZZ;[[xi, x;], [xi, x1l] € [tym(n), tym(n)],
=
where we have used the Jacobi identity and the Yang—Mills relations in the last step.

Let us suppose that property (3.3) holds for any w of degree d < dj and let w be of
n
degree dy + 1. We may write w = ) _[x;, w;], with w; of degree less than or equal to dp, and

by the inductive hypothesis J=1

Sl vl = 3 [ehdl], V1< j<n,

i=1 aeA;

where 4; is a set of indices and ¢/, d/ € tym(n). As a consequence,

(i, 7, e wyl] + 3 S0 b, ey ]

1 i=1j=1

.M=
Ms

Il
—_

b, Doy wl] = 2 2 [ [, 0], wy] + 2

1 i=1j=1

M

i J

M=

g [e, ]
€A

™=

2y

i=1j

[[xi, X1, [xiy will +

I
~.
I
IS}

™=

([, €2l di] + el [x, d]]])

||
|| M:

éWMM%MH

j=lae4;

belongs to [tym(n), tym(n)]. O

As a consequence of Theorem 3.12 and Proposition 3.14 in [17], we can describe the
center of the Yang—Mills algebra YM(n) for n = 3.

Proposition 3.3.  If'n = 3, the center of YM(n) is k.
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Proof.  On the one hand, it is clear that k = 2 (YM(n)).

On the other hand, HH®(YM(n)) ~ Ho(ljm(n),YM(n)ad). As stated before,
since symmetrization gives a graded isomorphism of ym(n)-modules from S(ym(n)) to
YM(n)*, HO (om(n), YM()*) = HO (ym(n), S(ym(n))) = S (ym(n)""".

Let us consider z € S(ym(n)) of the form

i 2
(3.4) z= > Clityo i) 1X1 0 X 1
(i1, 0n) NG, l€L

for ¢, ..iy, € k and {#1},., a PBW basis of TYM(n). Then, z € S(l)m(n))nm(n) if and only
if

(3.5  0=w,z]

) i -1 i I l71 ‘”
= ¥ c<,~1,...,z-,,),1(xf---x,‘;[w,rzHfo---tjx/ [W,x,-]...x,;z,>,
(ityeyin) eNJ IEL J=1

for all w e YM(n). We claim that this implies that z € TYM(n). Indeed, let us suppose that
this is not the case. Then there would exist (i, ...,i%) e NJ different from zero and /y € L
such that ¢(;, ;. + 0. Let

S ={(i1,...,i,) e Ny : I € Lsuch that ¢(;, . ;) # 0},
and let (i],...,i’) € # be an element of maximal degree i + - - - + i/. Then [w, z] possesses a

term of the form

l'l’ i’
C(l" i’),l’x] "'Xn”[W, t/'])

100 n

with ¢t ¥ 0, which cannot be cancelled with any other term in the sum (3.5) for de-
gree reasons. Therefore, [w, ;] = 0, for all w € tym(n), or equivalently, 7 € Z (TYM(n)).

Since n = 3, TYM(n) is a free algebra with an infinite set of generators, so its center is
the base field k. In other words, 7, = 1.

We thus see that any term of the form C(i{.,...,i,;),l'xil - xytp in (3.4), with (...t F 0
and maximal ij + - - - 4 i} = imax has 1 = 1.

Since [xj,z] =0 for all A =1,...,n, it turns out that

(3.6) 0= [xp,7]

*1 *2

/_'—/\'_—'\ n .
- . . A —1 .
- = Lc@-],...,i,,),,(x;l-~-x,;"[xh,z,1 T DR Y [xh,xj]---x;m)
Ly ln) ENgLLE

=
i1+ iy <imax

*3

- ; . i1 ;
+ > 22 Cliyein) X1 ] Xy 5] X
(i1, in) eNG, I L j=1
i1+"'+in:imax
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Notice that in *; we only need to consider the summands with # # 1, since [x;, #] = 0 if
= 1.

For degree reasons, we see that no term of the form x; can be cancelled with any
other term appearing in *,. On the other hand, the former can neither be cancelled with
terms from «;, since [x;,x;] is in a homogeneous component of usual degree 2 of tym(n),
while [x;,#] is in the homogeneous component of usual degree strictly greater than 2 of
tym(n). This tells us that the coefficients c(;, . ;,),; with maximal #; + - - - + i, must vanish,
which is absurd. As a consequence, z € TYM(n).

Again, since z € Z(YM(n)) n TYM(n) we see that z € 2 (TYM(n)). Therefore z € k
and the proposition is proved. []

3.2. Another characterization of W(n). In [17], Section 3, it was proved that
W(n) ~ Hy(ym(n), S(V(n))) as graded vector spaces. By Proposition 3.2, W(n) is an
equivariant S(¥(n))-module and, by definition, the complex C,(YM(n), S(V (n))) is com-
posed of equivariant (¥ (n))-modules and equivariant S(¥ (n))-linear differentials, so its
homology is an equivariant S(¥ (n))-module. We recall that S(V (n)) ® V' (n) is provided
with the regular left S(¥(n))-module structure. In this section, Proposition 3.6, we shall
exhibit an equivariant S(¥ (n))-linear isomorphism from W (n) to the first homology group
of the complex C,(YM(n),S(V(n))). From this result, we shall derive three important
consequences: a set of generators of the S(¥ (n))-module W (n) given in Corollary 3.7 and
a description of the isotypic decomposition of W (n) and W (n) ®g(y (s W (n) in Corollaries
3.8 and 3.9, respectively.

Let 77V (n) be the graded vector subspace of T(V(n)) spanned by all homogeneous
elements of degree greater than or equal to 1 and 7 : T(¥(n)) — S(V(n)) be the canonical
projection. We start considering the following homogeneous linear map of degree 0:

¢:T"V(n)— S(V(n) ® V(n),
zn:l%xi — i”(%‘) ® x;.

The previous mapping is well-defined since every element x € 7" V' (n) may be written in a

unique way as x = »_ g;x; with ¢; € T (V(n)) The linearity and homogeneity are direct.
i=1

Furthermore, since 7 is surjective, ¢ is also surjective.
Given homogeneous elements z,z’ € 71V (n), we have that
#(z'zx;) = n(2'2) ® x; = 7(z')n(z) ® xi,

since 7 is a k-algebra morphism. In other words, ¢(z'z) = n(z’) - ¢(z) for z,z' € TTV(n)
homogeneous. In particular, taking z’ = x;, we see that ¢(x;z) = x;.¢(z). Notice that this
does not imply that ¢ is V' (n)-linear, since 7'(V(n)) is not an S(¥ (n))-module for the left
multiplication.

We shall denote ¢ the restriction of ¢ to §(V(n)) < T*V (n). Then

(3.7) P (xi) =1® x;,
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and we shall prove by induction on / that
(3'8) ¢/([in, [ c [xi/—l ) xi/] e H) = Xy X, X ® Xip = Xiy = X, Xy ® Xip_ys
where [ = 2. The case [ = 2 is direct.
Let us suppose that / > 2 and that the previous identity holds for / — 1. In this case
¢/([xi17 [ ] [xi1-1 ) xi/] e ]]) = ¢(xi1 [xizv [ () [xi/-l ) xil] e H) - ¢<[xizv [ ] [in-l ) xi/] o ']]xil)
= xi1¢([xi27 [ ) [xl'lfl ) xi/] e H) - n(['xizv [ c [‘xil—l ) xi/] < ]D ® Xiy
= xii¢,([xi27 [ R [‘xil—l ) xiz] = H)

= XiyXiy =+ Xj_, Xy ® Xip = XigXiy =+ Xy, X ® Xip_1s

where we have used that ¢(x;z’) = x;.¢(z’), the inductive hypothesis and the fact that, since
n is a k-algebra morphism, #([x, z]) = 0, for all x,z € T(V(n)).

Lemma 34. Ifdi : S(V(n)) @ V(n) — S(V(n)) denotes the differential of the com-
plex (2.8) for Y = S(V(n)), then Ker(dy) = ¢'([{(V(n)),§(V(n))]).

Proof.  The inclusion ¢'([{(V(n)),7(V(n))]) = Ker(d,) is immediate from identity
(3.8) and the fact that every element of [f(¥(n)), (¥ (n))] may be written as a linear com-

bination of elements of the form [x;,[..., [x;_,,x;]]] for / = 2.

Let us prove the other inclusion. Consider

y= ZZax X @ = ZZax ® x; € Ker(d),

Jj= lleN" J= 1zeN"

where i = (i1,...,i,) and the previous sum is finite. We will denote by e; € NJ, for
1 <i < n, the vector such that (el»)j =0;;, 1 £ j<n,and we write |i| =ij + - + i,.

We shall prove that there exists z € [f(V(n)), (¥ (n))] such that y = ¢'(z).

On one hand, y € Ker(d,) if and only if

J=lieNg
This condition is equivalent to the following: for every (ii,. .., i) € N
n .
(3.9) Sal =0,
j=1 =¢j

where we agree to write al{ = 0, in case there exists / with 1 </ < n such that i; < 0.
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As a consequence, if we define

for every i e N{,
ey = T (Ld Fey)- T
lieny ieNy \Jj ieN”

On the other hand, from (3.9), we see that d,(y) =0 if and only if d;(y;) =0, for all
i € Nj. Therefore it suffices to prove that, given /e NJ and y e Ker(d;) of the form
Sal e.)_c’lef ® x; there exists z € [f(V(n)),7(V(n))] such that y = ¢'(z).

j=1

=¢

_ noo. noo.
Suppose given i € Nj and y =) al{ XTI satisfying > al{ o = 0. Let ij,, ..., i,
j=1 7 VS
with 0 </ <n, be the nonzero elements of the n-tuple i, i.e. i; +0 if and only if

jefj,-- i}

If /=0 then necessarily y =0 = ¢'(0) e ¢'([f(V(n)),7(V(n))]), since in this case
a{e/_ =0, for all jsuch that 1 < j <n.

If 7 =1, then there is jo, with 1 < jo < n, such that i = m.ej,, m € N. Hence condition
(3.9) implies that af,, ), =0, and therefore y =0 = ¢'(0) e ¢ ([{(V(n),i(V(n)]).

Let / = 2. We shall proceed by induction on /, assuming that it is true for / — 1. We
may write

n
y=>al x

j=1

—l—e- i_—e-
/ ® x/ Z al /p ® x]'p

¢ - e/p

. - - . - / . -
_ N —i—e; —i—e; 1 zi—e; Ip zi—e
=a (X" Q® Xp =X Q® sz) + a , X 2 ® xj, + > a. , X " @ X,

i—ej I p=2 —p

i—ej ej

. - - / . -
| —i—e; —i—e; Jp zi—ej
=a! (X" ®x; —X "2®sz)+2219;,‘>€ " ® x;,
p:

e a.{l ¢/(adljf1*1(‘le) o ad[jzfl(sz) O:+--0 ad[/] (le>([sz7 le])) + Z b]li X.lee,'p ® x[p,

i—ej i—e,

forb? =a’' +a? andb? =a" |if3<p=<|.

l*L’/2 1— 6/1 lfe/'z 1—e l*L’

1. .
Since > b7 =0, the clement y’ = Z b e @ x;, belongs to the kernel of d;.

=2 i—ej, i— g8
By the inductive hypothesis, there is z’ € [f ( (n)) f(V(n))] such that y’ = ¢'(z’). Then
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y=al' ¢'(ad""!(x;) 0ad” ! (x;) 0 ad (xz) 0 - 0 ad (x;) (b, 1) + ¢'(21)

=¢

= ¢’(a§leh adijl _l(le) o adijz_l(x]'z) ° adijé (x/z) ©--0 adijl (xj/)([xh? le]) + Z,)'

This proves the lemma. []

Let dy : S(V(n)) ® V(n) — S(V(n)) ® V(n) be the differential of the complex (2.8)
in degree 2 with ¥ = S(¥(n)). In this case,

d, <Zn: zZi ® xi> = zn: (zisz ® X — ZiXiXj; @ X;).

i=1 ij=1
We may consider the homogeneous linear map of degree 0, denoted by qg,

[[(V(n),i(V(n)] — Ker(dy)/Im(d)

given by composition of ¢’ and the canonical projection. Being the composition of surjec-
tive morphisms, ¢ is surjective.

Lemma 3.5. Let dy be the differential of the complex (2.8) in degree 2 with
Y =S(V(n)) and let ¢ be as above. If {R(n)) denotes the Lie ideal in §(V(n)) gen-
erated by the vector space of Yang—Mills relations (2.3), then ¢'({R(n))) < Im(d,),
and therefore ¢ induces a surjective homogeneous linear morphism of degree 0 from
[[(V(n),i(V(n))]/<R(n)) = tym(n) to Ker(dy)/Im(d>) = H; (ym(n), S(V(n))) ~ W(n).

Proof.  First, note that (R(n)> < [{(V(n)),i(V(n))].

Given j, with 1 < j < n, we shall denote r; = ) _[x;, [x;, x;]]. Using the Jacobi relation
i=1
it is easy to see that every element of (R(n)) may be written as a linear combination of
elements of the form [x; , [x;, [ .., [x;,_, 7] .. ], for pe N, iy, ..., e {1,...,n}.

Using the identity (3.8), we get
n

¢/([in, [xizv [ ) [xip—l ) r[p] .. H]) = Z(xl'l Xiy =+ X"p—lsz ® Xi, = Xy Xiy » - Xj,_ XjXi, ® xj)
j=

—_

= dy(xjy Xi, -+ - X, ® X)),
and so ¢'((R(n)>) < Im(d>). O
We have therefore defined a surjective homogeneous k-linear map of degree 0
¢ : tym(n) — Hy(ym(n),S(V(n))).
We will see that qg([tt)m(n), tym(n)]) = 0 as follows. Let us consider

a,be [i(V(n),i(V(n))] such thata,b e tym(n).
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Taking into account that ¢([a, b]) is the class of ¢'([a,b]) in Ker(d;)/Im(ds), it suffices to
show that ¢'([a, b]) € Im(dp). We shall see that in fact ¢'([a, b]) = 0.

Since a,b e [{(V(n)),f(V(n))], we can write a = Y [x;,a]] and b= )" [x;, b7}, for
some a/, b] € f(V(n)). Hence = j=1

¢'([a,b]) = ¢(ab — ba) = ¢(ab) — $(ba) = n(a)$(b) — n(b)¢(a) = O,
where we have used that 7(a) = n(b) = 0, for = is a k-algebra morphism.

Finally, the fact that ¢([tym(n), tym(n)]) = 0 implies that ¢ induces a surjective
morphism, which will be denoted by @,

tym(n)/[tym(n), tym(n)] > Hy (ym(n), S(V(n))).

Also, taking into account that tym(n)/[tym(n),tym(n)] is isomorphic to W(n) and
the latter is locally finite dimensional and isomorphic to the first homology group
Ker(dy)/Im(dy) ~ Hy(ym(n),S(V(n))), ® turns out to be an isomorphism.

We have then proved the following proposition.

Proposition 3.6. The map
® : tym(n)/[tym(n), tym(n)] — Ker(dr)/Im(ds) = Hy (ym(n), S(V (n))
is an equivariant isomorphism of S(V(n))-modules.

Proof. We have already proved that @ is a homogeneous linear isomorphism of
degree 0. Also, the equation (3.8) tells us that @ is V(n)-linear and so(n)-equivariant. []

The previous proposition has the following important consequences.

Corollary 3.7. The graded vector space W (n) is generated by the finite set
{[xi; X1} <ic j<n both as a graded S(V (n))-module and as a graded S(V (n))/<{gy-module.

Proof.  As stated at the beginning of this section, we consider S(V (n)) ® V(n) pro-
vided with the regular left action of S(¥(n)). It is finitely generated, and S(¥ (n)) being
noetherian, S(¥(n)) ® V(n) is also noetherian. Since the differential d; of the Koszul
complex with coefficients in S(¥(n)) is an S(V (n))-linear map, its kernel is also a finitely
generated S (¥ (n))-submodule. By Lemma 3.4, the set {x; ® x; — x; ® Xiti<icj<n 18 @ set
of generators of Ker(d;) as S(V(n))-module. -

On the other hand, since d5 is also a V'(n)-linear map, Im(ds) is a V' (n)-submodule
of Ker(dy). The S(V(n))-module W (n) ~ H,(ym(n),S(V(n))) is then a quotient of the
finitely generated S(V(n))-module Ker(d)) by the submodule Im(d>), and hence it is
finitely generated with set of generators {[x;, x;]}, <;. ;<,- All these considerations hold as
well over the algebra S(V(n))/<{¢>. O '
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In the following corollaries and the rest of this article we shall use the standard
notation for the irreducible finite dimensional representations of the Lie algebras so(n)
(see [12]).

Corollary 3.8. Let n = 3. The homogeneous component of degree p of W (n) vanishes
for p £ 1.

For p = 2, the homogeneous component of degree p of the so(n)-module W (n) is also
an so(n)-module. If n =3, it is isomorphic to I'(,_y)1,; in case n =4, it is isomorphic to
Ly, @ -1y, —1,; and finally, if n =25, it is isomorphic to U,y +1,-

Proof. The complex of graded so(n)-modules C,(YM(n),S(V(n))) is the direct
sum of the complexes of finite dimensional so(n)-modules

p—4

(310) 00— V()[4 S (S (V) @ V(n)[-2]

p-3 dp—l

L s () @ vin) o 57 (V(n) — 0,

where p € Z and we consider S? (¥ (n)) = 0 if p < 0. By Proposition 3.6, its homology is
isomorphic to W (n) in degree one, to k in degree zero and all other homology modules
vanish.

Let #(n) denote the set of isomorphism classes of irreducible finite dimensional
so(n)-modules. If M is a finite dimensional so(n)-module and s € ¥ (n), we shall denote
by ny(M) the number of copies of the isotypic component of type s appearing in M. Hence,
the isotypic decomposition of M may be encoded in the formal sum of finite support

> ng(M)s. It is directly checked that M — > ny(M)s is an Euler—Poincaré map (see
se S (n) seS(n)
[24], Chapter I1I, §8).

In consequence, the Euler—Poincaré characteristic of a complex of finite dimensional
sp(n)-modules coincides with the Euler—Poincaré characteristic of its homology (see [24],
Chapter XX, §3, Theorem 3.1). This result applied to the complex (3.10) allows us to
compute the isotypic decomposition of the p-th homogeneous component of W (n) once
we have obtained the Euler—Poincaré characteristic of (3.10). In order to do so, we shall
proceed as follows.

First, we recall that V' (n) ~ I'y, and, by [12], Exercise 19.21,

(2/2]

(311) Sp(V(I’l)) ~ de:ao F(p_2d>L1,

where [p/2] denotes the integral part of p/2. The isomorphism Ty, ~ k tells us that
Iy, ® I'r, ~ Tz, Also, we have the following fusion rule for the tensor product:

Ly, @ Tgr, @ Tgoniy s if n=3,
(3.12) For, @ Ty = Diganye, @ Ty, @ U1, ® Tgonyr,, if n=4,
Uiy, @ Lgryrr, @ Lgonyry, if n=5,
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for ¢ = 1. The previous computation is straightforward from the Zelobenko fusion rules
(see [35], §131, Theorem 5).

Using the isomorphisms (3.11) and (3.12) we find that the Euler—Poincaré character-
istic of the complex (3.10) is k if p = 0, it vanishes if p = 1, and, for p = 2, it is ['(,_y)z,
it n=3, I'()_iy,+1, + T(p-1yr,—1, if n=4 and I'(,_yyz, 1, if n = 5. The corollary thus
follows. D

As a direct consequence of the previous corollary we obtain the following result
which we shall use in Subsection 4.2.

Corollary 3.9. Let n 2 3. The equivariant S(V (n))-module W(n) ®s(y ) W(n) has
no isotypic component of type k in degree greater than 4. Also, the homogeneous component
of degree 4 of W(n) ®s(y(ny W(n) is isomorphic to AV (n) ® A*V (n) as so(n)-modules; it
may be decomposed as

2V (n) @ A*V(n)

Do, @ AV (n) @ AV (n) @ k, if n=3,
Tor, @ Tary o1, ® Tag, 21, ® Tar, @ AV (n) @ A*V(n) @k, ifn=4
=4 Tarir, ®Tapyior, ®Tap, @AV () @ AV (n) Dk, if n=>5,
Toryitorrs @ Toryira—1, @ Taror, ® Tar, @ A V() @ A’V (n) @k, if n=6,
Toriroer: @ Taryior, ® Tar, @ AV (n) @ A’V (n) Dk, ifnz1.

Proof. The existence of an equivariant epimorphism S(¥ (1)) ® A*V (n) — W(n)
says that the S(V(n))-module W(n)®gy () W(n) is an epimorphic image of
W (n) ® A’V (n), which has homogeneous components of degree greater than or equal to
4. By the previous corollary, the component of degree p + 2 of W (n) ® A>V (n), for p > 2,
is given by

Cop—y, ®T,, if n=3,
W(l’l)p ® A2 V(n) jad (F(p 1)Li+L, @ F 1)L— Lz) ® FLU if n = 47
F(p, 1)Li+L, ® FL], if n é 5.

Using the Zelobenko fusion rules we find that k ~ Ioz, is not an isotypic component of
W(n), ® A%V (n) for p > 2, which proves the first statement.

For the second statement we proceed as follows. Using again the Zelobenko fusion
rules for the tensor product A%V (n) ® A’V (n) ~ so(n) ® so(n), we find that

2 V(n)® A? V(n)

Iy, ®@V(n) @k, if n=3,
Iorior, @ Tor,-21, @ Fle Ol 40, ®Tp -1, ® kP2, if n=4,
Dopior, @ To0,40, @0, T4, DT, Dk, if n=>5,
i, @ Donyiry 1, @ Topyior, @ T, @ Tpyvr, @01, @k, if n=6,
)\ Toriryir, ®Tor, 100, T, ®T L, 0,10, ®T L 11, DK, ifn=7,
Dopivryir; @ Dop420, @ Lo, @ Uiy n511,
@l +r105-0, Bl 41, Bk, if n=238,
Dopiirorr; @ Top 400, @ T2, @ vpirivr, @ Tygr, @K, if n> 8.
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Taking into account that

2V (n) ~ V(n), if n =3,
2V(n) ~Tp 40, ®Tp, 1, ifn=4,

V(n) ~Tr 1, ifn>=S5,
and

AV (n) ~ if n=3,
AV (n) ~ k, if n=4,
AV (n) ~V(n) ~Ty, if n=>75,
AV (n) ~ A*V(n) ~Tp 1, if n=6,
AV (n) ~ AV (n) ~T 11,06, ifn=1,

W) =T ryirsirs ®Cr sryits 1, ifn=S8,
AV () ~ T ryeraeLs if n> 38,

we obtain the desired decomposition for A2V (n) @ A’V (n). O

3.3. Some algebraic properties of W(n). In this subsection we shall prove some
algebraic properties of W (n) which will be very useful in the sequel. At the end of this sub-
section we briefly discuss a geometric interpretation of these properties.

The following lemma is analogous to the Kiinneth formula.

Lemma 3.10. Let C, = C,(YM(n), S(V(n))) be the complex (2.8) for the equivariant
left YM(n)-module S(V(n)) and let z € S(V(n)) be a nonzero homogeneous element of
degree d. After applying the functor S(V(n))/{z) ®s(v(n)) (—) to the complex C., we obtain
the following short exact sequence composed of graded S (V(n))-modules and homogeneous
morphisms of degree 0:

0 — S(V(n)/<{2> ®s(vmy Hy(C) — Hy(S(V (1)) /2> ®s(v(ny Co)
— Tory " (S(V(n)) /<>, Hy-1(CL)) — 0.

Proof.  First, we see that C, is a complex of free graded left S (V(n))-modules. Its
homology was computed in [17], Proposition 3.5.

We consider a free graded resolution of the (¥ (n))-module S(V(n))/<z), which
will be denoted by P,, provided with morphisms of degree 0. Since the S (V(n))-module
S(V(n))/<z) has projective dimension 1, we may choose P, such that P; = 0 for i > 2.

We can apply the Kiinneth spectral sequence (see [34], Theorem 5.6.4), which yields

g = Tor VU (S(V(n)) /<2), Hy(CL)) = Hpiy (S(V(1)) /<2) @s(vimy Co)-
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If we consider the double complex D, , = P, ®s(y(n)) Cy, the previous spectral sequence is
just the spectral sequence of the filtration by columns of D, .. Hence, the first term of this
spectral sequence is of the form E, ! =H,/D,. =P, ®S )y Hy(C,), since P, is a free
graded S(¥(n))-modules, for all p As a consequence, Ep g cons1sts of only two columns
p =0,1, so a fortiori, Eﬁ , vanishes outside the columns p = 0, 1. Hence we obtain a short
exact sequence of graded S ( (n ))—modules provided with homogeneous morphisms of
degree 0 (see [32], Corollary 10.29)

0 — Torg" " (S(V (1)) /<25, Hy(C.)) — Hy(S(V(1))/<2> ®s(r(m) Co)
— Tor} ") (S(V(n)) /<z), Hy1(C)) — 0,
which proves the lemma. [
Since H,(C.) = 0, the previous lemma implies that
Hy(ym(n), S(V(n))/<z)) = Hy(S(V(n))/<z) @s(y(m) C)
~ Tor? ") (S(V(n)) /<z), Hi(C.))
~ Tor? " (S(V(n)) /<2, W (n)).

On the other hand, there is a free graded resolution of the S(V(n))-module
S(V(n))/<z) of the form

(3.13) 0— S(V(n)[~d] = S(V(n)) — S(V(n))/<z) — 0,

so the S(V(n))-module S(V(n))/<{z> has projective dimension less than or equal to 1.
From the previous resolution, we conclude that

Tory ") (S(V/(m)) /<25, W (n)) = annyy(ua (2).

where anny (z) = {we W:z-w=0}.

We recall that ¢ = Zx € S(V(n)). If we set z =g, then d =2 and we obtain a

homogeneous left S (V(n)) / {g>-linear isomorphism of degree 0 of the form

H, (S(V(n))/(q) ®S(V(n)) C.) ~ W(l’l)[—Z]
We also have the following result.

Proposition 3.11. Let n = 3. The generators xy, ..., X, € S( V(n)) are nonzerodivisors
on W(n).

Proof- Let us now assume that z = x;. By the previous isomorphisms, we have that

Hy(ym(n), S(V(n)) /<x>) =~ Tor? " (S(V(n)) /<xiyy W(n)) =~ ann 1) (x:).

Since we have chosen n > 3, then H,_1 (V(n), S(V(n))/<{x;)) = 0.
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Taking into account that ¢ and x; are coprime in S(¥(n)), the map on S(V (n))/{x;>
given by multiplication by ¢ is injective. Proposition 2.7 tells us that

H,(ym(n), S(V(n))/<{xiy) = 0.

This in turn implies that anny(,(x;) = 0, for alli = 1,...,n, so every x; is a nonzerodivisor
on W(n) and hence the natural morphism of localization W (n) — W(n), is injective for
alli=1,...,n. [J

We recall that, if 4 is an Ny-graded algebra, the homogeneous morphism of degree 0
given by
Aoy : A — A,

a v |ala,

where a € A is homogeneous of degree |a|, is a derivation of 4, called the Eulerian deriva-
tion.

The following fact is implicit in [26].

Proposition 3.12.  Consider ¢ =Y x} € S(V(n)) and A = S(V(n))/{q). There is a
i=1
short exact sequence of graded A-modules

dey
(3.14) 0— W(n) —Qup— A —0,

where Ay = @ A, is the irrelevant ideal of the No-graded algebra A, Qi is the module
m=1

of Kdhler differentials of A over k and d., is the map induced by the Eulerian derivation
Aoy : A — A.

Proof.  'We know that there is a homogeneous isomorphism
W (n)[=2] ~ Hy(A gy Co)

of graded A-modules of degree 0. Inspecting the complex 4 ®g(y(4)) Co, We conclude that

Ker(idy ® db) = {Zn: a; @ Xx; : anaixl- = 0}:
i=1 i

because

(idy ® d») <Zl a;i ® xi) = > (aixf ® x; — a;x;x; @ X;)

ihj=1

n n n
:Zaiq®x,~—z< aixi>xj®xj
i=1 1

j=1 \i=

n n
=-2 <Z am‘) X ® X,
j=1\i=1
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and thus (id4 ® o) < Yai® x,~> = 0if and only if ) a;x; = 0, for A4 is a domain. Also,
i=1 =1

1

Im(idy ® d3) = {iaxi(@x,- : aeA}.

i=1

The second fundamental sequence for the quotient 4 = S(V (n))/<{g) is

0 o
(@ /<a>* = A @y Qs(rim ke — Qe — 0,
where §(7) = dq and o(p ®g(y(n) dz) = pdz, for z, p e S(V(n)).

Since Qg (y()x ~ S(V(n)) ® V(n), by the isomorphism z® x; — zdx; (see [15],
Example 8.2.1), we derive that, using this identification, Im(J) = Im(id4 ® d3) and, more-
over, the map

(A® V(n))/Im(ids ® ds) — Q.
[3 ® Xi = pdxia

is a homogeneous A-linear isomorphism of degree 0. In other words, there is a short exact
sequence of graded A-modules

(3.15) 0— A[-2] = AR V(n) — Qu) — 0,

n
where the first mapping is @ — > ax; ® x;. Notice that A ® V(n) ~ (4[—1])".
i=1

Finally, the morphism given by the inclusion Ker(d,) — 4 ® V'(n) induces a map of
graded A-modules W(n) ~ H(A ®s(y) Co)[2] = (A® V(n))/Im(idy ® d3) ~ Q. It
is readily verified that it provides the first morphism of the short exact sequence of the
proposition. Also, it is clear that the map dJ, is an epimorphism and its kernel coincides
with the image of the previous morphism. []

Remark 3.13. Let n=3. The projective spectrum of the graded k-algebra
A=S(V(n))/{g> gives an irreducible projective variety X with structure sheaf Oy
and the finitely generated graded S(V(n))/<{g)-module W (n) provides a coherent sheaf
W (n)~. Proposition 3.11 may be interpreted as stating that the natural morphism
o: W(n) — To(W(n)~) is in fact injective (see [25], p. 115), a result implicitly used in
[26]. We define M (n) = W (n)[2]. For reasons that will be clear later, we will prefer to
work with M (n).

Also, from the previous considerations we may derive the following fact mentioned in
(28], Example 4, and in [26]: the sheaf of (y-modules M (n)~ is isomorphic to the tangent
sheaf of X. This is proved as follows. We first note that the functor (—)~ is exact. Let
i: X — P(V(n)) be the inclusion of X in P(¥(n)). Since the functor i* is right exact,
applying i* to the Euler exact sequence for the projective space (see [15], Example 8.20.1,
[19], Proposition 2.4.4), we derive the exact sequence of sheaves of (/y-modules

Ox — (Ox[1))" — i*(Tp ) — 0,
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where the first map is induced by

A — (A[1)",

Z (2X1, ..., ZXy).

We may compare this exact sequence with the one obtained by applying the functor (—)~
to the short exact sequence (3.15). This implies that Q7 , ~ (T pm))[—2]

On the other hand, we can consider the short exact sequence of the normal fiber
bundle of a subvariety (see [25], p. 150)

0= Tx = i(Teww)) = NVxprm) — 0,

where Ny |pyny) = Home, (I ]I 2, 0y) denotes the normal fiber bundle associated to the
inclusion i : X — P(V(n)) and .# = {g)" is the sheaf of ideals of Up(y(,), which defines X.
In this case, we have the following chain of isomorphisms

Ny | p(viny) = Home, ()92, 0x) ~ (Homy({g)/<q)*, 4))" ~ (A]2])~ = Ox[2],
where the penultimate isomorphism is induced by the A-linear isomorphism

Homy ({q)/<q)*, A) = A[2]

given by f — f(g). Also, the last map in the previous short exact sequence is induced
by d.,. Hence, 7y ~ W(n)[2]” ~ M(n)".

The previous results allow us to give a geometrical interpretation of M(n) as the
tangent bundle over X. Moreover, since X has a transitive action of SO(n), it becomes
a homogeneous space SO(n)/P, for some parabolic subgroup P with Lie algebra
p ~ (so(n—2) x k) X V(n—2), where V'(n — 2) is an abelian Lie algebra within so(n — 2)
acts by the standard representation and k acts diagonally. Both the tangent bundle M (n)~
and the tautological line bundle (y[—1] are homogeneous vector bundles associated
to some irreducible representations of lowest weight —1 over p, so we may apply the
Borel-Weil-Bott Theorem in order to compute H*(X,E), for E equal to M(n)[i]~ or
(M(n)~ ®¢, M(n)™)[i]. Amazingly, this gives plenty of information about the module
M(n): it allows us to prove that the natural morphism o : M(n) — (M (n)”) is an
isomorphism for n = 4 and also gives a complete description in case n = 3, to compute
the groups TorS((") (M(n), M(n)), etc. We shall not pursue these ideas in this article, since
we shall replace them by shorter algebraic considerations. We refer to [16] and references
therein for a complete description of the previous geometrical insight. [

3.4. Homological properties of W (n).

3.4.1. Generalities. Let R and S be two k-algebras, X a right R-module, Y an
R-S-bimodule and Z a left S-module. If O, — X and P, — Z are corresponding projec-
tive resolutions, we can consider the second term of the base-change spectral sequence
Elf = Torf (X ,Torf(Y,Z)), given by the filtration by rows of the double complex
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Cpy= 0, ®r Y ®g P,. If Y is a flat R-module, it converges to TorS (X ®; Y, Z) (see [32],
Theorem 10.59).

We shall consider the previous spectral sequence for the case R = S(V(n)),
S=YM(n), Y =S(V(n)), Z =k and any graded S(¥ (n))-module X, given by

B}y = Tory ") (X, T (S (V (n)), k)) = Tor, " (X, k).

Notice that Torﬂ\;(”)(X, k) ~ Hy.q(ym(n), X).

Remark 3.14. We choose
0. =AV()@X®S(V(n) =Ca(V(n),X ®S(V(n)).

It is easily verified that it is indeed a projective resolution of the right .S (V(n))—module X.
On the other side, we choose P, as the Koszul resolution (2.6) of the left YM (n)-module k.

In this case, the base-change spectral sequence is given by the filtration by rows of the
double complex

(3.16) Cp.g = Oy ®s(vn) S(V (1)) ymim Py
~ AV (n) ® X ® C,(YM(n),S(V(n))),
with vertical differential d°F ® idyyy,:, Where we consider the action of V(n) on

X ® S(V(n)), and with horizontal differential id+y (g x ® de, With d, the differential of
C.(YM(n),S(V(n))). O

On the other hand, since Tory™" (S(¥(n)),k) ~ Hy(ym(n),S(¥(n))) and using
[17], Propositions 3.5 and 3.6, we have the equivariant S('(n))-linear isomorphisms

k, lf [ = 0,
Tor!™M"(S(V(n)),k) ~{ W(n), if e=1,
07 else.

Thus, our spectral sequence has only two nonzero rows

(3.17) E; o~ Tory V(X k) ~ Hy(V(n), X)
and
(3.18) E, | ~Tord ") (X, W(n)) ~ H,(V(n), X ® W(n)).

The last isomorphism follows from the usual fact that Tor”®(M,N) ~ H,(g,M @ N)
(see [6], Chapter XI, Proposition 9.2).

Furthermore, since the spectral sequence has only two rows, it gives a long exact
sequence of the form (see [32], Proposition 10.28)
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(319) = H,(ym(n),X) — H,(V(n),X) — H,2(V(n), X ® W(n))
— Hy_1(ym(n), X) — (V(n); X) = Hy3(V(n), X ® W(n)) —
eHz@mn),X)eHz( ), X) = Ho(V(n), X ® W(n)
— H(ym(n), X) — Hy(V n,x)ﬁo

and the isomorphism Hy(ym(n), X) ~ Hy(V (n), X).

However, since YM(n) has global dimension equal to 3, H,(ym(n), X) =0, if p = 4.
This implies that

(3.20) Hyi(V(n),X) ~ H,_ (V(n),X ® W(n)),
for p = 4.

Remark 3.15. As for the long exact sequence, we may write the previous spectral
sequence using the identification Tor:”(g)(M ,N) ~ Hy(g, M ® N). In this case, it is easy
to see that the spectral sequence coincides with the Hochschild—Serre spectral sequence
H,(V(n), Hy(tym(n), X)) = H,.4(ym(n),X), for X a V(n)-module. However, we point
out some differences. First, the Hochschild—Serre spectral sequence may also be used
when X is a ym(n)-module. Second, the base-change spectral sequence has further structure
since it lives in the category of (graded) S(¥ (n))-modules, whereas

TorJ"UD (X, W(n)) = Ho(V(n), X @ W(n))

only holds as k-modules (and also as homogeneous so(n)-modules when X is an equi-
variant S(¥(n))-module). That the base-change spectral sequence can be considered in
the category of (graded) S(¥(n))-modules comes from the fact that the considered modules
are provided with an action of S(¥(n)) which commutes with all other actions. []

We shall be mostly interested in the case that X is given by the equivariant S(V(n))-
module W (n)®’, for i € Ny, which is an equivariant S (V(n))-module provided with the

diagonal action. It is readily verified that, if X = W(n)®i , all previously considered mor-
phisms are in fact homogeneous of degree 0 and so(n)-linear. For the rest of this subsec-
tion, all morphisms will also be so(n)-linear, unless we say the opposite.

The long exact sequence (3.19) for X = W (n)®' becomes
(3.21)  — Hy(ym(n), W(n)®) — H,(V(n), W(n)®) — Hy,o(V (n), W(n)®)
ot (om(n), W(n)®') — Hyr(V(n), W(n)®")
R p_g(V(n), W(n)®(i+1)) ...
— Hs (ym(n), W(n)®') — Hy(V(n), W(m)®') — Ho(V (n), W(n)®"*)
— H (ym(n), W(m)®") — Hi(V(n), W(m)®') 0,
and we obtain the isomorphism Ho (ym(n), W (n)®") ~ Ho(V(n), W (n)®").
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104 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras
Also, the isomorphisms (3.20) tell us that
(3.22) Hya (V) W()®) = Hyy (V(n), W(n)®HD),

for p = 4 and i e N.
In fact, a stronger statement relating these homology groups holds.

Theorem 3.16. Let n =3 and i = 1. There is a long exact sequence of so(n)-modules
and homogeneous so(n)-equivariant morphisms

0 — 1y (V(n), W(m)®) > 1 (v (), W ® ) 2y (om(n), w(n)®)
2 (V) Wm)®) S Ho(V ), w)® DY 2 gy (ym(n), w(n)®)
L H (V(n), W(n)®') — 0,

and a collection of homogeneous so(n)-equivariant isomorphisms

Ho (ym(n), W(n)®') ~ Ho(V (n), W (n)®')

and
Ho(V(n), W(n)) ~ A*V(n),  Hi(V(n), W(n) =~ AV (n) ® V(n)[-2],
Hy(V(n), W(n)) = A*V(n) @ k[-4],  Hy(V(n), W()®') =~ A"**'V(n), for p=2,
where in the last isomorphism we exclude the case p =2 and i = 1.

Proof. Let us first suppose that i=0, so W(n)®i ~ k. From the fact that
H, (r)m(n), W(n)®’) vanishes, we have the following exact sequence:

0— H4 nj, ) — HQ(V( ) W(n)) — H3(t)m(n),k) — H3(V(I’l),k)

(V(n)
— H,(V(n), W(n)) — Hy(ym(n),k) — H2(V(n),k) — Ho(V(n), W(n))
- Hl(t)m(n ) — H\(V(n),k) — 0.
On the other hand, the isomorphisms H,(V(n),k) ~ A’V(n), obtained from the
Chevalley—Eilenberg complex, and
Ho(ym(n), k) ~k, Hi(ym(n), k) ~ V(n),
Hy(ym(n), k) ~ V(n)[-2], Hs(ym(n), k) ~k[-4],

which follow from the Koszul complex (2.8), imply that Ho(V (n), W(n)) ~ A*V(n) and
the following short exact sequences:

0— A*V(n) — Hy(V(n), W(n)) — k[-4] — 0
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and
0 — A’V (n) — Hi(V(n), W(n)) — V(n)[-2] — 0.
Note that we have used that the maps
H,(ym(n), k) — H>(V(n),k) and Hs(ym(n),k) — H3(V(n),k)
vanish, since they are so(n)-linear maps between different irreducible representations.

Since H,(ym(n),k) =0, for all p >4 and H,(V (n),k) ~ A’V (n), there are isomor-
phisms

(3.23) H,(V(n), W(n)) ~ A""*V(n), forall p=3.

Let us now assume that i > 1.
We shall first prove the following proposition.

Proposition 3.17. Ifn =3 and je N, then HP(V(n), W(n)®j) =0, for p = n, and, in
consequence, Hz(ym(n), W(n)®’) =0, for jeN.

Proof.  The second statement follows directly from the first one, since by Proposition
2.7, there is an isomorphism H, (V (n), W(n)®-’) ~ Hs(ym(n), W(n)@’).

Let us prove the first one, proceeding by induction on ;.

Assume that j = 1. In this case, using (3.20) for i = 0 we obtain that there is an isomor-
phism H,.i(V(n),k) ~ H,_1(V(n), W(n)), for p =4, so H,(V(n), W(n)) ~ A"V (n),
for p = 3. Then H,(V (n), W(n)) =0, for p = n.

Supposing that the proposition holds for j — 1, we will prove it for ;. In this case, the
isomorphism (3.20) for i = j — 1 implies that

Hyr(V(n), W(m)®V™) = Hy o (V(n), W(m)®), for pz 4.

Hence H,(V(n), W(n)®) ~ Hy2(V(n), W(n)®Y"Y) =0, for p =n. The proposition is
then proved. []

As a consequence of the previous proposition, Hs(ym(n), W(n)®i) =0ifi =1, and
we obtain an exact sequence
0— Hs (¥ (n), W(m)®) — Hy (¥ (n), WD) = Hy(ym(n), w(m)®)
— Hy(V(n), W(m)®') — Ho(V(n), W(m)®"*D)
— Hy(ym(n), W(n)®") — Hi(V(n), W(n)®') — 0.
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The vanishing of H, (ym(n), W (n)®'), for e = 3, yields the isomorphisms
H,(V(n), Wn)®"™) ~ H, 5 (V(n), W(n)®"), forp=2.

By induction, it turns out that H,(V (n), W (n)®’) is isomorphic to H,,»(;_1)(V(n), W(n)),
for all p =2, j = 2. Using (3.23), we see that H,(V(n), W(n)®j) ~ APV (n), in case
p =2 and j = 2. We may summarize the previous information as follows:

H,(V(n), W(n)®") ~ A"V (n)

if p=2andi =1, exceptincase p =2 and i = 1. This completes the proof of the theorem.
]

The following remark describes some of the morphisms appearing in the exact
sequence of Theorem 3.16.

Remark 3.18. If i = 1, the maps S and S; in the theorem coincide with the differ-
entials d32,0 and di o of the second term of the base-change spectral sequence, resp. and the
isomorphisms H, (V (n), W(n)®’) — H,_»(V(n), W(n)®(’+1)) for p = 4 coincide with the
differentials d ;.

If i = 0, the injections A*V (1) — H,(V(n), W(n)) and AV (n) — H, (V(n), W(n))
coincide with dj ; and d5 , respectively. Also, the family of isomorphisms

Hy(V(n), W(m)®) = Hyo(V(n), W(n)*"™V) forpz5
coincides with differentials d; ;.

On the other hand, the total complex of the double complex (3.16) for X = W (n)®’,
which may be rewritten as

Cpy = AV (n) @ W(n)® ® C,(YM(n),S(V(n))),

is quasi-isomorphic to C,(YM(n), W(n)®i), and the quasi-isomoprhism is given by the
map

(3.24) Tot('Cus) — Co(YM(n), W(n)®")
induced by the projection
(325)  Cuo=Wm® ® Co(YM(n),S(V(n))) — Co(YM(n), W(n)®")

given by the action of S(V(n)) on W(n)®i, ie. WQz®v—wzQ®u, if z® v belongs
to C1(YM(n), S(V(n))) or C2(YM(n), S(V(n))) (we W(n)®', ze S(V(n)) and v e V(n));
and w @ z — wz, if z belongs to Co (YM(n), S(V(n))) or C3(YM(n), S(V(n))) (we W (n)®'
and z € S(V(n))). From this quasi-isomorphism, the maps B; and B} appearing in Theorem
3.16 can be described as follows. As it is usual, identifying Ej’ , With subquotients of
Tot(*C...), the mappings B; and B/ are induced by the composition of the inclusion and
the quasi-isomorphism (3.24) (see [32], Theorem 10.31).
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Finally, let us describe the morphism 1; : Hy (ym(n), W(n)®i) — H,(V(n), W(n)®i).
In order to do so, we recall that, if E is a V(n)-module, the Lie algebra morphism
n:ym(n) — V(n) given by the canonical projection induces a morphism of complexes
C.(ym(n),E) — Co(V(n), E). This in turn induces a morphism in the homology groups
H,(ym(n), E) — H.(V(n), E). In particular, there is a map H, (ym(n), E) — H,(V(n), E),
induced by idg ® 7.

On the other hand, from the comparison of resolutions achieved at the end of Sub-
section 2.2, we see that the map idg ® inc: E® V' (n) — E ® ym(n) induces an isomor-
phism H;(ym(n), E) — H,(ym(n), E). Therefore, if we choose as representatives of the
homology H;(ym(n), E) the cycles of C;(YM(n), E), and as representatives of the homo-
logy H,(V(n),E) the cycles of Ci(V(n),E), the mapping H,(ym(n),E) — H,(V(n),E)
induced by the identity idggy (s coincides with the one induced by idr ® 7. By [32],
Theorem 10.31, if we choose as representatives of the homology H, (r)m(n), W(n)®i) the
cycles of C(YM(n), W (n)®'), and as representatives of the homology H,(V (n), W (n)®')

the cycles of C)(V (n), W (n)®' ), the map I; is induced by the identity idyeigy(n- This
shows that I; also coincides with the morphism induced by idW(n)@ ®n. O

Proposition 3.19. Let n = 3. The morphism
Sy Hy(V(n), W(n)) — Ho(V(n), W(n)®?)
is an injection. By exactness of the sequence of Theorem 3.16, By is surjective and I] = 0.

Proof. We proceed by inspection on the morphisms at the level of the double com-
plex which defines the base-change spectral sequence.

In the first place, from the double complex (3.16), Remark 3.18 and standard compu-
tations on a second term spectral sequence, the morphism

A*V(n) = Hy(V(n), k) — Hy(V(n), W(n))
is induced by

Xip AN Xiy A Xig A Xjy = % s(a)xiﬂ(l) A Xiy) ® [xiﬂ(3)7xig(4)}7
O E Sy

where the image element is a cycle in A?V (n) ® W (n).
Also, the element

S XA ® [xi,x] € APV (n) @ W(n)

1<i<jsn

is a non-trivial cycle, since it is the image of the cycle

n
<O, Z xl-/\xj®(x,-®x_,~—xj®x,-),2xi®1®xi,—1®1®1>
1<i<j<n i=1
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in the degree 3 component of the total complex of the double complex (3.16) for i = 0. This
element does not vanish in the homology of the total complex, since —1 ® 1 ® 1 cannot be
in the image of the vertical differential by degree reasons. Moreover, the image of this
element in H; (ym(n), k) ~ k is —1.

We conclude that a basis for Hs(V(n), W(n)) is given by the set of classes of the
following collection of cycles

(3.26) { D &(0)Xiy0) A Xiyy @ [Ny, Xipy | 1 S <y <3 <y S n}

0'€§4

u{ > x,-/\xj®[xl-,xj]}.

1<i<j<n

By standard computations on a second term spectral sequence, the morphism from
Hy(V(n), W(n)) to Ho(V(n), W(n)®?) satisfies that

Z g(a)xia(l) A Xiyo) ® [xi0(3)’xirl(4)] = Z 8(0) [xia(lﬂxia(z)} ® [xia(3)7xia(4)]7

0’€§4 J€§4
YoOXiAX® [xi Y [ ] @ [, X,
1<i<j=n 1<i<j=n

forall 1 £/ < i, <iz<iq4 £nand it is not hard to check that these image elements are
linearly independent in A2V (n) @ A*V(n).

Since W(n) is a graded S(¥(n))-module and W(n), = A*V(n), it turns out that
(W)@ W(n)), = A*V(n) ® A’V (n) is the non-trivial homogeneous component of
lowest degree. Notice that the image of the basis (3.26) of H,(V(n), W(n)) is in fact
included in (W (n) ® W (n)), and this implies that S| is an injection. [J

n .
Let us suppose that n > 3 and i = 2. The action of ¢ = > x; ® x; on W(n)®’ is given
i=1 .
by the coproduct of YM(n), so in order to make it explicit we will compute A (q), which is
of the form

, i-1
A(”(q):Zl@” ®‘1®1® p V42 > 1%1‘:4(”)@"1@1@‘1 ®xl®1YM: .

p=0 7,9€Np
pHqsi=2

Proposition 3.20. Ifn = 3 and i 2 2, then q is nonzerodivisor on the S(V (n))-module

W (n)®".

Proof.  We recall that Tor]fW("))(Y, V') ~ Tor "k, Y ® Y'), where Y ® Y’ has
the diagonal action.

We first notice that (S(¥(n))/{g>)®" is an algebra with the usual structure and that
the hypothesis on n implies that ¢ € S(¥(n)) is irreducible and hence S(V(n))/<{¢> is a
domain. Since k is algebralcally closed and S ( (n ))/ {g> is a finitely generated integral
domain, (S(V(n))/ <q>) is in fact a finitely generated integral domain (see [7], Theorem
14.1.5).
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The action of ¢ € S(V(n)) on (S(V(n))/ <q>)®i is given by multiplication by the non-
zero element

® ®1 -2) ®i
2 S A ® 30 ® 15 @M @IS € (S(/0) /@)
pHq<i-2

and this shows that ¢ is a nonzerodivisor on (S(¥ (n))/<q))*'
We claim that Torlf(V(”)) ((S(V(n))/<q>)®”, k) vanishes for p =2 and aeN. In
order to prove this result, we proceed as follows. The case @ = 1 has already been analyzed,

since the projective resolution (3.13) implies that S(¥'(n))/{¢)> has projective dimension 1.
If @ > 1, then

TorSV D ((S(V (1) /<)), k) = TorSV ) ((S(V(n)) /<g>) ™", S(V(m)) /<),

and the latter homology group vanishes, since S(V ( (n ))/ {g> has projective d1mens1on 1.
Our claim implies that the bounded below graded S(V'(n))-module (S(V (n))/ <q>) has
projective dimension 1 for all a € N (see [2], Proposition 2.3 and Corollary 2.4).

We will next prove that

(3.27) H, (V(n), (S(V(0) /<))® @ W(n)®") =0

and
(3.28) H,(V(n), (S(V(n)) /<>)®* ® W (n)®") =0,

for all a, b € Ny such that a + b = i. The case a = 0 follows directly from Theorem 3.16. Let
us now assume that a € N. Since

H,(V(n), (S(V(n)) /<>)®* & W(n)®") =~ TorSV ) (k, (S(V () /<a>)®* ® W (n)®")

~ TorS V) ((S(V/(m)) /<q>) >, W (m)®"),

it suffices to show that this last homology group vanishes for p =n — 1 and p = n. This is
indeed the case, since, as explalned before, the projective dimension of the graded S ( V(n))

module (S(V(n ))/<q>) is 1.

In view of the form of the projective resolution (3.13), ann,,eq_5 (¢) is isomorphic
to the homology group Tor;'" " (S(V(n))/<{g>, W (n)®'), so it suffices to show that this
last group vanishes in order to prove the proposition. In fact we will prove a stronger state-
ment asserting that, for every a,b € Ny such that i = a + b = 2, the homology group

Tor; " (S(V(n) /<a>, (S(V' () /<a))®* @ W(m)®") = ann, g 1 s mwmen—2 (@)

vanishes, holds. The case a =i and b = 0 follows directly since ¢ is a nonzerodivisor on
(S(V(n ))/ <q>) as previously stated.
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Let us now assume that i = 2. We shall proceed by induction on b. The case b =0
(so a = i) has already been proved.

Let us assume that Torf(V("))(S(V(n))Kq), (S(V(n))/<q>)®(i7j) ® W(n)®) van-
ishes for j=0,...,b—1<1i, where b =1. We shall prove that it also vanishes for
ji=b<i.

Since

®(i—b) ®(i+1-b)
Torls(V) <%, <%> ® W®b> ~ TorIS(V) ((%) ® wel-b, W>,

where we have omitted the index n, it suffices to prove that the last homology group
vanishes.

By the inductive hypothesis, ¢ is a nonzerodivisor on
®(i+1-b _
(S(rm) /<) ™" @ wm®,

so Proposition 2.7 implies that

® (i+1-b)
#, (mn(n), (%) e W<n>®<b‘”>
®(i+1-b)
~H, <V<n>, (%) e W<n>®<b‘”>.

Also, the same proposition tells us that

®(i4+1-b) ®(i+1-b)
H; (Um(f’l), (%) ® W(n)®(b—1)> ~ H, (V(n), (%) ® W(n)®(b—1)> .

Isomorphisms (3.27) and (3.28) imply that the previous homology groups vanish. Using the
previous computations and the exact sequence (3.19) for

X = (S(V(m)/<g»)®"" " @ w(m)®tY,
we conclude that
Hi(V(n),X ® W(n)) ~ H3(V(n), X).

Isomorphisms (3.20) tell us that H3(¥(n), X) is isomorphic to

Hy -1y (V(n), (S( Vn)/<a)®"),

which vanishes, since (S (V(n)) / <q>)®i has projective dimension 1. The proposition is thus
proved. [
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From the proposition we obtain the following corollary.
Corollary 3.21. Ifn =3 and i = 2, then H,(ym(n), W(n)®i) =0.
Proof. Since ¢ is a nonzerodivisor on W (n)®’ by Proposition 3.20 and
H, o (V(n), W(n)®) =0
by Theorem 3.16, Proposition 2.7 yields that H, (nm(n), W(n)®i) =0. [

3.4.2. The minimal projective resolution of W (n) and other results. We define
M (n) = W(n)[2]. We shall focus ourselves on M (n) instead of W (n) because of the follow-
ing homological properties (see also Remark 3.13).

Proposition 3.22.  The No-graded S(V (n))-module M (n) is Koszul, i.e.
Torlf(V(”)) (M(n), k)
is concentrated in degree p, for all p € Ny.

Proof. Let us first consider n = 2. Since W (2) ~ k[—2] (see Proposition 3.1) and
S(V(2)) is a Koszul algebra (where the Chevalley—Eilenberg resolution of the Lie V(n)-
module k coincides with the Koszul resolution), M (2) is a Koszul S(¥(2))-module.

Let now n = 3. Taking into account that Tors"")) (M (n), k) ~ H,(V (n), M (n)), the

proposition follows from Theorem 3.16 since it implies that

Hy(V(n), M(n)) = Ho(V(n), W(n))[2] = (AV(n))[2],
H,(V(n), M(n)) = H,(V(n), W())[2] = (AV(n))[2] @ V(n),
Hy(V(n), M(n)) = Hy(V(n), W(n)[2) = (A*V(n)) 2] @ k[-2],
Hy (V (), M(n)) = Hy(V(n), W (n))[2] = (A"2V (n)[2],

for p=3. [

As explained in [2], Proposition 2.3, the minimal projective resolution P(M(n)), of
the graded S (¥ (n))-module M (n) for n = 3 has the form:

(3.29) 0 — S(V(n)) ® TorS" ™) (M(n), k)
— S(V(m) @ Tor, " (M(n). k) — -
= S(V(m) @ Tor; ™" (M(n), k)
— S(V(n)) ® Tory "™ (M(n), k) — M(n) — 0.

This in turn implies that, if N is another Ny-graded S(V(n))-module, then
Tor,-S(V(")) (M (n),N ) has homogeneous components of internal degree greater than or equal
to i.

Bereitgestellt von | Universitaetsbibliothek Bielefeld (Universitaetsbibliothek Bielefeld)

Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 15:32



112 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras

We shall find a differential df for the previous resolution (3.29). In order to do so,
let us consider the Chevalley—Eilenberg complex R(M(n)), = (C.(V(n), S(V(n))),d<F)

for the regular module S (V(n)) It is acyclic in positive degrees since its homology is
H.(V(n),S(V(n))) =0 for e > 1. Notice that R(M (n)), , is a graded vector subspace of
S(V(n)) ® TorSV ") (M(n), k) for e € Nj.

We define df of the minimal projective resolution of M(n) as follows. If

ve R(M(">)p+2’ for p = 1, we take d (v) = d5(v). Let us denote {ey, ..., e,} a basis of

V(n) = H(V(n), M(n)) and {c} a basis of k[-2] = H(V (n), M(n)); given z € S(V(n)).
We set

(3.30) L) =328,
=1

(3.31) df(z®e;) = Zn:zxj®xijf.
j=1

The differential df, for e € N, is given extending k-linearly.
Finally, the augmentation morphism dy’ : P(M(n)), — M(n) is given by
(3.32) dy (2 ® xi A x;) = 2.[xi, x;).

By Corollary 3.7, M(n) is a finitely generated S(V(n))—module with set of generators
{[xi,x]] : 1 £i < j < n},sodl is surjective.

It is readily verified that df is a homogeneous S(V (n))-linear and so(n)-equivariant
map of degree 0 and d o d. | =0, for all p e Ny.

Furthermore, we will now prove that the complex P(M (n))_ is acyclic in positive
degrees and hence a resolution of M (n). On the one hand, since

Ho(P(M(n))) = Hois(R(M(n)), fore =3,

the exactness of P(M(n)),, for e = 3 is direct. The case @ = 2 is also direct, for the differ-
ential given in (3.30) is injective. The other cases, i.e. @ = 0, 1, can be checked as follows.

For e = 1, let us consider z = z/ + z” € Ker(d") with

7z = > Z(iy, o, iy) @ Xiy AXiy AXjy € S(V(n)) ® (A3 V(n))[Z],

1<5ii<ih<iz=n
Z"=zi®e € S(V(n)) ® V(n),
i=1

and thus df (z") € Im(d<E). Since Im(diE) = Ker(dsE), we see that

CE( P
0= dz (dl (ZU)) = Z (Z[ij ® Xi — ZiXiXj ® Xj).
1=ijsn
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Therefore, it turns out that dyE o df| s(vm)ev(m = d, where d is the differential of the
complex C,(YM(n),S(V(n))) given by (2.8) and z” € S(V(n)) ® V(n) belongs to the
kernel of d,. By [17], Proposition 3.5, H, (I)m(n),S(V(n))) =0 and, as a consequence,
there is a we S(¥(n)) such that z” = di(w) = df (w® ¢), so the complex P(M(n)), is
exact in degree 1.

The only condition left to prove for P(M(n)), to be a resolution of M(n) is that
Ker(df) = Im(dl’). We start observing that the diagram

2 af
S(V(n) @A*V(n) —— M (n)
| |
Ker(d) " Ker(dy)/Im(d>)

is commutative, where 7 is the canonical projection and ® is the isomorphism of Prop-
osition 3.6. Then, given we S(¥(n)) ® A’V (n), we Ker(dl) if and only if there exists
w' € S(V(n)) ® V(n) such that dy(w) = dy(w'). Taking into account that

dr = dz(:E ° dIP|S(V(n))® V(n)
it turns out that dy®(w) = dy®(df (w")), or, equivalently,
w—df(w') e Ker(dS®) = Im(d5F).
The fact that d;° = d{’|gy(,)), vields that Ker(d") = Im(d[").
We have thus proved the following result.

Proposition 3.23. Let n = 3. The complex (3.29) provided with the so(n)-equivariant
differential df satisfying d,P|R(M(n)) =dZh, (3.30) and (3.31) is a minimal projective resolu-

tion of the graded S(V (n))-module M (n).

Let R be a graded commutative k-algebra, and let N, N’, M and M’ be graded
R-modules. By [6], p. 204, the external product

ToriR(M7 M') ®g TorjR(N,N’) - ToriR+_/

(M Qg N,M' @ N')

is an R-linear map homogeneous of degree 0. It can be constructed as follows. If P, — M,
P, — N and P! — M ®z N are respectively graded projective resolutions of the graded
R-modules M, N and M ®z N, there exists a morphism Tot(P. ®z P.) — P/, unique up
to chain homotopy equivalence. The external product is then induced by the morphism
Tot(Pe @g M' Qg P, ®r N') — P/ ®r (M' @ N').

We are interested in the case R = S(V(n)), N = N' = S(V(n))/{¢g> (which will still
be denoted by A4, as in Proposition 3.12), M = M(n), i =0 and j = 1. We shall also
assume that M’ is a graded 4-module. By taking into account the graded S(V(n))—linear
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A ~M, ' we shall consider the

isomorphisms M (n) Qg(ym) A ~ M(n) and M' @y
S(V (n))-linear map homogeneous of degree 0
M0 TorS ) (M(n), M") ®sy sy Tor "™ (4, 4) — Tor)\ "™ (M (n), M)
But Tor, (V<”>>(A, A) ~ A, so the previous map is in fact
S(V(n))(M(n) M/).

<M TorSV 0D (M (n), M) — Tor, |

We take P, = P, = P(M(n)), and P, given by (3.13) with z = ¢ of degree d = 2. In this
case we must find a chain map 1, : Tot(P(M(n)), P)) — P(M(n)),.

Since P! consists of only two non-zero terms, the double complex

Cpqg = P(M (1)), ®s(rim) Py

has only two non-trivial rows ¢ = 0, 1. We define the morphism ¢, as follows. In the first
place, if ve Cyo = P(M(n))p Qs(vmy S(V(n)) ~ P(M(n))p, let 7,(v ® 14) = v. Suppose
now that p = land v e G,y = P(M(n))pi S(V(n)[-2] ~ P(M(n))pil[—Z].

There is an isomorphism P(M(n)) | ~ R(M (n))p > ® G, as graded S(V (n))-modules,
—2] and the other ones are trivial. Con-

where C; = S(V(n)) ® V(n), C: =S(V(n)) ®
sider an S(V (n))-linear map s, : P(M (n))k1 [—2] P(M(n)), homogeneous of degree 0
for e € N and represented in matrix form as follows:

1 1 1,2
Se = %
. 21 §22
[ ]

where s/ are maps of graded S(V(n))-modules defined as follows
syt R(M(n)),,,[-2] = R(M(n)), .

n
ZQ X A AN D ZXI @ X AX A AN,
=1

S(V(n) ® V(n),

spl e S(V(n) ® (A2V(n)) —
(zx4 ® xp — 2X5 @ Xy),

51
Z® Xy AXj

and 5! = 0, for p = 1. Also,
2 S(V(m) @ V(n)[=2] = S(V(n) ® (k[-2)),

z®e +— zx; ¢,

and slf’z =0, if p & 2. Finally, SI} 2 =0, forall peN.
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It is trivially verified that s, satisfies se1j 0S¢ =0, d 05+ 50d = ¢.(—) and the exter-

nal product x 1’,”1’ coincides with the morphism induced in homology by ida @y () Sp+1
for p € N. /

We have the following simple result.

Proposition 3.24. Let

N

X=Y(x®l-1®x)®x;ec AR AR V(n)
i—1

be a cycle of the Chevalley—Eilenberg complex for the homology of V (n) with coefficients in
A ® A. It is a generator ofTorf(V("))(A, A) as an S(V (n))-module.

Proof- It is clear that x is a cycle. Also, since there are no boundaries for
Torﬁ (2V(")) (A,A), by degree reasons, it cannot be a boundary. Since x has internal

degree 2 and Tory"") (4, 4) ~ A[-2], x must be a generator of the S(V(n))-module
Tor""(4,4). O

The previous proposition yields a useful description of the image of ng[f”).

Corollary 3.25. The image of ng 1<n> is the set of elements of degree j =2 in
H(V(n), M(n) ® M(n)) of the form '

S5 (myx @ my — my ® myx;) ® x;,

i=1leL

for L a finite set of indices and m;,m; € M (n) homogeneous of degrees d; and d] such that
di+d] = j—2, for all | € L. These elements will be called generic.

Proof. By the previous proposition,
YRl —-1®x)®x;
i=1

is a homogeneous generator of the graded S(V (n))-module Torls (V(n))(A,A). Since the
morphism xé‘ﬂ(") is S (V(n))-linear homogeneous of degree 2, the elements of its image

are of the prescribed form. []
We want to describe the kernel and cokernel of the map xg{ 1("). As
Tort ") (4, 4) ~ 4[-2],

it has homogeneous components of degree greater than or equal to 2. By degree reasons,
the cokernel of the external product for M’ = M (n) contains the homogeneous component
of internal degree 1 of Tor;" " (M (n), M(n)), which is an N-graded S(¥ (n))-module by
the Koszul property of M (n).
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In this case, we can consider the following mixed complex of (non-graded) A-modules
B(M'), = M' ®g(y(u) P(M(n)), with vertical differential idy;» ® df and horizontal differ-
ential idy ®g(y(n)) Se+1- Since g acts by zero on any A-module, the previous conditions
imply that (B(M'),,d,,s._1) satisfies the definition of a mixed complex (see [21]). We
recall that the first quadrant Connes’ double complex associated to the previous mixed
complex is defined as B(M'), , = B(M"),_, if 0 < p < q and zero otherwise, H.(B(M'))
denotes the usual vertical homology of B(M’),, and the homology of its total complex
is called the cyclic homology HC,(B(M')) of the mixed complex B(M'),. We note that
HCy(B(M')) ~ Hy(B(M")).

The filtration by columns of Connes’ double complex yields the so-called Connes’
spectral sequence, which also gives that the first cyclic homology group HC(B(M')) fits
in the low degree exact sequence of 4-modules (see [34], 9.8.6)

(3.33)  H{(B(M')) — Hy(B(M')) — HC>(B(M')) — Hy(B(M"))
— H(B(M'")) — HC(B(M")) — 0,
where the first and the fourth map are induced by id; ® s, and idy;r ® s1, respectively.
So, HC{(B(M’)) is isomorphic to the cokernel of the map x(’)‘ﬂ/ (without considering the

grading). When dealing with these mixed complexes we will not take into account any
grading.

If 0 - M{ — M; — Mj; — 0 is a short exact sequence of 4-modules, it induces in
turn a short exact sequence of mixed complexes 0 — B(M{) — B(M;) — B(M;3) — 0, so

a short exact sequence of the corresponding total complexes and hence a long exact
sequence of cyclic homologies

- — HC,(B(M})) — HC,(B(Mj)) — HCy(B(MY)) — HC,p 1 (B(M])) — - --.
If M’ = A, the total complex Tot(P(M(n)), ®s(y(u) P.) computes
TorsV W) (M(n), 4),
which can also be computed from any of the complexes

M(n) ®s(ym) Po or P(M(n)), ®sy) A-

L]

or P(M(n)), ® s(v(n)) A are quasi-isomorphisms. By diagram chasing arguments, the com-
ponent of the quasi-isomorphism from M (n) gy ) P, to P(M(n)), ®s(v(n) A passing
through Tot(P(M(n)). ®s(rin) P:) in degree @ = 1 is induced by (74 ® idp(pr(n))) © 51, for
n4 2 S(V(n)) — A the canonical projection. This implies that ><()471 is an isomorphism.

Moreover, the canonical projections from the total complex to either M(n) ®g(y(n) Pe

On the other hand, the mixed complex B(4), has only vertical homology Hy(B(A))
and H;(B(A)) and the first term of the Connes’ spectral sequence E, , = H,,(B(A)) for
B(A), satisfies that d, ,: E, , — E, ., coincides with x|, hence it is an isomorphism. As
a consequence, HC,(B(A)) =0, for e > 1.
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The short exact sequence of graded A-modules 0 — 4, — 4 — k — 0 (where 4 is
the irrelevant ideal of 4) implies that HC, (B(A.)) ~ HC.y1(B(k)), for @ > 1. It is direct
to check that

HC5(B(k)) ~ AV (n) @ A’V (n) @ V(n)
and
HCy(B(k)) ~ AV (n) @ A*V(n) @ A*V(n) @ k

since all morphisms of B(k) are zero. It follows that

HG(B(A4)) ~ NV (n) @ A’V (n) @ V(n)
and

HC3(B(Ay)) ~ AV (n) @ A*V (n) @ AV (n) @ k.

The long exact sequence of cyclic homology obtained from the short exact sequence
of graded 4-modules defined by (3.15), is given by

0 — HC(B(Qu)) — HCo(B(A[-2])) — HCy(B(A[-1]")) — HCo(B(Qux)) — 0.

It is directly verified that HCo(B(A[-2])) ~ M (n)[-2], HCy(B(A[-1]")) ~ M(n)[-1]"
and, under these identifications, the map HCy(B(A4[-2])) — HCy(B(A[-1]")) coincides
with w— > wx; ® x; and it is injective, since anny,(x;) =0 for all i=1,...,n (see
i=1

Proposition 3.11), implying that HC, (B(QA/k)) = 0. Since HC, (B(A)) =0, fore > 1, we
find that HC, (B(Q y /k)) = 0, for e = 2. Hence, the long exact sequence of cyclic homology
obtained from the short exact sequence of graded 4-modules given by (3.14) assures that
HCZ( (A4 )) ~ HCl( ( )) so HC, (B(M(n))) ~A° V(n) @A V(n) @ V(n). Hence,
the cokernel of the map x 1( " s isomorphic to A’V (n) ® A’V (n) @ V(n) as k-vector
spaces.

The previous considerations also imply that HCs(B(A.)) ~ HC>(B(M(n))), and,
in consequence, HC, (B(M (n))) ~ AV (n) ® AV (n) ® A’V (n) @ k. Moreover, Theorem
3.16 tells us that H>(B(M(n))) ~ HQ(V(n),M(n)®2) ~ A’V (n), so, from the proof of
Proposition 4.8 in the next section, we obtain that the homology classes of the cycles

{ > &(0)[Xiyy s Xy ] @ [Xiy)s X ] @ Xiyg AXipgy 0 1 S iy <y < iy <y <5 < g < n}

g€ Sg

provide a basis composed of elements of degree 2 of H,(V(n),M (n)®2). Since the
second map of the low degree exact sequence (3.33) is induced by the inclusion of the
complex (B(M(n)),,d.) in Tot(B(M(n)),,) and the components of the boundaries
of Tot(B(M(n)),,) in B(M(n)),, have degree strictly greater than 2, we deduce that
the previous list of homology classes is also linearly independent when considered in
Tot(B(M(n)), ,), and therefore, the second map of long exact sequence (3.33) is injective
and the kernel of the map X, f") is isomorphic to A*V(n) ® A*V(n) @ k as k-vector
spaces.

We shall first give an explicit description of the cokernel of the external product.
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Proposition 3.26. Let n = 3. There is a sequence of k-vector space isomorphisms
Coker(ngf")) ~ Torﬁ(lV(n))(M(n), M(n) =NV (n) @A V(n) @ V(n),

where we consider for each direct summand of Torf (IV("))(M (n), M(n)) the following
bases given by the homology classes of the cycles of the Chevalley—FEilenberg complex
C1(V(n), M(n) sy M(n)):

(i) for V(n):

n
{Z Z 8(0>([xia(l) ) xia(z)] A [xia(3)vx1] @ x; + [xia(l)’xl] A [xig(z)’xl] ® Xia(s))} )
1=5ii<ihb<iz<n

=1 (TE§3

(iii) for A’V (n):

{ Z 8(0-) [xl'n(wxia@)] ® [xia(s)vxiam)] ® Xigs)

g€Ss }15i1<i2<i3<i4<i5 <n

Proof.  The fact that these classes are cycles of the Chevalley—Eilenberg complex is
direct but rather tedious to check. Also, it is easy to see that they all belong to

(C1L(V (1), M(n) ®s(y(my M(n))), = M(n)y ® M(n), ® V(n)
= AV (n) @ A*V(n) ® V(n),

where there are no boundaries by degree reasons. We leave the simple but rather long proof
that they all form a linearly independent set, which mostly depends on degree reasons.

On the other hand, since
ANV(n)@AN V()@ V(n) = Coker(xg{f")) > Torf(lV(")) (M (n), M (n))
DAV (n) @AV (n) @ V(n),
all previous inclusions must be equalities and the proposition follows. []
Finally, we will provide an explicit description of the kernel of the external product.

Proposition 3.27. Let n = 3. There is an isomorphism of graded k-vector spaces,
homogeneous of degree 0,

Ker(xg' ") ~ A*(V(m)[1]) @ A>(V(n)[1]) @ £,
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where we consider for each direct summand the bases given by the homology classes of the
following cycles of the Chevalley—Eilenberg complex Cy(V (n), M(n) ® sy M (n)):

(i) for k:

{ £ ooyl

1<i<j<n

(i) for A*V (n):

{Ersiabyonl)

=1 I<i<j<n

(iti) for A*V (n):

{ Z 3(0-) [xl'a(l)?xfa(z)] ® [xia(3)7xia(4)]

og€eSy }1§i1<i2<i3<i4 <n

Proof. As in the proof of the previous proposition, it is direct but tedious to verify
the fact that these classes are cycles of the Chevalley—Eilenberg complex. Also, it is easy to
see that they all belong to

(Co(V (n), M(n) ®s(v(m) M(n)))y = M(n)y ® M(n)y, = A’V (n) @ A*V (n),

that they belong to Ker(ng 1(”)) and that they all form a linearly independent set, always

using degree considerations. Finally, since
A (V1) @ A*(V(n)[1]) @ k = Ker(x,") 2 Toryy " (M (n), M (n)),
and
Torgy " (M(n), M(n)) 2 A*(V(n)[1]) @ A*(V(m)[1]) @k,
all the inclusions must be equalities and the proposition follows. []
Remark 3.28. It is clear that the following inclusions hold:
k@ A (V(n)[1]) € Hy(V(n),S*M(n)) and A*(V(n)[1]) < Ho(V(n), A>M(n)).

It is not difficult to find exactly which irreducible representations of so(n) among the ones
given for the decomposition of Ho o (V (n), M (n)®2) in Corollary 3.9 belong to the compo-
nent Ho,o(V (n), S*M (n)) or to Ho,o(V (n), A>M(n)). On the one hand, we recall that if / is
a dominant weight and o a positive root of so(n) such that A(H,) # 0, then I'y; < S*T"; and
I',_, < Azl“A« (see [12], Exercise 25.32). First, applying the previous fact to A = L; for
n = 3, we see that

Tor, < Hoo(V(n), S*M(n)),
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and secondly, to A = L; + L, for n = 4, we find that
Tar,420, € Hoo(V(n), S*M(n)).
Also, for a suitable « in each case, we conclude that
Tor i, € Hoo(V(n),A*M(n)), if n=35,
Torirorts ® Tarera-r, € Hoo(V(n), A*M(n)), if n=6,
Toriiryir, € Hoo(Vn),A’M(n)), ifnz=7.
By a dimension argument, it is not difficult to check that, for n = 5,
HO,O(V(n), AZM(n)) ~ AZ(V(n)[l]) A AZ(V(n)[l])

is the direct sum of AZ(V(n)[l]) and the modules appearing in the previous list, in each
case (see [12], Equations (24.29) and (24.41)). The same argument implies that

Hoo(V(n), A*M(n)) =~ A*(V(n)[1]) A A2 (V(m)[1])
is the direct sum of A%(V(n)[1]) and T, for n = 4. Finally, for n = 3,
Hoo(V(n),A*M(n))
is isomorphic to A*(V(n)[1]). O

As a consequence of Corollary 3.21 and Proposition 3.26, we may obtain the follow-
ing corollary, which corrects the one stated in [26], Corollary 21.

Corollary 3.29. Let n 2 3. The graded S(V (n))-module W(n)®' is free if and only if
i > max{2,(n—1)/2}.

Proof. Since W(n)®' is a bounded below graded S(V (n))-module, it is free if and
only if the homology groups H.(V(n), W(n)®’) vanish for all e > 0 (see [2], Proposition
2.3 and Corollary 2.4). By Theorem 3.16, we see that this is never the case for i = 1. More-
over, Proposition 3.26 implies that H, (¥ (n), W(n)®2) does not vanish, so we assume that
i=3.

Theorem 3.16 tells us that, if p =2, then H,(V(n), W(n)®') ~ A”**V(n) vanishes
if and only if p+42i>n, ie. i > (n— p)/2. Hence, the collection of homology groups
{H,(V(n), W (n)®") }pZZ vanishes if and only if i > (n — 2)/2.

Finally, by Corollary 3.21, H>(ym(n), W (n)®') = 0 for i = 2, which implies that the
map S, : H3(V(n), W(n)®i) — H(V(n), W(n)®(i+l)) is an isomorphism. Therefore, there
is an isomorphism H, (V (n), W(n)®i) ~ A32=Dy (), for i > 3. Then,

H\(V(n), W(n)®) =0

if and only if 1 4+ 2i > n, i.e. i > (n — 1)/2. The corollary is thus proved. []J
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Remark 3.30. Since M(2) = W(2)[2] is isomorphic to the trivial equivariant
S(V(2))-module (see Proposition 3.1), it is not hard to see that Theorem 3.16, Propositions
3.17 and 3.20, and Corollaries 3.21 and 3.29 are not true if n = 2. Nevertheless, it may be
directly verified that Propositions 3.19, 3.26 and 3.27 are valid even if n = 2. [

4. The cohomology H *(ym(n), Ker(cuym())
In this section we shall compute the intermediate cohomology groups
HO (I)‘m(l’l), Ker(gtr)m(n))) and Hl (I)m(l’l), Ker(stnm(n)))’

which will be used in the next section in order to determine the first Hochschild coho-
mology group of the Yang—Mills algebra YM(n), for n = 3. From now on, we shall assume
that n = 3, unless otherwise stated. All morphisms will also be so(n)-equivariant, unless we
state the contrary.

4.1. Analysis of the spectral sequence. The aim of this section is to prove the follow-
ing theorem.

Theorem 4.1. If n = 3, Hy(ym(n),Ker(ewm)) = Ha(ym(n), tom(n)) is isomorphic
to V(n)[—4] as a graded so(n)-module and Hz (ym(n), Ker(eumn))) vanishes.

Proof. To simplify notation, we shall denote the augmentation ideal Ker(&ym(x))
simply by 1.

Let us consider the increasing filtration F,/ of equivariant YM (n)-modules of 7 given
by

I, ifpz-1
Fr={" - P=""
17 ifp<-2.

The previous filtration is exhaustive and Hausdorff and it induces an exhaustive
and HausdorfT increasing filtration F,C,(YM(n),I) = C.(YM(n),F,I) on the complex
C. (YM(n), 1 ) Therefore, we obtain a spectral sequence whose zeroth term is

E;{q = FyCpig/Fy-1Cpiq =~ Cpiy(YM(n), F, I /F, 1),

Moreover, the isomorphism of graded algebras TYM(n) ~ TW (n) yields an isomor-
phism of equivariant ym(n)-modules

171777 ~ wn)® P if p<—1,

Fyl/Fy 1T =
P/ Ed {m if p=0.

So the initial term of the spectral sequence may be written as

g (om(n), W(m)® ), if p< -1,
0, if p=0.
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As a consequence,

E! ~ Hpyiq(ym(n), W(”)®<7p))a if p<-—1,
7o, if p=0.

By Corollary 3.21, H, (r)m(n), W(n)®i) =0, for i = 2, so we see that E[}‘zfp =0, for
all p e Z\{~1}. Also, Proposition 3.17 tells us that Hs(ym(n), W(n)®') =0, for i = 1,
so we have that E), =0, for all peZ. Furthermore, H;(ym(n), W(n)®) =0 for
Jj¢{0,1,2,3} and i € Ny, so by Corollary 3.29 the spectral sequence is bounded and there-
fore convergent. Thus, Hz(ym(n),I) = 0.

We may present the previous results in a pictorial way.

q
° 0 0 0
o<~ o 0 0 E!,
0 .% o <——0

d-y
0 0 o<——eo
0 0 0 °
P

0 0 0 0 0

Figure 1. First step E.l?, of the spectral sequence. The dotted lines show the limits wherein the spectral sequence
is concentrated.

We shall study the differential
d1173 : E1173 = H2(Um(’7)a W(”)) — H (t)m(n), W(n)®2) = Elz,s-

We will prove in Proposition 4.10 that the kernel of the map d1173 is exactly V(n)[—4],
for which a basis was given in Proposition 3.26 and Corollary 3.25. This implies that
E?| ; =~ V(n)[—4]. Hence, Hy(ym(n),I) is a subquotient of V' (n)[—4]. However, since the
spectral sequence is defined in the category of so(n)-modules, H, (I)m(n), 1 ) must be a sub-
quotient as an so(n)-module. As V' (n)[—4] is an irreducible so(n)-module, H(ym(n),I)
can only be V'(n)[—4] or trivial. This last possibility is impossible, due to the fact that, given
i=1,...,n, the homology classes of the cycles

l;[xl-,xl} ® x; € Gy (ym(n), tym(n)) = C>(ym(n),I)

considered in Lemma 4.2 form a linearly independent set, by internal weight reasons. []

4.2. Computation of the kernel of d‘_173. In this subsection we shall prove that
Ker(dlm) ~ V(n)[-4].
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We recall the isomorphism of equivariant ym(n)-modules
W(n)®* ~ A2W(n) @ S>W(n),

and the surjective map Bj : H, (V' (n), W(n)®?) — Ha(ym(n), W(n)) given in Theorem 3.16
(see Proposition 3.19). If we define the homology groups

Hy ((ym(n), W(n)) = In(B) |y v () s2w(n))
and
sza(t)‘m(n), W(n )) Im(B) |H n), A2W(n )))7
it turns out that H> (ym(n), W(n)) = Hy (ym(n), W(n)) + H o (ym(n), W(n)).
The following lemmas will be useful in the sequel.

Lemma 4.2. The image under B| of the homology classes of the cycles x in
W(n)®? ® V(n) considered in Corollary 3. 25 and Proposition 3.26 is described as follows:

(V(n)-type component) Given I, with 1 <1 < n, and

x= > [xl®N,xl@xi+ Y ([ x] @ [xix] @ x4 [xi,x5] @ [xr, 3] ® x;),

lsi<jsn 1<ijzn
n
B{(X) is the homology class of the cycle Y [x;,x;] ® x; € Co(YM(n), W (n)).
j=1
(A3 V (n)-type component) Given iy, iy, i3 such that 1 < i) < i, < iz < n, and

X = Z Z 8(0-)<[xig(1)7xig(z)] A [xl ] ® x; + [xl 1] A [xia(zwxl] ® xia(3))7

=1 0'653

Bi{(%) is the homology class of the cycle 'y [x;,,, %] ® Xi,, € C:(YM(n), W(n)).

UEA}

(A5 V (n)-type component) Given iy, iy, i3, ia, is such that 1 < i) < i <i3 <ig <is=<n,
and

X = Z 8(‘7) [xia(l)7xia(2)] ® [xlg » Mg ] ® Xiys)

geSs

Bj{(X) vanishes.

(generic-type component) If x is a generic cycle of the form

= E(W.X] ® [X[,Xj] -we [xivxj]xl) & xi,

=1

~

then Bj (%) is the homology class of the cycle (wx; @ x; — wx; @ x;) € C,(YM(n), W (n)).
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Proof. Consider the double complex (3.16). It yields a spectral sequence converging
to the homology H, (ym(n), W(n)®’) and an associated long exact sequence. Remark 3.14
indicates how to compute the map B] for each cycle of the previous list. This is a lengthy
but straightforward and usual homological computation. []

Let us define a map

A:W(n)— YM(n),

Since ¢.w = 0, it turns out that

(4.1) A(w) =

_ xipf (w) + pF(xiw) + W,

i=1

where p? is given by (3.2) and w e @ tym(n)”.
pz3

Lemma 4.3. If p; : tym(n) — tt)m(n)2 denotes the canonical projection, then
n
42 (bbb ool )

r n
=2 Z Z XiXiy o Xy [[xl? xl‘h]? Kipr =" X, [xpv xq]]

for all r € Ny,

Proof. We proceed by induction. In the first place, using the Yang—Mills relations
(2.3), it is not hard to prove that

Albeis 1) = 2 2 [lwrs xils b, ]

We must now show a similar expression for A(X' (X, X4]), for |i] >0, where
X;=Xx; ---x; and |i]| = r = 1. In order to do so we consider the element in tym(n)

(4.3) SO [0, [ - [ D] T,

=1

~

whose component in tt)m(n)2 is obtained by replacing in the previous expression [x;, —| by
xr.(=) + p?(-), and which gives

(4.4) A()_ci-[xp, X4]) + l; I; ‘xlzxil s 'xl‘hflp[i (Xipy + X3, [Xp, Xg])-

On the other hand, using the Jacobi identity and the Yang—Mills relations (2.3), the
element (4.3) may be rewritten as
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(4.5) SO [t B s [ P X]] - ]+ ]

+ 2[5 [ [[X[,Xp], [xbxqm o]

+ ];[Xm oo e X ]y P X, xgl) - ])
Furthermore, the same relations may be used to further simplify as follows:

S S B oo [0 X ] s D gl] - ]2 ]

h=11=1
h
=y (Z (Xiys oy [, 23, 5 oo [ X ], [ [, X)) ] ]
h=11=1 \g=1

r

+ ;‘rl[x’.l’ ol ] s xg ]y x5 xg]] -]

+ [xilﬂ ceey ([[.X], [xlvxih“v ce [xl}-v [xlﬁxq]] e ]
+ [, 3], - X, [0, [, x0]0] - ]) - ]),

which also coincides with

Hence,

r n
=3 > s X Xy - [ [ [, xg]]] - -] € @D tym(n)?.
h=1I=1 p>2
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Therefore, we have proved that

~

- h=11=1

where w e @ tym(n)”. Then, we see that
p>2

o S0 s o sl )

=1

M=

r n
=23 > xixiy o X X)X [, Xl 200 X[, Xp), X, x4y
h=11[=1

=1

and the lemma is thus proved. [J
The following proposition is a consequence of the previous lemmas.

Proposition 4.4.  The restriction

2
dll,3|Hz‘u(l)m(n)7W(n)) : H27a(t)m(n)’ W(I’l)) — H, (r)m(n), W(I’l)® )

is an injection. Moreover, Bj o I, o dl1,3 : Hp (ym(n), W(n)) — H>(ym(n), W(n)) coincides
with the map my - Hy(ym(n), W(n)) — Ha o(ym(n), W(n)) induced by the canonical projec-
tion W(n)®? — A2W (n), where L is the map defined in Theorem 3.16.

Proof- 1t suffices to prove the second statement, since the latter is a direct conse-
quence of the former.

The fact that Bj is surjective implies that H,(ym(n), W(n)) is generated as a k-
module by the images under B of the cycles given in Lemma 4.2. First, the cycles corre-
sponding to the V(n)-type component belong to the symmetric part H> ;(ym(n), W(n))
and they vanish when we apply d', ; to them, since d11_3 corresponds to the composition
of the map given by ' '

n

(4'6) Z[xlvxj] ® Xj = Zn: ([[[xlﬂijxp]’xp] ® Xj — 2[[[x17x.i]7xp]7xj] ® Xp

J=1 J:p=1

+ [[[xlvijxj]vxP] ® x[’)

n

= 2 s xp); s 1] ® x5 = 2{[x1, X1, [, 7] @ ) = 0

J.p=1

and taking the class in 1%/13 ~ W(n)®2 . Notice that we have used the Jacobi identity and
the Yang—Mills relations.

Second, the cycles of the A’V (n)-type component belong to H, ,(ym(n), W(n)). In
order to obtain the image under dll,S of a representative of this component, we see that
d!, 5 is induced by the class in 12/1° of
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(47) 22 Py X ] ® Xiggy

U€A3

= Z Z([Hxlg() xla( )] xp]vxp] ® xia(}) - 2[[[xia(l)7xia( )] xp] xlg( )] ® Xp

ge Az p=1

+ [[[xlr( 1) Xy )] xl};(s)]?xp] ® xp)

= Z 2(2[[)61}(” XP] [xlr H ® Xigay — [[xia(])’xia( )] [xpvxla H ® xp)
= Z Z 8(‘7>([xia(1)’xia(z>] A [xia(swxp] ® Xp + [xig(l)’xp] A [xia(z)’xp] ® Xia(3))’

where we have again used the Jacobi identity and the Yang Mills relations. By Lemma 4.2,
we conclude that Bj o , od!, ; applied to Y [x;,,Xi,, ] ® x;, is the identity.

0’6&3

Since the image under B] of the representatives of the A’V (n)-type component
vanishes, it is not necessary to consider it.

Finally, we shall prove that Bj o od! 13° Bjo X0, 1< ") ma0Bjo xg/fl(") In order
to do so, it suffices to prove the previous 1dent1ty only for the case of cycles
w®[x,-,xj] e Hy(V(n), W(n )®2), with w = x;, -+ x;[x,,x,]. Taking into account that

dl);0Bjox 3:1 " is given by the class in 12/I3 of the map that sends w ® [x;, x,] to

=1
= Dy Dy [y [ 5 [ e ] 1T @ )
+ by Dy s i e [y xgl] - 1T @ i
= Doy Dy [y [ - [ s ] 1T @
= e, (g, iy [ - D s Xl T Doy o, o6 6 5, 1] D] @ 231),

we see that d11,3 oBjo Xé{f")(w ® [xi, x;]) is

n r
48 3 (2 St - [0 X} s - D g]] ®
N N
=]
— X Xjp [[xl7xi/1]’xih+l s X, [XP’XZIH ® xj)
N
Ip=1

= 2xi X, [[x1, Xp ), [X2, Xp]] @ X5 4 25205, - X3, [X0, Xp ], [X0, %] © X

+ 2[[x, 1], xixiy - X4, [Xp, Xg]] @ X0 — 2[ [, X1], X3, - X, [, Xg]] @ X

— b )5 % 5] @ x;>’
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where we have used the identity (4.2) and the following equality:

20, e, Xy Xy -+ [ 65 )] - 1T @ e =[xty g Dy [ - (63, [, Xl - 111 @ 1
— 20, [xz, x5, (X - oo [ (X0, X)) - )] ®
+ Doy X, 5 D - [ e Xl - T @ 20
= 2[[x;, x1], [xi, [Xiys - - [Xi, [%ps Xg)] - ])] @ X4
= 2[oxi, 1], x5, i - iy [0, X[ 1T @ X
= [, [P, 250, i - [ [, Xl - - 1] @ i

We may rewrite dl1,3 oBjo xg’l f")(w ® [xi, x;]) given in (4.8) as the sum of a coboundary

E (dCE( [[xlvxi]7xi1 o 'xir[xmxt]]] & X AN Xj — 2[[xl7xj]7xi1 o 'xi»-[xIHXQH @ X /\xi)
=1

dCE(Z XXy w e Xy Hxl, xih]? Xippr =7 X, [xp7 xq“ ® X A xj)

# 20E 3, 05, Loyl] © 31 )
in C; (V' (n), W(n)®*) and a cycle in Ci (ym(n), W (n)®?)

Z (_2[36_/[)617 xi]v Xiy = X, [xPa xq” & x; + 2[xl'[xlv xj]v Xiy -+ Xi, [xP7 qu & x;
=1

- x;[[x,-,xj],xl-] o 'xir[xp’xq]] @ x; + 2[[xlaxi]7xi1 T X, [xpvxq“ ® [X],Xj}

R
+2 E X1 Xiy e Xy [[X[, xih]v Xiper =" Xy [xpv xq“ ® [xi7 x/]
h=1

[ og] -2 ] @ ]+ 2 -6, [ ) [ ) ® [xi,xj]).

Using the description of I, given in Remark 3.18, we get that
Lo dll.& oBjo xgjll(n)(w ® [xi, X))

is the class of the cycle in Cy (¥ (n), W(n)®2) given by

(4.9) 12(2[)@[)61, %5, X+ - X, X, g ]] @ 201 = 2[ox; 61, 23], Xy -+ X, [, 2 ]] @ i
=1
= xi[[xi, X7, i, - i, X, Xq]] @ 1),

which is equal to

M=

(4.10) ((Pealxei, x50, X, - - 3, [, X1 = (X3, X571, 203, =+ - 2, [, X]]) ® i)

=1
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and may be simplified to give the following expression for Lod!, ;0 Bjo xé{ 1("> (w® x4, xj]):
(4.11) S ((w A [, xj]x0 — wxg A [, x5]) @ ).
=1

The proposition is thus proved. []

Let us consider the Lie algebra b(n) = tym(n)/%*(tym(n)), where %2 (tym(n)) is
the second step of the lower central series of tym(n). There is an isomorphism
bh(n) ~ W(n) ® A>W(n) as graded vector spaces. Besides, A*W(n)= 2 (h(n)) and
[,]: W(n) A W(n) — A*W(n) is a homogeneous isomorphism of degree 0. The Lie algebra
tym(n) being free, h(n) is a free nilpotent Lie algebra of nilpotency index equal to 2.

Since the adjoint action of nym(n) on tym(n) induces an action on the quotient
b(n), the graded vector space S2h(n) has a natural graded action of ym(n). We will denote
D(h(n)) the graded vector space (S*b(n)), .. Hence, D(h(n)) is provided with a graded

K ./ tom () . -
action of ym(n) such that tym(n) vanishes, and, in consequence, the graded action of
ym(n) on D(b(n)) in turn induces a graded action of V' (n) = ym(n)/tym(n) on D(h(n)).

If a, b € h(n), we shall denote by a o b the class of a ;b = (a @ b + b ® a)/2 € S*h(n)
in D(B(n)). In this case,

Xi.(aob) =[x;,alob+ao|x; bl
Proposition 4.5. There is a short exact sequence of graded S(V(n))-modules
0 — AW (n) 2 D(b(m)) L s2w(n) — 0,

where f is induced by the natural projection of S*t(n) — S*W (n) and o is given by

W1 AW AW3 > W1 0 [wa, w3,
Jfor wi, wa, w3 € W(n).
Proof. We know that h(n) ~ W(n) @ A*W (n) as graded vector spaces. Therefore,
D(b(n)) is a quotient of S2h(n) ~ S?W(n) @ (W(n) @ A*W(n)) ® S*?A>W(n) (isomor-

phism of graded vector spaces).

However, the last direct summand belongs to tym(n).S*h(n). This follows from the
fact that, given v,v’, w,w’ € W(n), then

v.(wo [v',w']) = [v,w] o [v!,w] + Wo v, [v),w]] = [v,w] o [v/, W],

since [, [v/, w']] € €*(tym(n)). Also, by degree reasons, we see that the subset of D(b(n))
defined by the classes of the elements of the graded vector space

W(n) @ A°W(n) < S*h(n)

is in fact a graded S(V(n))-submodule of D(h(n)).
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Since tym(n) is a free Lie algebra generated by W (n), it is clear by an internal
weight argument that S>W(n) N tym(n).S?h(n) = 0. As a consequence, the projection
p:D(b(n)) — S>W(n) is a k-linear epimorphism. It is also homogeneous S(¥ (n))-linear
of degree 0, for the classes in D(I)(n)) of the elements of W (n) ® A*W(n) < S?b(n) form
a graded S(V(n))-module and p is the natural projection given by the quotient by this sub-
module.

On the other hand, given v ®, [w, w'] in the component W (n) ® AW (n) < S*h(n), it
turns out that

v @ [, W'l = -0 @ W, w] = —w' & [w,v] +w.(v ®w).

Therefore, the map o is well-defined, and it is readily verified to be S(V (n))-linear. Fur-
thermore, Im(x) coincides with the collection of classes in D(l(n)) of the elements in
W(n) ® A>W(n) < S*h(n). The injectivity of o follows from the fact that tym(n) is a free
Lie algebra generated by W (n). [

From now on, we shall identify A’ (n) with the image of o in D(b(n)). Moreover,
by the previous proposition, we will not write the bars denoting class for the elements of
W (n), and hence, we shall often write w; o [w, w3] € A’ W (n) instead of wy A wy A ws.

The previous short exact sequence implies that there exists a map in homology of the
form

(4.12) 0 Hy(V(n), S?W(n)) — Ho(V(n), A*W(n)),

which by the Snake Lemma is induced by
(4.13) Sowi @ Wi @ x; = 3 (pi(wi) o i + pi(w) o wi),
i=1 i=1

where we have used the notation given in (3.2), then:

Remark 4.6. The map ¢ is naturally obtained in the following way. From the short
exact sequence of ym(n)-modules given by

(4.14) 0— Wn)®* = I1/I° - W(n) — 0,
where I = ker(&ym(s)), We obtain the long exact sequence in homology

- — H, (t)m(n), W(n)®2) — H, (I)m(n),I/IS)

— Hy(ym(n), W(n)) — Hy_y (ym(n), W(m)®) — -

It is clear that d!, 5 coincides with the map H(ym(n), W(n)) — Hy(ym(n), W (n)®?) in
the long exact sequence. By Remark 3.15 and the functoriality of the Hochschild—Serre
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spectral sequence, there are maps between the long exact sequences (3.19) for X = W (n)®?,
X =1I/I° and X = W(n) in the obvious way, which could be represented as a bicomplex.
In particular, there is a map H, (V (n), W(n)®2) — Hoy(V(n), W(n)®3). It induces thus a
morphism H; (V' (n), S?W (n)) — Ho(V (n), A’ W (n)), which coincides with 5. [

On the other hand, the restriction of the map
B, : Hy(V (n), W(n)®3) — Hy(ym(n), W(n)®2)

of the exact sequence of Theorem 3.16 to Hoy(V(n), A3 W (n)) is induced by (see Remark
3.18)

(4.15)  wiAwWL AW = W AW @ W3 + W Aws @ Wi + w3 Awp ® wy.

Proposition 4.7. If 5 : H\(V(n), S?W(n)) — Ho(V(n), A’ W (n)) is the map (4.12),
the following diagram is commutative:

H, (V(n), S2W(n)) —— Hy(V(n), A*W(n))

dl

Hy(ym(n), W(n)) —= Hy(ym(n), W(n)®?).

Proof. 1t is clear from the expressions of the maps given by (4.13), (4.15), (4.11),
(4.6), (4.7) and Lemma 4.2. []

Proposition 4.8.  The restriction of B} to H,(V (n),S*W (n)) has kernel isomorphic to
A’V (n) and the restriction of B, to HO(V(n ), AP W (n (n)) is injective.

Proof.  Let us first show that Ker(Bi|y, (. s2v(n) = A’V (n). Lemma 4.2 tells us
that A>V(n) is included in Ker(B}). Furthermore the expressmn of the cycles in Proposi-
tion 3.26 implies that A°V (n) < H,(V (n), S? W(n)).

On the other hand, by the long exact sequence of Theorem 3.16, Ker(B}) = Im(S]).
Using the same theorem, we derive that Sj is injective and Hs(V(n), W(n)) ~ A’V (n), so
Ker(B]) ~ A’V (n). Therefore, the restriction of the morphism Bj to H; (V' (n), S>W (n))
has kernel A’V (n).

Let us now prove that the map Bs| Ho(V(n), AW (ny) 18 INjective. On the one hand, the
exact sequence of Theorem 3.16 tells us that Ker(B,) = Im(S») = S (Ha (V (n), W (1n)®?)).
By the same theorem, H, (V' (n), W(n)®2) ~ A®V(n). In fact, using the same ideas explained
in Proposition 3.19, the cycles

{ > 8(0)[xi6(]),xig<2>] ® [x,g s Xiys } ® Xi5) AXiyg P L S <y < i3 <y <is <ig = n}

0'€§6

form a basis of the homology group H,(V (n), W(n)®2). This is due to the fact that, by
the double complex (3.16), Remark 3.18 and standard computations on the second term
Bereitgestellt von | Universitaetsbibliothek Bielefeld (Universitaetsbibliothek Bielefeld)

Angemeldet | 172.16.1.226
Heruntergeladen am | 28.04.12 15:32
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of a spectral sequence, the map A°V(n) = He(V (n),k) — Hx(V (n), W(n)®?) is induced
by

Xip AN Xiy N Xig N Xijg N Xijs N Xjg = ZS 8(0) [xia(l)’xio(z)] ® [xig(3)’xia(4)] ® Xigsy N Xige)»
gE ¢

where the last element is a cycle in W(n)®2 ® A*V (n). Similar arguments as those used for
the map S in Proposition 3.19 assure that the image under the morphism S, of an element
of this basis is the class of the cycle

Z 8(‘7) [xigu)’xfa(z)] ® [xia(3)7xia(4)] ® [xia(S)’xia(é)]'
ge §6
Hence, Im(S>) < Ho(V (n), S*W (n)). Taking into account that S*W (n) n A’ W (n) = {0},
it turns out that the kernel of the map B;| Ho(V(n), AW (ny) Vanishes. [

Proposition 4.9.  The kernel of the map 5 : Hy(V (n), S?W (n)) — Ho(V(n), A’ W (n))
given in (4.13) is V (n)[—4] @ A’V (n).

Proof. Tt is clear from Propositions 4.7 and 4.8 that A’V (n) < Ker(d). Also, the
expression for the cycles of V' (n) given in Lemma 4.2 and the expression for J given in
(4.13) tell us that V(n)[—4] < Ker(d). The change of degree comes from the fact that, in
Lemma 4.2, we have studied the homology of M (n). The elements given by the cycles of
(A*V(n))[—2] belong to H;(V(n), A*W(n)) and therefore are not in the kernel of the
map J.

In consequence, it suffices to prove that J is injective if restricted to the subspace
spanned by the generic elements of Hy (¥ (n), S*W (n)), which is rather tedious. We shall
anyway include the proof of this fact because it is quite non-evident.

Since ¢ is a homogeneous morphism of degree 0, it suffices to restrict to homogeneous
generic elements.

Now, we may consider a generic element of H;(V (n), S*>W (n)) which we shall as-
sume to be the homology class of a k-linear combination of cycles of the form

(4.16) lé(([xi» il @ X[, Xq] — [xi, X5] @ X7[Xp, Xg]x1) ® X1

+ (X[, xq] @ [xi, X131 — Xiloxp, xg )31 ® [xi1, X7]) @ x1),
for |i| = 0, and which is obtained from the map x(j)‘ﬁ(") applied to the element
417) (5] @5 ] - 0] © i) © (v © 1~ 1@%) @13
I=1

in Co(V(n), A°W(n)) ® C(V(n), (S(V(n))/<q>)®2). We shall denote
¢ = [xi1, 5] ® X;[xp, Xg] = X;lxp, %] ® [xi; ;).

We notice that the generic elements (4.16) have degree greater than or equal to 6.
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Note that ng 1(") “interchanges parity”” between
Hy(V(n), W(n)®2) and H,(V(n), W(n)®2),
i.e. it sends Ho(V (n), A*W(n)) to Hy(V(n),S*W(n)) and Hy(V (n), S>W (n)) to

H(V(n), AW (n)).
Let ¢ be the cycle given by (4.16) and ¢ its homology class. If we use the identity given
n (4.13), then J(¢) is given by the cycle

(4.18) lil(plz([Xi’ xj1x1) © X7{xp, Xq] + [xi, X7]x1 0 py (% ( xp, xg])

- p,z([x,-, x;]) © X7[xp, Xqloxr — [x1, x;) 0 py (% [(x ixp, Xqlx1)
+ 7 (X715 X)) © [Xi, X710 + X713, ] © pF (30, x7]x1)
_,01( ,[xpvxq]xl) [X,-,Xj] - )_Cf[xpﬂxq]xl Oplz([xi7xj]>)>

and we denote by a} and b} the first and second summand (without signs), respectively, of
the j-th line in the previous equation. Since

ay — ay = (p} ([, xj1x0) + p (i, 257))x1) © Xilxp, xg] = di™ (07 ([xi, 7)) © X3, xg) @ 30),

by — by = —[xi, 55 o (p7 (%50, Xg])31 + p7 (515, xg1x0)) + i ([xi, X5] © pf (%[, X)) ® 1),
aé - azlt = _(plz(x{[xwxq]xl) +p12()_cf[xp7xq]xl)) [xlvxj] + dCE(pl (x [xp’xq]) o [xhx./'] ® x;),
by — by = Xi{xp, xg] 0 (p7 ([0, x:1x0) + p7 (i, 30 x1) = di™" (%50, 2] © p7 ([0, 37]) ® 1),

it turns out that J(¢) is the class of the cycle

(4.19) [f:l((p,z([xf, x1x0) + pif([xi, x1))x1) © X5{x, %)

= [xi, x7] 0 (p7 (R, xq))xt + p7 (Riloxp, xg]x1))
— (P7 (Xilxp, xg)x0) + pif (%3, X])31) © 367, )]
+Xi0p, xg) 0 (7 (b x)x0) + pi (3, x7])x0) )
Using the identity (4.1), we may rewrite the cycle (4.19) as follows:
(4.20) A([xi x;]) © Xilxp, Xg] — [xi; x;] 0 A(X7[Xp, X))
= A(X;[xp, X)) © [xi x3] + X%, Xg] © A([xi, X;])
= 2(A([x1, %)) 0 X7{xp, xg] = [xi, ] 0 A(F7[xp, x,])).-

Equality (4.4) tells us that
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n

(@21) oo (Z[xz, ot e - [ P ] .m)

=1
_ r n 2 2
=[x )0 (A<x;[xp,xq]> 3 S [xqu]))

= [xi, x;] 0 A(X7]xp, X,])

—d* ([x,-,xj]xl 0 3 3 i Xiy P (i, e Xi [, X)) ® x;)

h=1I=

—_

r n
—dfE ([x,-,xj] 0 30 Xy - Xy i (Xiy X4 [, X)) ® x1>,
h=1i=1

so d(¢) is given by the cycle

=1

~

(4.22) 2 (2 2 [t xil, [x1, x5]] 0 X3, X

= Ds]© (S0 i s ] m))

I=1

Making use of (4.2) of Lemma 4.3 in the previous equation, we obtain that
*1 *2

(4.23) 4 Znil (( (s il e, X111 0 X, x¢q) = [xis ) © X511, %), [, xg]])

~

*3
A

:
S e ] 0 6 [0y T 6 ] )
h=1

We shall denote this cycle by ¢’.
Let us now consider the k-linear map
ECNW(n) — APV (n) @ AW (n),
given by
f([xil ) le]zl A [xl'z’ sz]Z2 A [xi3’ xj3]Z3) =2 (O)xil N Xjy ® [xiz’ sz]Z2 A [xi3’ xj3]Z3
+ ZZ(O)Xiz A Xj, @ [xiw xj3]Z3 A [xil ) le}zl
+23 (O)Xis A Xjy @ [xil ) le]zl A [xi27 ij}ZQ,
for z; € S(V(n)), i=1,2,3.

It is readily verified that, if A>¥(n) is provided with the trivial action of S (V(n)), &
is an S(V(n))-linear and so(n)-equivariant map, so it induces a morphism between the
homology groups

E:Hy(V(n), AW (n)) — Ho(V(n),A’V(n) @ A*W(n)) = AV (n) @ Ho(V (n), A>W(n)).
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We shall prove that £(5(¢)) is the class of the cycle

(4.24)

135

2 > X AX ® (XgAX).C

1<s<t=n

+ 207,07 A X ® [x1, xi] A X1, Xj] = 017, 0Xi A @ [0, %] A [X1, X))
=1 '

where (x, Ax,).¢ denotes the action of x, Ax, € A’V (n) ~ so(n) on ¢ (see [12], §20.1

n c B b
(20.4)). The expression (4.24) does not depend on the choice of ¢ since the differential of
the Chevalley—Eilenberg complex is so(n)-equivariant

Let us compute & (5(5)). In order to do so, it suffices to apply & to the cycle ¢’ given
in (4.23). Then &(¢’) is four times the class of the cycle

n

(1)
Z . . X

(x;/\x, ® [x1, X;] AX;[Xp, xg] 4 X1 A xj @ X;[Xp, xg] Ax1, xi] + 07 0% A Xg @ 1, Xi] A X1, )]
=1

&(2)
— (xi Ax; @ X5([x7, xp) A

[x1, X)) + X1 A Xg ® [ X3, X7] A X5[x7, ] + X1 A X, @ XX, Xy A [, X5])
*1

&(*3), first part

— hz:l Xi /\)Cj @ X1 X+ ([xl,xih] /\xi/7+1 .. 'xr[xpqu])
— v
&(3), second part
.
- 121 X A Xy @ XXy iy Xp[Xp, Xg] A [, 3] >7
h=

where we have used that

n n
Z Xp AXg @ [xi’ xj] AN XXy = Xy [X[, xir] Z AXq @ [X[, xj] A Xiy Xi, [xl’ [xlv xl;]] =0
Since *; is evidently a boundary and % is a boundary if |i| > 0, thus &(¢’) is equiv-
alent to

25"

(x; A X Q X1, X] A XX, Xg] — X1 A X @ [X1, Xi] A XXy, X
=1

+0j7,0%p A Xq @ [X1,xi] A X1, X5] = 0y o Xi A X; @ [x1, Xp] A [x1, 4]

+ X1 A Xp @ [Xi, X)) A XX, X)) — X1 A Xg @[3, X7] A XX, X))

+ > x1 A X, ® [x, X5 A XX,

e )Aci/, . x},[xpjxq])
h=1
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or also to
n
23 (x; AXi @ (X1 A X7). X0, X5 A X[, Xg) + X1 AX; @ (X7 A XG).[X7, X7] A XX, X
=1

+ X1 A Xp @ [X5, X] A X7 (X7 A Xp)[Xp, Xg] + X1 A Xy @ [X3, 7] A X521 A Xg)[Xp, Xg]

+017.0%p A Xq ® [X1,xi] A 31, X5] = 67 X A X @ [0, Xp] A [X1, ]

3 A, © ] A (6 ) (59
h=1

which may be further simplified to give

2 > xAx ® (xgAX).C

1<s<t=n
n

+ 220705 A xg @ [X1,xi] A 31, X5] = xi A2 @ [x1, %] A 1, X))
=1

If |i| > 0, i.e. ¢ has degree strictly greater than 4, then

E(6(0) =2 > xAx® (xAx).C.
1<s<t<n
In this case, if ¢ € Ker(d), then, since {x; A X}, <., <, is @ basis of A*V (n), it must be that
(xsAx;).c =0, forall 1 <5 < ¢ =<n. This in turn implies that ¢ belongs to the trivial repre-
sentation of so(n) in Ho(V(n), W(n)®2). However, Corollary 3.9 tells us that this is not
possible.

If |i] = 0, ¢ has degree 4 and

(4.25) (@) =2 > xAxi® (xyAx,).C

1<s<t<n
n
+ 22 (00 A xq @ [x1,2) A [, 5] — xi A X5 @ [x1, Xp] A [, xg]).
=1

If n=3, from Ho4(V(n),A’W(n)) = Ker(ngfl(”)), we need not consider this case (see
Remark 3.28). '

Let us thus assume that # > 4 and that ¢ is any non-trivial element of an isotypic com-
ponent in Hy(V (n), A? W (n)) different from (the ones appearing in) A’V (n). In this case,
since both xé‘ﬂ(") and ¢ are so(n)-equivariant, 5(x3{ ) (¢)) vanishes if and only if § o ng )
vanishes on the complete isotypic component to which ¢ belongs. In this case, we fix

ler,e2] Aler,eq] € Top, if n=4,
¢=<lei,ed Aler,es] €Tapyip,y,  ifn=5,
ler,ex] nler,es] € Topyiryir,, fnz7,

where {e,...,e,} is a basis of V' (n) for which the quadratic form of V' (n) is polarized (see
[12], §18.1). We may choose this basis as follows. Let m = [n/2] be the integral part of n/2.
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If n is even, we define ¢; = (x; + ix_,~+m)/\/§ and ej,, = (x; — ixj+n1)/\/§, for 1 <j<m
whereas, if n is odd, we also define e, = x;,.

We have intentionally omitted the case n =6 in the previous list since we
should consider two different isotypic components: ¢ = [ey, e2] A e1,e3] € T'ap 41,42, and
¢=[er,ex] Aler,es] € Toryir, 1y

We shall see that &(d(x, M ¢))) does not vanish in any case. We start recalling
the following elementary fact Consider a k-vector space V' of finite dimension n,
pe(V*®V*)" a bilinear map on V* and a basis {vy,...,v,} SV, with dual basis
{v{,...,v;} £ V*. By the canonical 1dent1ﬁcat10n (V*®V*) "~V ®V, we see that the
expression

Z d(v; )Uz e ye?

i,j=1

identifies with ¢, so it is independent of the choice of the basis. When V' is provided with
a nondegenerate symmetric bilinear form Q: V®2 — k, we may consider ¢ = Q~', the
inverse form of Q (i.e. the one obtained by the condition that the map v — Q(v, —) from V
to V* is an isometry).

We shall apply the previous fact in order to rewrite equation (4.25) as follows. First,

le®xl Z(el®el+m+el+m®el) +5n 2m, len®en;
=1

where we have used ¢ equal to the inverse of the form on V(n). Also, the nondegenerate
symmetric form K(x; A X;, Xy A Xpr) = 05,501 ¢+ — 05,40, ¢ 18 invariant, so it is a Killing form

on AV (n), coinciding with — < tr under the canonical identification A%V () ~ so(n) (see
[12], §20.1, (20.4)). Hence,

S (xAx) @ (xsax) = S K ' ((esne) (g nen))(esne) @ (ey Aep).
1<s<t=<n 1<s<t=n
1<s'<t' <n
By the previous considerations, we may rewrite the expression (4.25) for &(6 (xgl 1(”)(5))),
where ¢ = [e1,e2] Ae1,en] and h e {3,4,5,6} is given according to the previous choices of
cycles. There is one term of the form (el A e2) ® ap» in the cycle representing the homology
M)
class £(6(xg " (¢))), where

a2 = (e14m A expm)([er, €2 A e, en]) — Emj([elv e1] Alerrm, en] + [erms er] A ler, ex])

- 5n72m, 1 [eIU 61] A [el’h eh]

= [e1, e14m| A [e1,en] — [e1, 2] Aerim, en] — [erim, 2] Aler, e

m

— > (ler,e1] A [er4m, en] + [e1xm, e1] A ler, en]) — On—am. 1]en, €1] A [en, en],
=1
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so it does not vanish. Since there are no boundaries in this degree, &(d(x, | "(&))) is not
zero, and a fortiori §(x 374 1(”)(5)) does not vanish. The proposition is thus proved. []

Let us now come back to the study of the spectral sequence of the previous section.

Proposition 4.10.  The kernel of the differential d'| ; is isomorphic to V (n)[—4], with
basis given in Lemma 4.2.

Proof. By Propositions 4.7, 4.8 and 4.9, we see that Ker(d' ~ V(n)|-4]. O
f. By Prop 1,3

5. Computation of HH'(YM(n))

In this section we shall finally compute the group of outer derivations HH'(YM(n)),
for n = 3. We recall that, since the beginning of the previous section, we have assumed that
n = 3, unless we say the contrary.

We begin by describing some derivations of YM(n).
Proposition 5.1.  There is a homogeneous k-linear monomorphism of degree 0:
k@ V)2 @A (V(n)l]) — HH'(YM(n)).

Proof.  We shall consider the following collection of plain derivations of YM(n)
(in the non-graded sense). They are homogeneous k-linear maps certain of degree, but sat-
isfying the usual Jacobi identity (not the graded version).

In the first place, the homogeneous morphism of degree 0 given by
dey : YM(n) — YM(n),
zZ 1 |z)z,

where z € YM(n) is homogeneous of usual degree |z|, is a derivation of YM(n), which we
call the Eulerian derivation.

Next, we define the derivations d;, i = 1,...,n, of degree —1 induced by the mor-
phisms of the same name

di: V(n) — T(V(n)),
Xj '_>5i,j'

Finally, since so(n) ~ A’V (n) acts on YM(n) by derivations of degree 0, we immedi-
ately obtain a homogeneous map of degree 0 from Az(V(n) [1]) to Der(YM(n)).

It is clear that the previous derivations induce a homogeneous k-linear monomor-
phism of degree 0:

(5.1) k@ V(n)2] ®A*(V(n)[1]) — Der(YM(n)).
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To prove this, by degree reasons, it is only necessary to show that the set of derivations
induced by the standard basis of so(n) and the Eulerian derivation is linearly independent,
which is direct.

The map of the proposition is then the composition of the morphism (5.1) with the
canonical projection

Der(YM(n)) — Der(YM(n))/Innder(YM(n)) ~ HH'(YM(n)).

Since the inner derivations have degree greater than or equal to 1, except for the zero
derivation, it turns out that the previous composition is also injective. The proposition is
thus proved. [

We devote the rest of this section to prove that the monomorphism of Proposition 5.1
is in fact an isomorphism. This will be achieved by making use of the spectral sequence
associated to a filtration of S(ym(n)).

First, the isomorphism of equivariant YM (n)-modules YM(n)*! ~ § (ym(n)) implies
that

HH'(YM(n)) ~ H' (ym(n), YM(n)) ~ H' (ym(n), S(ym(n)))
= @ H'(ym(n), S (ym(n))).

iENO

Let I be the ideal of S(ym(n)) generated by tym(n). We deduce that 7 is also an equi-
variant YM(n)-module, for tym(n) is an equivariant YM(n)-module. Therefore, we may
consider the decreasing filtration {F*S(ym(n))},_, of equivariant YM(n)-modules of
S(ym(n)) given by

ec/

’ L, it pz1,
FPS(ym(n)) = {S(r)m(n)), if p=<0.

We see that F*S(ym(n)) is exhaustive and Hausdorff. Given i € N, it induces a decreasing
filtration {F*S’(ym(n))},_, of pm(n)-modules on S’(ym(n)), which also becomes exhaus-
tive and Hausdorff. For each p = 0, there is a natural isomorphism of equivariant YM(n)-
modules

FPS'(ym(n))/FPH S (ym(n)) ~ SV (n) ® SP (tym(n)),

where the action of ym(n) on S*?V(n) is trivial and the action of so(n) on each factor is
the obvious one.

This filtration provides a collection of spectral sequences ‘ES® with
(5.2) 'EPT = HP (ym(n), STV (n) @ S? (tym(n))),

for all i e Ny, where by definition S7(—) =0, whenever ¢ < 0. Each of these spectral
sequences is bounded and, hence, convergent. The complete spectral sequence

E.’. — @ iE.’.
* ie No *
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is therefore convergent. We remark that the collection of spectral sequences 'E?®, i € Ny,
and its direct sum E?* are considered in the category of equivariant YM (n)-modules.

Since the isomorphism of equivariant YM(n)-modules S(tym(n)) ~ % (tt)m(n))ad

preserves the internal degree, it induces an isomorphism S™ (tr)m(n)) ~ Ker(&pm(n) ), and,
as a consequence,

H, (ym(n), Ker(epmem)) =~ He(ym(n), S* (tym(n))) = S}N H,(ym(n),S" (tym(n))).
By Theorem 4.1, H3 (ymi(n), Ker(ym(n)) = 0, which yields that
Hs(ym(n), S’ (tym(n))) =0, forallie N.
On the other hand, by the same theorem,
H, (ym(n), Ker(eymm))) ~ Ha(ym(n), tym(n)) ~ V(n)[—4],
so it turns out that H (ym(n), S’ (tym(n))) = 0, for all i > 2.

Taking into account the Poincaré duality of the Yang—Mills algebra, we obtain the
following result.

Proposition 5.2.  The homology groups
H°(ym(n), S (tym(n))) and H'(ym(n), S’ (tym(n)))

vanish for i = 1 and for i = 2, respectively. There is a homogeneous isomorphism of so(n)-
modules of degree 0 of the form H' (ym(n), tym(n)) ~ H' (ym(n), k) ~ V(n).

From the previous proposition and recalling that
'EL¢ ~ FPH' (ym(n), " (ym(n))) /FP H' (ym(n), S'(ym(n))),

we conclude that H'(ym(n), S’(ym(n))) is a direct sum (as a graded so(n)-module) of a
subquotient of 'E,"" and a subquotient of 'Ey"'.

q E*
0 ) 0 0 0 0 0
d?‘z,
0 —0 y 0 0 0 0
dlo‘l dlll
0 — e *>. 0 0 0
0,0 1,0 2.0
d, d, di p
0 ° * o . 5, 0
g
0 0 0 0 o e 0

Figure 2. First step E;"° of the spectral sequence. The dotted lines indicate the limits wherein the spectral
sequence is concentrated.
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We shall begin by analyzing iEzl’O. In order to do so, it is necessary to compute the
kernel of ‘d;"® and the image of ‘d"’, for i € Ny.

First, making use of the identifications
E)? = H(ym(n), SV (n)) ~ STV (n)
and
£} = H' (ym(n), STV (n) @ tym(n)) ~ SV (n) @ V(n)

given in Proposition 5.2, it is clear that idlo ** may be identified with the de Rham differen-
tial dJ; restricted to the i-th component of the symmetric algebra S(V(n)), which in gen-
eral is given by

dhe 2 STV (n) @ APV (n) — STV (n) @ ATV (n),

(5.3) n
Z@xi A ANy, = 30 0(2) @ X AXy A AN,
j=1

The following lemmas will be used in the forthcoming study of the spectral sequence
we are dealing with.

Lemma 5.3. The image of the differential
2d}0 2E = H (ym(n), V(n) @ tym(n)) — 2EP° = H? (ym(n), S*(tym(n)))

is canonically isomorphic to A’V (n). In fact, the image of 2dll’o coincides with the image of
the linear monomorphism

(5.4) 7: A*V(n) — H?(ym(n), S*(tym(n)))
given by the composition of the map 1 : A*V (n) — Z?2 (YM(n), S? (tljm(n))) defined by
1(xi A Xj) = $1(4[xi,x1}[[x;,xp}, xi] @ xp — A[[xi, %], xi] [x7, x1] ® xp
pi=

= 2, 2[5, X1, 2] @ xp + 2[[x3, 3], X ][, 1] @ ;)
and the canonical projection Z*(YM(n), S? (tym(n))) — H*(ym(n), S*(tym(n))).

Proof. By Proposition 5.2, H'(ym(n), V(n) ® tym(n)) ~ ¥ (n)®*. Furthermore,
by the description of a basis of cocycles of the cohomology group H 1(t)m(n),tt)m(n))
given in the paragraph preceding Theorem 4.1, we see that the homology class in
H' (ym(n), V(n) ® tym(n)) corresponding to x; ® x; € ¥ (1n)®* is that of the cocycle

lilxl- ® [, x1] ® x1 € V(1) ® C'(YM(n), tym(n)),

which will be denoted by X; ;. Therefore, we have that zdll’o()‘ci’ ;) 1s the class of the cocycle
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5% (@l o 61, 5) @ 31 = 2l ) vl ] @,

= 2[xi, x4 {5, xi1], %] @ Xp + [xi, x1)[[35, xi], Xp] @ xp A [[xi3, x1], 2], x1] @ ;)

n

= El(z[xi, Xp][[x.ia x1]7x17] ® x; — 2][x;, xp}, X/ [xj,xl] ® X,

- [xiaxl][[xjaxl]axp] ® Xp + Hxl"xl}v XP} [xj?xl] ® Xp)

, ::1(2[x,-, [, xp), %1 ® X, — 2[[xs, %], x1] [x7, X1] @ X,

— [xi, xa)[[x7, ], Xp) @ x5 + ([, 1], %) [X5, X1) @ ).

It is readily verified that the previous identity vanishes if we take X;; = X; ; + X; ;, for all

i,j=1,...,n. On the other hand, if X', = X; ; — X s, 2d11’0()‘ci‘fj) is given by the cocycle

$1(4[Xn xi) (s %] 1] @ xp = A{[oxi, X, i[5, 0] @
pi=

= 20z, 2] [[x5, x1], %) @ X + 2[[xi, 3], Xp][X5, X1 @ x5).
Hence, 2dll’o()‘ci‘f ;) 1s the class of a cocycle of degree 8.

Also, 1 is injective, and we can see this as follows. Let us first consider the case n = 4.
Indeed, the fact that the map ¢ is a non-trivial so(n)-equivariant and that A?¥ () is irreduc-
ible implies that : is monomorphic. For the case n = 4 we proceed analogously, but taking
into account that A>V (n) ~ Tz, ® I'z, 7, and 1 does not vanish in any direct summand.

From the form of the complex C®(YM(n),S?(tym(n))), we see that the space
B?(YM(n), S*(tym(n))), of coboundaries of degree 8 is an epimorphic image of
S?(tym(n)), ~ S?(A*V(n)) under the so(n)-equivariant map d. It is not hard to prove
that the intersection between B*(YM(n), S?(tym(n))), and the image of : is trivial, so 7
is also injective. This can be deduced from arguments on isotypic components, which we
now explain. If # & 6, Remark 3.28 tells us that Im(z) ~ A?¥(n) is not an isotypic compo-
nent of S? (A2 V'(n)), which yields that the previous intersection is trivial. The case n = 6 is
analogous. []

Lemma 5.4. Let p: V(n)®* — A*V(n) be the canonical projection. The following
diagram is commutative:

idl.u
‘ : ‘
g g0

| |

H'(ym(n), SV (n) @ tym(n)) H?*(ym(n), SV (n) @ S*tym(n))

l = idgi» V(n) ®7J

. d° @idy(, ) idgioa
SV @ Vn) —2E, sy @ vn)®: 2

" ® .
S0P Sy () @ A2V (n).

Also, note that (idgi2y () ® p) o (dig ® idy () = djg.
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Proof. The second statement is direct. In order to prove the first statement of the
lemma, it suffices to restrict to the case that ¢ € H' (ym(n), S™™'V(n) ® tym(n)) is repre-

sented by

z® [xj,x1] ® xp,

M=

1

~
Il

where z = xj, -+~ x;, , € "'V (n). Notice that we have used the description of a basis of

cocycles of the cohomology group H'(ym(n),tym(n)) given in the last paragraph of the
proof of Theorem 4.1. Thus, idll’o(é) is the cohomology class of the cocycle

5 E 5], @ 6] v O
= 2, [l gl 2] - @ g, 1] @ X
= 2, 5], @ [l 5] @1
b v+ © by ) @,

X ijhvxl}axg} T X ® [X_]',X]] ® xg)7

which can also be rewritten as

lil ilar(z)(z[xr,xg] ® ija Xl]axg] ® x; — 2[[xr,xg],xl] X® [xj,xl] ® x4
— 20, X1 ® [[x7, 1], x,] ® xy + [, 1] ® [ 1], X,]) ® x,

+ [, x1), x4] @ [x5, x1] ® x,) = é@r(z) ® 1(x, A Xj).

The lemma is then proved. []

As a direct consequence of the previous lemmas and the fact that Hjy (S(V(n))) =0
(see [34], Corollary 9.9.3), we obtain the following proposition.

Proposition 5.5. The diagram

,'dl,O
1 i2,0
El

id" 1,0
i il
E, —

iEilO

J/ ~ J/ ~ ids;,z V) ®II
SV(n) —S, S @ V() —R, SV (n) @ APV (n)

is commutative. Since Hjy (S(V(n))) = 0, this implies that iEzl’O =0, for all i € N.
By the proposition we conclude that "EZI’0 = 0 for i € Ny. Hence,

| .
H' (ym(n), S (ym(n)))
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is isomorphic (as graded so(n)-module) to a subquotient of iEg ! Since
iEg’l = Ker(idl()’l),
it will be convenient to make this map explicit.

Lemma 5.6. The image of the differential

Wl = H (gm(n), V(n) = TE = HP (ym(n), tyme(n)

n
is naturally isomorphic to S V(n) ~ S?V(n)/k.q, where § =" x; @ x;. In fact, the image
of ld coincides with the image of the linear monomorphism =!

(5.5) SV (1) — H?(ym(n), tym(n))

given by the composition of the map 1" : S3.V(n) — Z*(YM(n), tym(n)) defined as

rr

(X ®, X)) = i (=2[[x1; xp], x;] ® xp = 2[[x), Xp], x1] & x5)

p7l=1
and the canonical projection Z*(YM(n), tym(n)) — H?(ym(n), tym(n)).

Proof. By Proposition 5.2, H' (ym(n), V(n)) ~ ¥ (n)®*. Analogously to Lemma 5.3,
we find that if X; ; is the cohomology class of the cocycle x; ® x; € V(n) ® C'(YM(n), k),
then 1d (xl, ;) is the cohomology class of the cocycle

(5.6) 5 (=21 %), 7] ® X, + [, 3], %] @ x,)-

p=1

The Jacobi identity tells us that 1d0 1( x; /.) vanishes if x}'; is the cohomology class of the

cocycle x; ® x; — x; ® x; € V(n) ® C' (YM(n), k), for all i ,j=1,...,n. Moreover, by the
Yang-Mills relations (2.3), 'd;"' () = 0, with g = Z Xii-
=

On the other hand, if X iy, is the cohomology class of x; ® x; 4+ x; ® x; (for
1<i<j=<n), 1d10’1()_cf’ ;) is given by the cocycle

(57) z (=20l %], 5] ® x5 — 2005, 3], %] ® ).

Therefore, 1d{) ’l(y‘cl{ ;) 1s the class of a cocycle of degree 6. However, there are also coboun-
daries in this degree, which are of the form

(5.8) S anlla xb) %) ® X,

1<a<b=np=1
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Hence, we see that the cocycle (5.7) is equivalent to
(5.9) —4 Z}[[xi, %p), Xj] ® xp.
—

It is easily checked that i’ is injective, which follows from the fact that the map ¢’ is a
non-trivial so(n)-equivariant and that S2 V' (n) is an irreducible so(n)-module.

Considering the complex C*(YM(n), tym(n)), we see that the subspace
B*(YM(n), tym(n)),

spanned by the coboundaries of degree 6 is an epimorphic image of (tr)m(n)) W= A%V (n)
under the so(n)-equivariant map ds. It is not hard to prove that the intersection between
B*(YM(n), tym(n)) and the image of /' is trivial, since Im (1) ~ S, V'(n) is not an isotypic
component of A2 V' (n). This implies that 7’ is monomorphic. []

Lemma 5.7. If we denote by p': V(n)®2 — S2.V(n) the canonical projection, the
following diagram is commutative:

i 70,1
Idlo

iE{)’l iEll’l

H'(ym(n), SV (n)) H*(ym(n), SV (n) ® tym(n))

J{ = idS’.’l V(n) ®i,I
’

. d%, ®idy(, . idgi1p,)® .
SV @ V(n) ~=2, ity @ v =0 Sy (n) @ S2V (n).

Proof. It is enough to prove the lemma when ¢ e H'(ym(n), S’V (n)) is repre-
sented by z® x; € S’V (n) ® C'(YM(n), k), where z = x;, ---x; € S'V(n). If this is the
case, idl() ’1(5) is the cohomology class of the cocycle

i
1 h;(—zle - b ) 0] - x5 @ x4 2, - - [, x50 xa] - @ x)

M=

~
I

= Z Z al‘(z> ® (—2[[Xr,x1],x]'] + [[X,«, Xj],X[]) ®@x;. [
I=1r=1
The previous lemma implies the following result.
Proposition 5.8. The space iEg 1 vanishes for i = 3. Furthermore:

(1) OES 'Uis the vector space with basis given by the cohomology class of the cocycles
{x;:i=1,...,n}, where x; € V(n) = CI(YM(n),k),

(2) lEg 'Uis the vector space with basis given by the cohomology class of the cocycles

{Xi®x —x;®x;:1 §i<j§n}u{zn:x,~®x,-} < C'(YM(n), V(n)),
i=1
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146 Herscovich and Solotar, Hochschild and cyclic homology of Yang—Mills algebras

(3) ZES 'Vis the vector space with basis given by the cohomology class of the cocycles
n 1
{ijx,- ® Xx; —Ex,.z ®xj:i=1,... ,n} < C'(YM(n),S*V (n)).
i=1

Proof.  First, it is direct to prove that the collection of elements of C'(YM(n),k)
given in item (1) is indeed a basis of cocycles, since H'(YM(n),k) ~ V(n). On the other
hand, Lemma 5.6 says that Ker(la’l0 ' 1) is generated by the cocycles given in item (2).

Let i = 2. We consider

z= izj®xjeSiV(n) ® V(n)
=1

a representative of a cohomology class Z in ’E? '1 We notice that

(idsi—] V(n) ® p/) 9] (ng ® ldV(n)) <z:1 Zj ® Xj)
Jj=

= 2 0i(z) ®@x ®;x; € STV (n) ® S, V().
=1

Therefore, by Lemma 5.7, z € Ker(’dl0 ’1) if and only if the following conditions are satis-
fied:

(i) Onzj = —0jzp, for all h,j = 1,...,n such that h + j,
(ii) Opzp = 0jzj, forallh,j=1,...,n.

We shall first analyze the case i = 2. In order to do so, we shall assume that

n .
=y ai,nxlxm e S’V (n),
1

m,I=
where a,’; = aﬁu €k, forall/;m=1,... n. The previous conditions are respectively equiv-
alent to
(a) al’;m = —a}’m, forall j,[,m=1,...,nsuch that j & [,
(b) a!,, =al,, forall j,lm=1,.n

The first condition implies that, if j, /, m are all different, then

m _ J I om
_alvj = al’m = —aj_’m = aj,l’

so, it must be alj; ., = 0. Also, both conditions yield that, given j =+ /,

I
—djp =A==

We shall denote o = aj ,.
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Applying these considerations we may simplify the expression of z as follows:

= ¥ i @x=5(2 T dyvn @yt T ah,ai e +d o)
Jy,m=1 j=1 1<m<n 1=m=n
m=#j m#j

Z( > 20mXx @ Xp— > oc]x ® xj + oc]x ® xl>

_]:1 ]<m<n 1<m<n
m=j m=j
n n 1 )
= > 20, ijxn1®x,—§xj ® xm |,
m=1 j=1

where we have omitted the terms with a, w (> [, m all different) in the last member of the
first line, since they vanish. In consequence, we have proved that 2E is spanned by the
basis given in item (3).

We shall now show that iE?’l =0 for i = 3. This is a direct consequence of the
following auxiliary lemma.

Lemma5.9. Letn =3 andlet py,...,p, be homogeneous polynomials of degree i = 3
in k[xi,...,x,) which satisfy that

(I) Onp; = —0jpn, for all h, j =1,...,n such that h % j,
(IL) Oppn = Ojpj, forall h,j=1,...,n
Then, py =---= p, =0.

Proof.  We choose different elements ji, j», j3 € {1,...,n}. Applying condition (I),
it turns out that

aiza/ép./l - 5]'35_1'21”_1‘1 = _ai3af1p./2 = _ajl ajzpjz - 6.1'1 aizp./s = 6jzajlpj3 - _aizalép.il'

Therefore, 0;,0;,p;, = 0, if ji1, jo, j3 are all different. This in turn implies that

(5.10) Pj:an;+l 12 dzlah X!
h:i:]
for je{l,...,n}. Also, if ji, j» € {1,...,n} are two different elements, conditions (I) and

(IT) tell us that

5 P = ail ajlpjl = 5]-] a.1‘2pj2 = a]'zajl Pj, = _ajzajzpj]'

Hence, (3]2 Dy = (3 \pji> for all ja, j3 = ji. Using this identity in equation (5.10), we conclude

that

_ i—d..d
pji= a]x + X Zahdx Xn s
h=l1,...nd
h=0=]
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forall je{l,...,n}. If j %/,

0ip; = a/, ax! +2a L ox .

In particular, condition (I) says that af,’l =0, forall j,j/=1,...,nsuch that j + j', so

(5.11) Dj —a]x + > ah 2x’ 2x7.

1= n

h+j

We need to consider two cases: i >3 and i = 3. If i > 3, condition (I) also tells
us that a 2, =0, for all j, J'=1,...,n such that j <+ j'. In this case, p; = ajx}, for all
jeA{l,. n} and condition (II) 1mp11es that a; = 0, for all je {1,...,n}, so p; vanishes
forall j e {1 N}

If i = 3, we recall that

d;pj = 3ajx + Z ahzx,f

Identity 0;p; = 0;pj implies that ¢; = 0, for all j e {l,...,n}, and a,i.z =0, forh =+ j, /.
Since n = 3, p; vanishes for all j € {1,...,n}. The lemma is thus proved. [J

The proof of the proposition is then complete. []
Proposition 5.10.  The kernel of 2d20 I vanishes. In consequence, 2E§ )

Proof. We first observe that 2E is isomorphic to V(n) as so(n)-modules, so it
is an irreducible so(n)-module. If we apply the differential 2d to the cohomology class
represented by a cocycle of the form

n

1
> (x,-x; ®x — 5%/ ® x,-),

=1

we obtain the cohomology class of the cocycle in C? (YM(n), S? (tt)m(n))) given by
(512) Z (Z[Xju Xm] ®s [X], xm} & x; — Z[Xja X[] ®s [X], xm] ® Xm

- [X[, xm] ®; [X], xm] ® xj)~

We point out that the cohomology classes of the previous cocycles are linearly independent,
which implies that Ker( d0 'Y = 0. This can be deduced as follows. Taking into account
2E0 !is an irreducible so(n)—module and 2d is so(n)-equivariant, the latter is an isomor-
phlsm if it does not vanish. Since there are no coboundaries of the same internal degree and
the cocycles (5.12) are nonzero, we conclude that Ker(zdg h=0. O

By Propositions 5.1, 5.8 and 5.10, we derive the main result of this section.
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Theorem 5.11.  The morphism given in Proposition 5.1 is bijective. Furthermore, there
is an isomorphism of Lie algebras

HH'(YM(n)) ~ V(n) > (so(n) x k),

where HH' (YM(n)) is provided with the Gerstenhaber bracket, k and V (n) are considered as
abelian subalgebras and so(n) acts on V(n) by the standard action.

Proof. We only need to prove the second statement. By Proposition 5.1, a basis of
representatives of outer derivations is given by the derivations de, d; (i = 1,...,n), and the
collection of derivations d;; (1 =i < j <n) coming from the canonical basis of so(n)
(when identified with A2V (n)), which act on YM(n) as

d; j(xx) = 2(0j.kXi — 01 k).

From this it is easy to prove that [dey,d; ;| = [di,dj] =0, [d; j, di] = 2(J} kd; — i xd;) and
[dew, d;] = —d;. Hence, the Lie algebra HH' (YM(n)) with the Gerstenhaber bracket is iso-
morphic to ¥ (n) > (so(n) x k), where k and V(n) are considered as abelian subalgebras
and so(n) acts on V'(n) by the standard action. []

6. Hochschild and cyclic homology of YM(n)

6.1. Generalities. In this subsection, A shall denote a connected graded k-algebra
(i.e. Ao =k). We shall denote by HC,(A) the e-th cyclic homology group of 4 and
HC,(A) = HC,(A)/HC, (k) the reduced e-th cyclic homology group. Also,

HH,(A) = HH,(A)/HH,(k)
shall denote the reduced e-th Hochschild homology group. We recall that
HH,(A) = HH,(A), fore>1,

fﬁo(z‘l) = HH()(A)/]C, HH()(A) = HCO(A) and I‘ﬁo(z‘l) = HT()(A) In fact, all of them
are not only abelian groups but also k-vector spaces.

As it is usual, if A is provided with an Ny-grading, then the cyclic homology has two
gradings: the homological grading and the internal one. So, we shall denote by HC; ;(A)
and HC; ;(A) the components of internal degree j of HC;(A4) and HC;(A), respectively.
As a consequence, these groups are graded vector spaces with respect to the internal
grading.

If 4 is an Ny-graded algebra, the relation between the previous homologies is pro-
vided by the following collection of short exact sequences of graded vector spaces (see [34],
Theorem 9.9.1)

(6.1) 0 — HC; (A) — HH;(A) — HC;(A) — 0,
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for all i = 0, derived from Connes’ long exact sequence. This is a corollary of Goodwillie’s
Theorem proved by M. Vigué-Poirrier (see [14] and [33]).

We recall that the Euler—Poincaré characteristic for the Hilbert series is given by

The following proposition is a particular case of [20], Theorem 3.5, Equation (16).

Proposition 6.1. I A is an Ny-graded algebra, then

XHC.(4)(1) = Z(p(,)log( A(h),

=1
where ¢ denotes the Euler function.
Corollary 3 of [8] and Proposition 6.1 yield the following result.

Proposition 6.2. If YM(n) denotes the Yang—Mills algebra on n generators provided
with the usual grading, then

—nt' ¥ — 1.

XHC(YM(n) (1) = > @ IOg(YM(”)(ZI)) Q g(1

=1 =1

6.2. Hochschild and cyclic homology of the Yang—Mills algebra. Corollary 3 of [8],
Proposition 3.3, Theorem 5.11 and Proposition 6.2 tell us that

HH (YM(n) (1) = 1,
nn—1)

HH,(YM(n))(t) = < + 1)14 +nt?,

(l) 1 3] 4]
XH_C.(YM(n))(t):_l; / log(1 —nt" +nt™ — 1),

where we have used the Poincaré duality of the Yang—Mills algebra. We shall find the
Hilbert series of the other homology k-vector spaces by putting together the following
facts.

First, taking into account the short exact sequence (6.1) and that HH,(YM(n)) =0
for @ > 4, we conclude that HC,(YM(n)) = 0 for e > 3. Moreover,

(6.3)
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Second, as noted in [9], Equation (1.22), the Koszul property of YM(n) implies that
3 L
(6.4) g(—l)’HHi(YM(n))(t) =

Finally, it may be directly checked from (6.1) that

qu

(65) Zcomun = S0 HCYMm) () = izi0<—1>"<3—i>ﬁ(YM<n>)<r>.

I

These two last identities constitute a linear system
3HH(YM(n)) (2) — 2HH (YM(1))(1) = X7 commy ) — HH2(YM(1)) (),
HHo(YM(n))(r) = HHi (YM(n)) (1) = HH3(YM(n)) (1) — HH>(YM(n)) (1),
with unique solution
HH,(YM(n))(t) = Xic. o)) — 2HH3 (YM(n)) (1) + HH> (YM(n)) (1),

HH (YM(1) (1) = 272, om0 — ST (YM() (1) + 2HH (YM(n)) (7).

Hence, we have proved the Main Theorem 1.1.

7. Appendix. Hochschild homology of YM(2)

As a simple application of the Koszul complex (2.8), we shall compute the
Hochschild homology and cohomology of YM(2). This result is known in the literature
(see [31], Chapter 111, Theorem 3.2), but we provide more explicit computations.

Since ym(2) ~ b, (see [17], Example 2.1), ym(2) has a basis {x, y,z} as k-vector
space, such that [x, y] =z and z € Z(ym(2)). Notice that when ym(2) is provided with
the usual grading, x and y have degree 1, whereas z has degree 2. We shall write k[x, y, z]
instead of S(ym(2)).

It can be easily proved that the right action of ym(2) on k[x, y,z] is as follows:
p.x =—z0p/dy, p.y = z0p/dx and p.z =0, for p € k[x, y, z|.

Given p= > a;;x'y/z! € k[x, y,z], define
(i,j,)eN]

[pdx= > %aul(z—i—l) ! Xyl
(i, 1) €N

One can check that
d B ap , 0 (o
(71) S Jpdx=p, [Todx=p—p(0,y,z) and ayfpdxffaydx

Analogous results hold when considering variables y and z.
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The Koszul complex of YM(2) is
(7.2) 0 — k[x, y,2][—4] S kx, 3,2 ® V(2)[~2]
E kx, 1,21 @ V(2) D klx, y,2] — 0,

with differential

_ (0q dp B or or
d1(19®x+q®y)—z<a—@>, di(r) = Zay®x+26x®y’

*p *p d*q o?
d pu— 2 —_— —
H(P®x+q®y) =z <0x2®x+6x6y®y+_6y2®y+0x6y®x ;

where p, q,r € k|x, y,z].

We see that Hj (t)m(2),YM(2)ad) ~ Ker(ds) and that r e Ker(d3) if and only if
its partial derivatives with respect to x and y vanish, i.e. if r € k[z]. As a consequence we
get an homogeneous isomorphism HH3(YM(2)) ~ k[z][—4] of degree 0.

Moreover, by Poincaré duality, we immediately have that

HH"(YM(2)) ~ Z(YM(2)) ~ k[z].

Since the image of d; is the set of polynomials of the form zp, where p € k[x, y, z] we see
that HHo(YM(2)) ~ k[x, y] of degree 0.

Let us now compute HH>(YM(2)). Let o = p @ x + ¢ ® y € Ker(d,). This is equiv-
alent to the following conditions:

d (dp  Oq\ _ o (dp  0q\ _
8x<8x+0y)_0’ 6y<8x+6y =0.

If we write p= Y. pizi and ¢ = > qiz', for p;, q; € k[x, y], for all i € N, the conditions

ie Ny ieNy

are equivalent to
d (dpi | Oqi d (dpi  Oqi .
—(=+=)=0, —(ZXZ+2E2|=0, VieNy.
6x<0x+6y> ’ 6y<6x+6y o TrETo

Then, for all i € Ny,

opi  0q; .
(73) E—F@—C,ek.
We may choose r = Y riz' € k[x, y, z], with r; € k[x, y] such that
iENO
(7.4) ri = [gividx — [ pi1(0,y)dy, VieN,.
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Then,

1 O 1 O
— i+1 Y0 i+1 70
ds(r) = i%ﬂz 3y Rx+z o ®y

As a consequence, the cycle w is homologous to

PROX+q® y—di(r)

—p@x+ 0@y + X[+ ) @x+ 2 (g - L) @
=P0OXT 4oy Z |\ pi dy XTZzZ\ g o Y

ieN

. ori_
ZPMDX+%CUFFZZ<m+~%J>®x
ieN vy

From (7.3) and (7.4) we see that

ori_
Di +;1 =

0 0q;
2 Di Jr@ (['qidx — [ pi(0, y)dy) = pi + f@dxf pi(0,y)

opi
= Di + I(C’,‘ — (3—P;C> dX — pi(o, y) = C;iX.

Hence, » is homologous to the cycle @' =py@x+q® y+ > zleix@x. If ¢; 0,
ieN

z'e;x ® x cannot be a boundary because all boundaries have ¢; = 0. Since ' is a cycle, we

must have dqy/0y = ¢y — 0po/0x, and then

po
=cy— | —dv+h
qo=coy — | o T
where / € k[x] is some polynomial. Therefore the cycle w is homologous to

0 .
po®x+00y®y—fgdy®y+h®y+ZNzlc,-x®x.

From this we can conclude that the set given by

{y ® y,x" @ y (i1 € No), x2p® @ x — —2— x>y @ 3 (ia, i3 € Np), 24x @ x (is € No)}

iz +1
is a basis of HH,(YM(2)).

In the same way we may compute the homology HH; (YM(2)). If
O=pRXx+qg®y

is a l-cycle, then 0dq;/0x — dp;/dy =0, for all ie Ny. Hence there is a polynomial
r; € k[x, y] such that p; = dr;/0x and ¢; = dr;/dy, for all i € N.
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If we choose p; and ¢; such that dp/ ,/0x + dq;_,/0y =r;, for all i = 2, then w is
homologous to

(31"() (31"() arl 6r1
PoRX+gR®y+zp1 ®Xx+2z1 ®y=—@Xx+— Q@ y+z— Rx+z— ® y.
ox dy 0x dy

Moreover, we immediately see that the collection of cycles with ry = x"y® € k[x, y| and
ry = xBy" e klx, y], with iy, iy, i3,is € Ng and (i1, i2) #+ (0,0), (i3,i4) * (0,0), gives a basis
of HH,(YM(2)).

Using the previous computations it is clear to compute the Hilbert series for the
Hochschild homology of YM(2). For completeness, we state the Hilbert series for the
Hochschild and cyclic homology of YM(2), where the Hilbert series for the cyclic homo-
logy was obtained from that of the Hochschild homology using relations (6.3) for n = 2.

Theorem 7.1. If n = 2, then the Hilbert series for the Hochschild homology are

HH,(YM(2))(t) =0, if =4,

HH; (YM(2))(1) = 1i—4¢2

HH, (YM(2)) (1) = 27 (ll_tf—)(_ltjt)
HH; (YM(2)) (1) = z(z_(%lt;lz),
HHy(YM(2)) (1) = R _1 ek

The Hochschild cohomology is given by Poincaré duality:
HH*®*(YM(2)) = HH;_.(YM(2)) 4],
for 0 < e <3, and HH*(YM(2)) =0, for e > 3.
Also, the Hilbert series for the cyclic homology are given by

HCy2.(YM(2))(t) =1, if ©20,

HC300(YM(2))(1) =0, if @20,
HC(YM(2))(1) = 1 + 1i—4,z

e () - S0
HE(YMD)(0 = ! 7
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