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The application of molecular descriptors in describing Quantitative Structure Property Relationships
(QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest.

In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict
the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement
method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to
select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular
descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides.
The Replacement Method improved the predictive ability of vapor pressures and was more reliable for
the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a
satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds
with unknown values. This study may open new opportunities for designing and developing new pes-
ticide.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

In light of pesticide's role as environmental contaminants,
considerable efforts have been made to monitor the maximum
allowed concentration of pesticide residues in surface, ground and
drinking water (Papadakis et al., 2015; Otieno et al., 2015). Vapor
pressure (VP) is a significant chemical property in the environ-
mental fate, transport and distribution of compounds in water, air
and soil. VP is defined as the partial pressure of a chemical in the
gas phase in equilibrium with the pure solid or liquid phase. The
VP of pesticides determines the distribution of the portion re-
maining in atmosphere in the gas phase and that settling onto the
soil in the liquid or solid phase. It is important for estimating the
liquid viscosity, enthalpy of vaporization and other important
physico-chemical properties. It also plays an important role in fire
owicz).
and explosion prevention, gas separation, and the design and
optimization of the processes (process engineering) and process
control (Lawson, 1980; Redeker, 1997; Sandler et al., 2002; Stoll,
2005). Due to the low vapor pressure values of the majority of
plant-protection products, their experimental measurements are
an ongoing challenge (Meulenberg et al., 1995). Techniques to
predict the properties of pesticide compounds are therefore im-
portant in a range of fields.

The basis of quantitative structure-property/activity relation-
ship (QSPR/QSAR) methods is that the different behavior of the
compounds (i.e. physical or chemical properties) can be correlated
with changes in the corresponding molecular features (de-
scriptors) (Goodarzi and Freitas, 2008a, 2008b; Freitas et al., 2008;
Goodarzi et al., 2009a, 2009c). Once a QSAR/QSPR model is de-
veloped, it can be used to predict the chemical or biological
properties of new compounds. QSAR/QSPR models are based on
physicochemical, geometrical, topological and electronic proper-
ties that are related to the molecular structures. The models cap-
ture the inherent information from expensive experimental data
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and thereby save significant resources in the process of designing
new compounds. In addition, QSAR/QSPR techniques have several
applications in designing virtual compound libraries and combi-
natorial ones with appropriate absorption, distribution, metabo-
lism and excretion (ADMET) properties, as well as computationally
optimizing compounds. Several studies found the implication of
QSPR to predict the vapor pressure of organic compounds, but
very few results have been published for pesticides (Mamy et al.,
2015). Staikova et al. (2004) constructed the QSPR models to es-
timate vapor pressure, octanol–air partition coefficients (KOA) of a
various chlorinated organic compounds (not pesticides). It was
found that molecular polarizability (α) was strongly correlated
with log PL (liquid vapor pressures) and log KOA. The squared cor-
relation coefficients (R2) for plots of experimental log PL and
log KOA values, as a function of molecular polarizability, were
around 0.98. Puzyn and Falandysz (2005) built a QSPR model for
all 75 congeners of chloronaphthalene, which was based on the
logarithm of KOA and sub-cooled liquid vapor pressure (log PL), the
R2 of their linear regression being 0.994.

Ding et al. (2006) used partial least squares (PLS) approach as a
linear QSPR based model on quantum chemical and topological
descriptors for solid vapor pressure of PCDD/Fs. Two topological
predictive descriptors, namely Kier symmetry index (S0K) and Kier
flexibility index (PHI) were found to improve the prediction ability
of the obtained models (R2¼0.972). Godavarthy et al. (2006)
presented a scaled variable reduced coordinates (SVRC) model to a
diverse dataset containing over 1221 molecules involving 73
classes of chemicals. The results for the 52,445 datasets indicated
that SVRC model represent these saturated vapor pressure data
with a 0.35% average absolute deviation (AAD), while the gen-
eralized SVRC–QSPR model predicted the saturated vapor pres-
sures with 0.5% AAD. Zeng et al. (2007) constructed a linear QSAR
model for 209 polychlorinated diphenyl ethers to predict sub-
cooled liquid vapor pressure. The R2 of the first linear model was
0.998, which improved to 0.991 when other subsets of descriptors
were considered, such as the numbers of Cl substitutions.

Katritzky et al. (2007) constructed a QSPR model on vapor
pressures of the 645 diverse organic compounds with a variety of
molecular descriptors, such as topological, electronic, geometrical,
and hybrid type series. These four descriptors had the R2 of 0.937
and appeared in the best QSPR model. Wang et al. (2008) built a
linear QSPR model on 209 polybrominated diphenyl ethers
(PBDEs). The calculated descriptors were used to establish two
QSPR models to predict the PL and KOA of PBDEs. This approach
was based on the theoretical linear solvation energy relationship
(TLSER) and the RSME values were 0.069 and 0.062, respectively.

Nakajoh et al. (2009) introduced a Conductor-like Screening
Model for Real Solvents (COSMO-RS) to predict the liquid phase
vapor pressure of chlorobenzenes (CBzs) and polychlorinated bi-
phenyls (PCBs). The liquid phase vapor pressures of 12 CBzs, bi-
phenyl and 26 PCBs, and their enthalpies of vaporization were
derived from the temperature dependency of the predicted vapor
pressure using the Clausius–Clapeyron equation. The RMSE values
of the COSMO-RS predictions for CBzs, and the non-ortho, mono-
ortho, di-ortho and tri-ortho congeners of PCBs were in the range
of 0.035–0.539, 0.079–0.21, 0.28–0.58, 0.47–0.74 and 0.77–0.87,
respectively. Lazzus (2009) presented Artificial Neural Networks
(ANN) as a nonlinear method to estimate solid vapor pressures for
212 organic and inorganic compounds. His model was constructed
using five physicochemical properties to discriminate among the
different substances. The 152 compounds were used to train the
network and evaluate his model.

The proposed method represents an alternative approach to
those described elsewhere, the intention being to develop a model
that estimates the solid vapor pressures that can be used with
confidence for any substances. Goudarzi and Goodarzi (2009)
developed QSPR models on 55 halogenated methyl-phenyl ether
(anisole) compounds using linear and nonlinear methods. The
RMSE values of the training set and the test set for the PC-ranking-
LS-SVM model were 0.2912 and 0.2427, and the correlation coef-
ficients were 0.9259 and 0.9112, respectively.

Many studies have been concerned with developing QSPR
models for a number of organic compounds, with little emphasis
on the development of the predictive QSPR models to estimate
vapor pressure for various pesticide agents. Although QSPR
methods have been successfully used to predict several effective
physico-chemical descriptors, the extent of their applications was
limited. The majority of these models were derived from very
limited data sets, and most of scientists focused on constructing
their QSPR models with little attention being paid to validate their
model. In a recently published review paper by Mamy et al. (2015),
almost no QSAR modeling has been reported to predict the vapor
pressure of pesticides. This study aims to develop QSPR models to
estimate the vapor pressure for libraries of pesticides. Several
feature selection methods were used to probe the applicability of
the obtained QSPR models as a powerful chemometrics tool.
2. Materials and methods

2.1. Dataset

In this QSPR studies, 162 pesticides representing several che-
mical classes were collected, which are widely identified pollu-
tants in the atmosphere. The vapor pressure of these pesticides
(Barcelo and Hennion, 1997) in logarithmic scale were used for
QSPR analysis as the response variables (Table 1).

2.2. Feature selection methods

To generate optimal sets of molecular descriptors for a given
structure, reasonable and statistically valid feature detection (or
descriptor selection) methods were applied to construct the QSPR
model. An ideal feature selection method aims to choose a small
number of the most informative descriptors to facilitate the in-
terpretation of the QSPR model (Eklund et al., 2014). The widely
used feature selection methods of forward selection (FS), stepwise
regression (SR), replacement method (RM), genetic algorithms
(GA), for the libraries of datasets were used in this study, and are
described.

2.2.1. Forward selection (FS) method
The forward selection method is an interesting technique due

to its didactical point of view as well as its simplicity and accuracy.
This technique is based on the stepwise addition of variables se-
quentially to find the one with the smallest values of fitness
function. Each variable is assessed with all the remaining variables
until the pair that minimizes the fitness function is found. This
procedure is repeated with all the variables until the optimum
subset is found or a stopping criterion is met (Chatterjee and Price,
1997; Goodarzi et al., 2009b). The standard deviation (S) as a fit-
ness function is defined as:
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where N is the number of the training set molecules, d is the
number of variables (descriptors) of the model and Ω stands for
the residual of molecule i (difference between the experimental
and predicted properties).



Table 1
The selected 162 pesticide compounds with their corresponding vapor pressure
values.

Number Compounds Vapor pressure (Pa) � log VP

1 Acephate 2.3E�4 3.638
2 Acifluorfen 1E�5 5.000
3 Aclonifen 1.6E�5 4.796
4 Alachlor 2.9E�3 2.537
5 Aldicarb 1.3E�2 1.886
6 Aldrin 3.6E�2 1.444
7 Aldoxycarb 0.012 1.921
8 Ametryn 3.65E�4 3.438
9 Amitrole 5.5E�8 7.259
10 Atrazine 3.9E�5 4.409
11 Azinphos-ethyl 3.2E�4 3.495
12 Azinphos-methyl 1.8E�4 3.745
13 Benalaxyl 6.7E�4 3.174
14 Benazolin 1E�7 7.000
15 Bendiocarb 4.6E�3 2.337
16 Bensulfuron 2.8E�12 11.553
17 Bentazone 4.6E�4 3.337
18 Bifenox 3.2E�4 3.495
19 Bromacil 4.1E�5 4.387
20 Bromofenoxim 1.3E�6 5.886
21 Bromophos-ethyl 6.1E�3 2.215
22 Bupirimate 0.1E�3 4.000
23 Butocarboxin 10.6E�6 4.975
24 Butachlor 0.6E�3 3.222
25 Butoxycarboxim 2.7E�4 3.568
26 Carbaryl 4.1E�5 4.387
27 Carbendazim 9E�5 4.046
28 Carbofuran 3.1E�5 4.508
29 Carboxin 2.5E�5 4.602
30 Chlorbromuron 5.3E�5 4.275
31 Chlordane 1.3E�3 2.886
32 Chlorfenvinphos 1E�3 3.000
33 Chlorobenzilate 1.2E�4 3.921
34 Chlornitrofen 3.2E�3 2.495
35 Chlorothalonil 7.6E�5 4.119
36 Chlorotoluron 1.7E�5 4.769
37 Chlorthal dimethyl 2.1E�4 3.678
38 Chlorthiamide 1.3E�4 3.886
39 Clofentezine 1.3E�7 6.886
40 Clopyralid 1.33E�3 2.876
41 Coumaphos 1.3E�5 4.886
42 Cyanazine 2.E�7 6.698
43 Cycloate 2.13E�3 2.672
44 Cyhalothrin 1E�6 6.000
45 Cymoxanil 0.8E�5 5.097
46 Cypermethrin 2.3E�7 6.638
47 Cyproconazole 3.5E�5 4.456
48 Desmedipham 4E�8 7.398
49 Desmetryn 1.33E�4 3.876
50 Diazinon 1.2E�2 1.921
51 Dicamba 4.5E�3 2.347
52 Dichlobenil 0.088 1.055
53 Diclofop 2.5E�3 2.602
54 Diethofencarb 8.4E�3 2.076
55 Difenoconazole 3.3E�8 7.481
56 Diflubenzuron 1.2E�7 6.921
57 Dimefuron 0.1E�3 4.000
58 Dimethoate 1.1E�3 2.958
59 Dinoterb 2E�2 1.698
60 Disulfoton 7.2E�3 2.143
61 Diuron 1.1E�3 2.958
62 DNOC 1.4E�2 1.854
63 Endosulfan 8.3E�4 3.081
64 EPTC 1E�5 5.000
65 Esfenvalerate 2E�7 6.698
66 Ethalfluralin 0.012 1.921
67 Ethiofencarb 4.5E�4 3.347
68 Ethion 2E�4 3.698
69 Ethirimol 2.67E�4 3.573
70 Ethofumesate 6.5E�4 3.187
71 Ethoprophos 0.046 1.337
72 Etofenprox 3.2E�2 1.494
73 Etridiazole 0.019 1.721
74 Fenamiphos 0.12E�3 3.921

Table 1 (continued )

Number Compounds Vapor pressure (Pa) � log VP

75 Fenitrothion 1.8E�2 1.745
76 Fenoxaprop-P 5.3E�7 6.276
77 Fenoxycarb 8.67E�7 6.062
78 Fenpropathrin 7.3E�4 3.137
79 Fenpropidin 1.7E�2 1.769
80 Fenpropimorph 2.3E�3 2.638
81 Fenthion 7.4E�4 3.131
82 Fenuron 2.1E�2 1.678
83 Fipronil 3.7E�7 6.432
84 Fluazipop 5.5E�5 4.259
85 Fluometuron 1.25E�4 3.903
86 Fluridone 1.3E�5 4.886
87 Flusilazole 3.9E�5 4.408
88 Fonofos 2.8E�2 1.553
89 Heptachlor 0.053 1.276
90 Hexaconazole 1E�5 5.000
91 Hexazinone 8.5E�3 2.070
92 Iprodione 5E�7 6.301
93 Isofenphos 2.2E�4 3.657
94 Isoproturon 3.3E�5 4.481
95 Isoxaben 5.5E�4 3.259
96 Lenacil 0.2E�6 6.698
97 Lindane 5.6E�3 2.252
98 Linuron 5.1E�5 4.292
99 Malathion 5.3E�3 2.276
100 Mecoprop 0.31E�3 3.508
101 Metamitron 8.6E�7 6.065
102 Metazachlor 4.9E�5 4.309
103 Methabenzthiazuron 5.9E�6 5.229
104 Methidathion 2.5E�4 3.602
105 Methiocarb 1.5E�5 4.824
106 Methomyl 6.65E�3 2.177
107 Metobromuron 4E�4 3.398
108 Metolachlor 4.2E�3 2.377
109 Metoxuron 4.3E�3 2.366
110 Metribuzin 5.8E�5 4.236
111 Monolinuron 1.3E�3 2.886
112 Myclobutanil 2.13E�4 3.672
113 Napropamide 5.3E�4 3.276
114 Parathion 8.9E�4 3.051
115 Parathion-methyl 0.2E�3 3.698
116 Penconazole 2.1E�4 3.678
117 Pendimethalin 4E�3 2.398
118 Permethrin 4.5E�5 4.347
119 Phenthoate 5.3E�3 2.276
120 Phorate 8.5E�2 1.070
121 Phosmet 6.5E�5 4.187
122 Phoxim 2.1E�3 2.677
123 Picloram 8.2E�5 4.086
124 Pirimicarb 0.97E�3 3.013
125 Pirimiphos-ethyl 0.68E�3 3.167
126 Pirimiphos-methyl 2E�3 2.698
127 Prochloraz 1.5E�4 3.824
128 Procymidone 1.8E�2 1.745
129 Prometon 0.306E�3 3.514
130 Prometryn 0.169E�3 3.772
131 Propanil 2.6E�5 4.585
132 Propazine 3.9E�6 5.408
133 Propiconazole 5.6E�5 4.252
134 Propoxur 1.3E�3 2.886
135 Propyzamide 5.8E�5 4.236
136 Prosulfocarb 6.9E�5 4.161
137 Pyridate 1.3E�7 6.886
138 Simazine 2.94E�6 5.531
139 Sulfotep 1.4E�2 1.854
140 Tebuconazole 1.3E�6 5.886
141 Terbacil 6.25E�5 4.204
142 Tebuthiuron 0.27E�3 3.568
143 Teflutrin 8E�3 2.097
144 Terbufos 3.46E�2 1.461
145 Terbumeton 0.27E�3 3.568
146 Terbuthylazine 0.15E�3 3.824
147 Terbutryn 0.225E�3 3.648
148 Tetrachlor-vinphos 5.6E�6 5.252
149 Tetraconazole 1.6E�3 2.796
150 Tetramethrin 9.44E�4 3.025
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Table 1 (continued )

Number Compounds Vapor pressure (Pa) � log VP

151 Thiodicarb 5.7E�3 2.244
152 Thiofanox 2.26E�2 1.646
153 Thiometon 2.3E�2 1.638
154 Thiram 2.3E�3 2.638
155 Triallate 1.6E�2 1.796
156 Triazophos 0.39E�3 3.408
157 Trichlorfon 2.1E�4 3.677
158 Triclopyr 2E�4 3.698
159 Tricyclazole 2.7E�5 4.568
160 Tridemorph 6.4E�3 2.194
161 Trifluralin 9.5E�3 2.022
162 Vinclozolin 1.6E�5 4.796
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2.2.2. Stepwise regression (SR) method
The Stepwise regression (SR) method is one of the common

feature selection techniques applied in QSAR/QSPR studies, and is
a combination of forward and backward procedures. A variable
that enters the model in the earlier selection stages may be
eliminated during the later steps. The resulting algorithm gradu-
ally adds new variables to the model, starting from the x variable,
which has the largest empirical correlation with the dependent
variable y, as in the forward selection method. In addition, the
algorithm incorporates a mechanism for eliminating variables, as
in the backward elimination method. The selection process of the
most important variables is the same in the forward selection and
backward procedures. The number of selected variables depend on
the fitness function assumed for inclusion and exclusion of the
variables from the model (Broersen, 1986).

2.2.3. Replacement method (RM)
A Full Search (FS) of optimal variables requires D!/(D�d)!d!

linear regressions and is impractical, where d is an optimal subset
of d descriptors d¼{X1, X2,…, Xd } and D referred to as the pool of
descriptors. However, the Replacement Method (RM) (Duchowicz
et al., 2005; Duchowicz et al., 2006; Duchowicz et al., 2006; Talevi
et al., 2011; Mercader et al., 2011) generates linear regression QSAR
models that are quite close to that of the FS. The basis of the RM
algorithm is to choose an optimal subset of d descriptors d¼{X1,
X2,…, Xd }, (doD) and descriptors from the pool of D descriptors
with minimum standard deviation (S) (Duchowicz et al., 2013; Sun
et al., 2009).

The RM technique consist of five steps, firstly, the d descriptors,
d¼{X1, X2,…, Xd} are selected randomly and a linear regression is
performed. Secondly, one of the descriptors of this set is chosen,
for instance Xi, and is replaced by each of the D descriptors of the
pool (except itself), with the best obtaining set being kept. As any
of the d descriptors in the initial model can be replaced, a re-
gression equation with d variables has d possible paths to achieve
the final result. Thirdly, the variables with greatest relative error in
their coefficient (except the one replaced in the previous step) are
chosen and replaced with all the D descriptors (except itself), with
the best set being maintained. Fourthly, the rest of the remaining
variables are replaced in the same way, by passing those replaced
in previous steps. Finally, the variable with the greatest relative
error in the coefficient is reconsidered and the whole process re-
peated. This iterative procedure is continued until the set of de-
scriptors remains unchanged. The final stage presents the best
model for the path i with the same process occurring for all pos-
sible paths i¼1, 2,…, d, with the obtained models being compared
to keep the best one. RM feature selection method provides QSPR
models with more suitable (improved) statistical parameters in
comparison to the Forward Stepwise Regression method (Draper
and Smith, 1981) and various elaborated Genetic Algorithms
(Mercader et al., 2010).
2.2.4. Genetic algorithm (GA)
The Genetic algorithm (GA) is a commonly used optimization

technique that is useful for image processing, designing complex
networks (e.g. computers and integrated circuits), classifications,
job scheduling, robotics and parameter fitting (Davis, 1991). GA is a
stochastic method that has been widely used as a feature selection
method. In QSAR/QSPR studies, the evolution of the population is
simulated to select the most relevant descriptors (Hunger and
Huttner, 1999; Waller and Bradley, 1999), with a chromosome of
binary values delineating each of the population. In genetic terms,
each variable is called a gene, and a set of variables is called a
chromosome. It should be noted that the population of the first
generation is selected randomly, and the state of each variable is
represented by the value of 1 (selected variables in the model) or
zero (not selected), with the genes take the values of 1 or 0. The
selected variables (genes with a value of 1) are collected as a small
subset of descriptors in a way that the probability of generating
0 for a gene is at least 60% greater than 1 (Aires-de-Sousa et al.,
2002). Crossover and Mutations are operators used with the
probabilities of 60% and 0.1%, respectively. The fitness value for
each chromosome is calculated as Root Mean Square Error (RMSE).
For different runs of genetic algorithm, the population size varies
between 50 and 200.

2.3. Descriptor calculations and selection

The chemical structures of the molecules for the study were
drawn using Hyperchem package (HyperChem Version 7.0., 2007),
and the final geometries were obtained with the semi-empirical
AM1 method. Optimization was preceded by the Polak–Rebiere
algorithm to reach 0.01 root mean square gradient. The optimized
geometry was transferred into the Gaussian 09 (Gaussian 09 RA
et al., 2009) and Dragon (Mauri et al., 2006) programs to calculate
molecular descriptors. The highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO) energies
and molecular dipole moment were calculated with Gaussian
package. Quantum chemical indices including hardness (η),
softness (S), electronegativity (χ) and electrophilicity (ω) were
calculated using equations proposed by Thanikaivelan et al.
(HyperChem Version 7.0., 2007). Some chemical parameters,
namely molar volume (V), molecular surface area (SA), hydro-
phobicity (log P), hydration energy (HE) and molecular polariz-
ability (α), were calculated using Hyperchem software. DRAGON
software was used to calculate various descriptors, such as con-
stitutional, topological, geometrical, charge, GETAWAY (geometry,
topology and Atoms-Weighted AssemblY), WHIM (Weighted
Holistic Invariant Molecular descriptors), 3D-MoRSE (3D mole-
cular Representation of Structure based on Electron diffraction),
Molecular Walk Count, BCUT, 2D-Autocorrelation, Aromaticity
Index, Randic molecular profile, Radial Distribution Function,
Functional group and Atom-Centered Fragment classes (Mercader
et al., 2011). Multiple linear regressions (MLR) were utilized as a
linear technique with various RM, GA, SR-MLR, and FS feature
selections methods. The best subset was selected and used for
further analysis.

In MLR analysis, the calculated descriptors were first explored
to identify the constant or approximately constant variables. The
initial sets of descriptors were then reduced by eliminating all
descriptors with insignificant variance to avoid random and irre-
levant series in the model. At the same time, to decrease the re-
dundancy amongst the descriptor data matrix, between the pairs
of the two highly correlated descriptors, the one with the highest
property correlationwere kept, and the others were excluded from
the data matrix. MLR analysis selects the most suitable models at
each rank. The final model between them was chosen which suf-
ficiently correlated and that prevented any model overfit or over-
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parameterizations. All programs were written using Matlab soft-
ware (Waller and Bradley, 1999). Several RM, GA, SR-MLR, and FS
feature selection methods were compared to select the most re-
levant descriptors from the pool of options. The best subset was
selected and used for further analysis of the constructed QSPR
model.
Fig. 2. Correlation coefficient of training set (Rtraining set), leave-one-out cross-va-
lidation correlation coefficient (Rloo) and external validation (Rtest set) with different
number of descriptors using replacement method (RM).
3. Results and discussion

A feature selection method is considered an important pre-
processing step in machine learning and data mining processes,
particularly in QSAR/QSPR studies with high dimensional feature
spaces. These tools can efficiently reduce the dimensionality of
available datasets, and improve not only the classification, but also
the regression accuracy by identifying relevant features. In this
context, one of the most important steps, which affect the com-
plexity of modeling methods in QSAR/QSPR studies, is the selec-
tion of the most effective descriptors from a pool of descriptors. It
is also notable that a model's predictive capability for different
pesticides depends on how well the training set represents these
chemicals, and how robust the model is in extrapolating beyond
the dimensional space defined by the training set. Consequently,
the selection of the training set in QSPR analysis is of great
importance.

In this work, the total data (n¼162) were first divided into two
parts, the so-called training set (n¼122) and test (external vali-
dation) set (n¼40). In each case, 75% of the total compounds were
nominated as training sets while the remaining 25% of the data-
sets used as the test set. The division of the dataset was based on
the property range of training set, which included the test set
properties. All the feature selection methods were then per-
formed on the training set to find the most important subset, the
influences of the number of descriptors being investigated from
one to ten to select the optimum number of descriptors. Fig. 1
shows the plot of correlation coefficients versus the different
number of descriptors selected using the GA, FS, SR and RM fea-
ture selection methods. The selected descriptors by the GA, FS, SR
and RM feature selection methods were all acceptable. However,
based on the comparison of the R2-values in Fig. 1, the selected
descriptors using RM with R2 between 0.7 and 0.9 appeared to be
more reliable. The selected descriptors using RM method as a
feature selection approach was used to construct the QSPR model
which correlated the structural information to the vapor pressure
of pesticides. This enabled the selection of the most important
descriptors with heuristic search algorithms using a fitness
function that minimized the difference between the original
Fig. 1. Correlation coefficient (R) as a function of the number of 10 descriptors used
with different feature selection methods.
feature set and the one in the reduced feature subsets. The fitness
function measures how well a solution fits the problem and
should be fast to calculate. It can also be inferred from Fig. 1 that
when the descriptors were added into the model, the correlation
coefficient was improved to 0.9, and the model results for pre-
dicting the log VP were more suitable. The graph of calculated
vapor pressure (� log VP) against experimental values using RM/
MLR equation is provided in supplementary information (Fig. S1).
The contribution of the different number of descriptors on the
predictive potential of training set, the leave one out (LOO) cross-
validation of training set and test set are shown in Fig. 2 and
Table 2. According to Fig. 2, an insignificant improvement on the
statistics of test set was observed for 6–10 descriptors. In other
words, while the correlation coefficients of the training set were
increased, the correlation coefficient of test set decreased. This
implied that the optimum subset size could be achieved with a
maximum five of descriptors.

To select the most relevant descriptors and build a linear QSPR
model, all mentioned feature selection methods were performed
by assigning 122 compounds as training set and 40 as test sets
(external sets). The following equations were obtained by different
feature selection methods:

− ( ) = ( ± ) + ( ± ) ×

− ( ± )

× + ( ± ) × − ( ± ) ×

+ ( ± )
×

log VP RM/MLR 8.225 1.449 0.8404 0.114 SNar

2.719 0.514

VRv2 3.084 0.343 RDF010u 9.021 0.922 RDF010p

1.709 0.538
Mor32e

where

= = = <

= = = =

=
= = =

−

− − − −

N R S p

R S R S

S
N R S

122, 0.762, 1.093, 10

0.720, 1.172, 0.604, 1.371,

1.417
40, 0.741, 1.108

train

loo loo l o l o

Rand

test test test

4

25% 25%

3.1. Topological descriptors

Narumi simple topological index (log) (SNar), Average Randic-
type eigenvector-based index from van der Waals Weighted dis-
tance matrix (VRv2) RDF descriptors: Radial Distribution function-
1.0/unweighted (RDF010u), Radial Distribution function-1.0/



Table 2
Statistical parameters for different subsets selected with replacement method (RM) using 1–10 descritores.

S R Sloo Rloo Stest Rtest Descriptors

1.518 0.404 1.557 0.349 1.493 0.279 Mor22m
1.350 0.586 1.392 0.551 1.346 0.555 HNar, IC1
1.257 0.659 1.319 0.616 1.262 0.621 RDCHI, RDF010u, RDF010p
1.135 0.737 1.208 0.696 1.102 0.744 SNar, VRv2, RDF010u, RDF010p
1.093 0.762 1.172 0.720 1.108 0.741 SNar, VRv2, RDF010u,RDF010p, Mor32e
1.091 0.765 1.179 0.719 1.226 0.686 X0, X1, RDF010u, RDF075m, RDF010p, Mor32e
1.071 0.777 1.166 0.730 1.142 0.742 nBT, X1, SEigv, MATS1m, RDF010u, RDF010p, R3eþ
0.948 0.832 1.029 0.799 1.306 0.719 TI1, GGI2, GATS2e, RDF020m, RDF020p, Mor01m, Vp, MLOGP
1.031 0.799 1.129 0.754 1.275 0.697 Se, Eig1e, BELv2, RDF025u, RDF055u, RDF010e, Mor01m, Mor22m, MLOGP
0.879 0.860 0.969 0.828 1.383 0.699 TI1, GGI2, GATS4v, GATS2e, RDF020m, RDF075m, RDF020p, Mor01m,Vp, MLOGP

Note 1: S: model's standard deviation from calibration; R: correlation coefficient of the
training set, and sub-index loo and l-25%-O stand for the Leave-One-Out and leave
25% out Cross Validation technique, respectively.
Note 2: Mor22m: weighted by atomic masses; HNar: Narumi harmonic topological index; IC1: Information content index neighborhood symmetry of 1-order; RDCHI:
RDF010u: unweighted Radial Distribution function-1.0; RDF010p: Radial Distribution function-1.0/weighted by atomic polarizabilities; SNar: Narumi simple topological
index (log); VRv2: Average Randic-type eigenvector-based index from van der Waals Weighted distance matrix; RDF075m: Radial Distribution function-8.5/weighted by
atomic masses; Mor32e: 3D-MoRSE signal 32/weighted by atomic Sanderson electronegativities; nBT: number of bonds; SEigv: Eigenvalue sum from van der Waals
weighted distance matrix; MATS1m: Moran autocorrelation-lag 1/weighted by atomic masses; R3eþ : R maximal autocorrelation of lag 3/weighted by atomic Sanderson
electronegativities; TI1: first Mohar index TI1; GGI2: topological charge index of order 2;GATS2e, RDF020m: Radial Distribution function-2/weighted by atomic masses;
RDF020p: Radial Distribution Function-2.0/weighted by atomic polarizabilities; Mor01m: 3D-MoRSE signal 01/weighted by atomic masses; Vp: V total size index/weighted
by atomic polarizabilities; MLOGP: Moriguchi octanol-water partition coefficient; Se: sum of atomic Sanderson electronegativities (scaled on Carbon atom); Eig1e: Leading
eigenvalue from electronegativity weighted distance matrix; BELv2: lowest eigenvalue n; RDF025u: Radial Distribution Function-2.5/unweighted; RDF055u: Radial Dis-
tribution Function-5.5/unweighted; RDF010e: Radial Distribution Function-1.0/weighted by atomic Sanderson electronegativities; Mor01m: 3D-MoRSE signal 01/weighted
by atomic masses; Mor22m: 3D-MoRSE signal 22/weighted by atomic masses; TI1: first Mohar index TI1; GGI2: topological charge index of order 2; GATS4v: Geary
autocorrelation-lag 4/weighted by van der Waal; RDF020m: Radial Distribution function-2/weighted by atomic masses, RDF075m: Radial Distribution Function-7.5/
weighted by atomic masses; RDF020p: Radial Distribution function-8.5/weighted by atomic masses, Mor01m: 3D-MoRSE signal 01/weighted by atomic masses.
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weighted by atomic polarizabilities (RDF010p). 3D-MoRSE de-
scriptors: 3D-MoRSE signal 32/weighted by atomic Sanderson
electronegativities (Mor32e).

− ( ) = ( ± ) + ( ± ) ×

− ( ± )

× + ( ± ) ×

− ( ± )

× + ( ± ) ×

− ( ± )

× − ( ± ) ×

log VP GA/MLR 1.016 0.491 0.159 0.023 SCBO

33.343 6.811

JGI5 2.919 0.364 RDF010u

0.117 0.029

RDF085u 0.116 0.037 RDF075m

7.518 1.007

RDF010p 0.248 0.083 MLOGP
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= = = =
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= = =
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R S R S

S
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122, 0.772, 1.080, 10

0.728, 1.167, 0.603, 1.408,
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train
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Rand

test test test

4

25% 25%

3.2. Constitutional descriptors

Sum of conventional bond orders (H-depleted) (SCBO) Galvez
topol.charge indices: mean topological charge index of order 5
(JGI5). RDF descriptors: Radial Distribution function-1.0/un-
weighted (RDF010u), Radial Distribution function-8.5/unweighted
(RDF085u), Radial Distribution function-8.5/weighted by atomic
masses (RDF075m), Radial Distribution function-1.0/weighted by
atomic polarizabilities (RDF010p).
3.3. Properties descriptors

Moriguchi octanol-water partition coefficient (MLOGP).
− ( ) = − ( ± ) + ( ± ) ×

+ ( ± )

× − ( ± ) ×

+ ( ± )

× − ( ± ) ×

+ ( ± )

× − ( ± ) ×

− ( ± ) ×

+ ( ± ) ×

log VP SR/MLR 5.455 1.298 4.455 0.787 HNar

2.785 0.379

RDF010u 0.090 0.028 RDF085u

0.142 0.036

RDF075m 7.099 1.019 RDF010p

3.026 0.963

G1e 0.386 0.092 MLOGP

0.271 0.111 RDF020m

0.004 0.001 Mor01m

= = = <

= = = =

=
= = =

−

− − − −

N R S p

R S R S

S
N R S

122, 0.803, 1.021, 10

0.760, 1.116, 0.604, 1.391,

1.411
40, 0.713, 1.223

train

loo loo l o l o

Rand

test test test

4
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3.4. Topological descriptors

Narumi harmonic topological index (HNar). RDF descriptors:
Radial Distribution function-1.0/unweighted (RDF010u), Radial
Distribution function-8.5/unweighted(RDF085u), Radial Distribu-
tion function-8.5/weighted by atomic masses (RDF075m), Radial
Distribution function-2/weighted by atomic masses (RDF020m),
Radial Distribution function-1.0/weighted by atomic polariz-
abilities (RDF010p).

3.5. WHIM descriptors

1st component symmetry directional WHIM index/weighted by
atomic Sanderson electronegativities (G1e). Properties de-
scriptors: Moriguchi octanol-water partition coefficient (MLOGP).
3D-MoRSE descriptors:3D-MoRSE signal 01/weighted by atomic
masses (Mor01m).



Table 3
Statistical parameters used to assess QSPR models using RM-MLR, GA-MLR, SR-
MLR, and FS-MLR methods.

Parameters Set RM-MLR GA-MLR SR-MLR FS-MLR

R2 Training set 0.5804 0.5974 0.6461 0.4340
Test set 0.5496 0.5119 0.5095 0.2644

RMSEP Training set 1.0659 1.0441 0.9790 1.2381
Test set 1.0220 1.0590 1.0598 1.3407

RSEP(%) Training set 26.2851 25.7482 24.1409 30.5304
Test set 25.3665 26.2847 26.3043 33.2762

MAE(%) Training set 8.3180 8.1737 7.7564 8.9780
Test set 14.8636 14.7034 14.9099 16.4353

PRESS Training set 138.6127 133.0081 116.9208 187.0030
Test set 41.7784 44.8574 44.9246 71.8946

Ratio PRESS/SST Training set 0.4196 0.4026 0.3539 0.5660
Test set 0.4660 0.5003 0.5011 0.8019

Note: R2: square correlation coefficients; RMSEP: root mean square error of pre-
diction; RSEP: percent of relative standard error of prediction; MAE: Percent of
mean absolute error; PRESS: predictive residual sum of squares; and Ratio of
PRESS/SST where SST is the regression sum of squares values.
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− ( ) = − ( ± )

− ( ± ) ×

+ ( ± )

× + ( ± ) ×

− ( ± ) ×

log V FS/MLR 8.714 1.945

1.363 0.454 Mor22m

5.116 0.910

HNar 1.577 0.335 IC1

0.267 0.081 MLOGP

P
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N R S p

R S R S

S
N R S
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0.608, 1.335, 0.493, 1.508,
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4
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3D-MoRSE descriptors: 3D-MoRSE signal 22/weighted by
atomic masses (Mor22m).

Topological descriptors: Narumi harmonic topological index
(HNar), Information content index neighborhood symmetry of
1-order (IC1). Properties descriptors: Moriguchi octanol-water
partition coefficient (MLOGP).

In these equations, N is the number of the selected compounds;
R is the correlation coefficient of the training set, S stands for the
model's standard deviation from calibration, p is the significance
of the model, and subindex loo and l-25%-O stand for the Leave-
One-Out and leave 25% out cross validation technique, respec-
tively. The SRand represents the standard deviation according to the
Y-Randomization technique (100,000 cases). The results show that
RM is more reliable than the other feature selection methods.
More information about these descriptors can be found in the
handbook of molecular descriptors (Todeschini and Consonni,
2000). For further details, the published article is reported by
Katritzky et al. (2007).

Fig. 3 shows their residual values against the predicted � log VP
data for the training and test sets using the replacement method
(RM). The six commonly used statistical parameters for probing
the prediction ability of the constructed model are listed in Ta-
ble 3. These parameters are: correlation coefficients (R2), root
mean square error of prediction (RMSEP) and percent of relative
standard error of prediction (RSEP) and percent of mean absolute
error (MAE), predictive residual sum of squares (PRESS) and ratio
of PRESS/SST, where SST is the regression sum of squares values.
The results confirm the reliability of the considered models. In
general, the RM, GA and SR-MLR models, but particularly the RM-
MLR case, were found to be efficient well-estimated methods for
parameter selection (for both training sets and test sets) to
Fig. 3. Plot of residual values against the predicted vapor pressure (� log VP) of
pesticides for training set and test set using replacement method (RM).
improve the QSPR predictive capability for the selected series of
pesticides. FS-MLR method, with the lowest correlation coeffi-
cients (R2) and low values of other statistical parameters (RMSEP,
RSEP, MAE, PRESS, and Ratio of PRESS/SST) reported in Table 3,
appeared not to be satisfactory parameter selection method. This
observation is consistent with our earlier publication, (Wong et al.,
2014; Gharagheizi et al., 2012a, 2012b) which reported that the
Replacement Method (RM) yields the linear regression QSAR
models with much less computational work. We also described
that RM gives models with better statistical parameters than the
Forward Stepwise Regression procedure and Genetic Algorithm
method (GA) (Mercader et al., 2010).

To the best of our knowledge, this is first account to build QSPR
model for this series of pesticides. Overall, the prediction perfor-
mances of all the applied techniques were shown to be the same,
and that all the methods evolution of the generation took the
same fitness after the iteration as they converged to a similar R2.
The results can be also found in Table S1 in supplementary
material.
4. Conclusion

Multiple linear regression (MLR) method was used to construct
a quantitative relationship between the vapor pressure values of
the selected pesticide agents and their calculated physico-chemi-
cal descriptors. Different RM, GA, SR, and FS-MLR feature selection
methods were useful for these chemicals to identify the most
contributing descriptors in QSPR models. Amongst the applied
feature selection method, RM yielded more improved statistical
parameters of QSPR models in comparison to the Forward Step-
wise Regression method and various elaborated Genetic
Algorithms.

Several RM, GA, SR, and FS-MLR validation techniques con-
firmed the accuracy of the produced QSPR model through calcu-
lating its fitness based on both training sets and by testing the
prediction capabilities of the model. The encouraging results
showed that the QSPR model was robust and could be used suc-
cessfully to estimate the vapor pressure of pesticides compounds.
It appears that a significant requirement for constructing a robust
QSPR model should be that it reinforces the performance of re-
ference models (a QSAR model that we are referring to validate our
own model) in terms of fitness and prediction quality. The out-
come of this study suggests that the predictive performance for
physico-chemical properties, and the reliability and interpret-
ability of a QSPR model, can be improved or maintained in



M. Goodarzi et al. / Ecotoxicology and Environmental Safety 128 (2016) 52–60 59
comparison to that of the reference model using different RM, GA,
SR, and FS feature selection methods.
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