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Abstract—This paper focused on exploiting remotely sensed
active and passive observations over agricultural fields for soil
moisture retrieval purposes. Co-polarized backscattering coeffi-
cients HH and VV and V-polarized brightness temperature T}y
measurements were merged onto a Bayesian algorithm to enhance
field-based retrieval estimates. The Bayesian algorithm relies on
the use of active SAR to constrain passive information. It is as-
sumed that observations are representative of an extent involving
field sizes of about 800 m by 800 m, disregarding the scaling issues
between the high resolution SAR pixel and the coarse resolution
passive pixel. The integral equation model with multiple scatter-
ing at second order (IEM2M) and the w — 7 model were used
as forward models for the backscattering coefficients and for the
V-polarized brightness temperature, respectively. The Bayesian al-
gorithm was assessed using datasets from the Soil Moisture Active
Passive Validation Experiment 2012 (SMAPVEx12). Such datasets
are representative of contrasting soil conditions since soil mois-
ture spanned almost its whole feasible range from 0.10 to 0.40
em’/cm?, at different observation geometries with incidence angles
ranging from 35° to 55°. Also, the fairly large amount of measure-
ments (97) made the dataset complete for assessment purposes. Soil
moisture variability at field scale and dielectric probe error were
accounted for in the comparison between retrieved estimates and
in situ measurements. Performance metrics were used to quantify
the agreement of the retrieval methodology to in sifu information,
and to assess the improvement in the combined methodology with
respect to the single ones (active or passive). Overall, the root mean
squared error (RMSE) showed an improvement from 0.08 to 0.11
cm’/cm? (only active) or 0.03-0.12 cm3/cm? (only passive, after bias
correction) to 0.06-0.10 cm’/cm® (combined), thus, demonstrating
the potential of such combined soil moisture estimates. When an-
alyzed each field separately, RMSE is less than 0.07 cm*/cm® and
correlation coefficient r is greater than 0.6 for most of the fields.

Index Terms—Bayes procedures, inverse problems, moisture,
radar applications, remote sensing, rough surfaces, soil measure-
ments, synthetic aperture radar (SAR).

1. INTRODUCTION

N-GOING and near-future synthetic aperture radar (SAR)
O satellite missions are expected to provide meaningful and
timely information about soil condition over vast agricultural
lands such as those of the mid-western United States (corn-belt)
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and of Argentina (Pampas Plain), leading to actual economic
benefits regarding to seeding dates, irrigation strategies, and
crop yield forecasting. NASA’s soil moisture active and passive
(SMAP) [1] and Argentinean SAOCOM (www.conae.gov.ar)
missions have been specifically designed to develop surface
soil moisture products. These missions will exploit microwave
radar at L-band (A = 23 cm) as sensing wavelength, which was
demonstrated to be less sensitive to residue cover over soil’s
surface and to be more accurate on retrieving soil moisture than
other bands. The relevance of this study relies on the on-going
satellite L-band missions (ALOS-2, SMAP) enhanced by the
forthcoming SAOCOM and the planned DLR TanDEM-L [2]
missions.

SAR systems offer the added advantages of fine resolution (on
the order of 10 m), multiple polarimetric modes, and a variety of
beam incidence angles, which make them unique to develop soil
moisture products over agricultural lands. However, modeling
the scattering processes that relate backscattering coefficient o
to soil properties (moisture and roughness) is hampered by the
speckle noise [3] and the difficulty in measuring soil roughness
in the field [4]. The former mainly relates to the SAR imag-
ing system, whereas the latter relates to the heterogeneity of
soil properties. Moreover, several combinations of soil surface
parameters can often lead to the same SAR observation. Thus,
the impact of soil heterogeneity on retrieving soil moisture from
SAR should be somehow minimized. In effect, agricultural lands
are often divided into smaller fields, each one characterized by
the same land management and land use over several growing
seasons. Therefore, these fields usually have the lowest variabil-
ity of soil properties in relation with larger areas. In this way,
estimates defined on a field basis are best suited for SAR-based
retrieval purposes.

Information from passive remote sensing can also be used
to aid to constrain the retrieval of soil moisture. Microwave
emissions are more strongly correlated to soil dielectric prop-
erties than active SAR, but can only be collected at coarser
resolution (40 km in case of SMAP). Soil emissivity (passive
microwave) and soil reflectivity (active microwave) are corre-
lated, i.e., thermal microwave emission (brightness temperature)
decreases and backscattering cross section (backscattering coef-
ficient) increases in response to an increase in the dielectric con-
stant (due to soil moisture) from the land surface, respectively.
However, joint models in which soil emissivity and reflectivity
are modeled under the same physical basis (usually energy con-
servation principle) are very complex ones to be used in an
operational retrieval algorithm, even in the simplest case of bare
soil.
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This paper addresses these different issues in the context
of a Bayesian retrieval scheme. Within this frame, the above
discussion leads to the following remarks:

1) The choice of forward models, for both the active and
passive microwaves, should respond to simplicity and ease
of use in the retrieval algorithm (i.e., lesser number of
ancillary data and model parameters suited for remotely
sensed observations).

2) A large-scale soil moisture guess from passive mi-
crowaves can be used to constrain the active information
included in the likelihood.

3) Through inversion of the passive forward model, the guess
soil moisture is an average of the actual soil moisture
within the footprint of the radiometer. The lower the het-
erogeneity in soil moisture of the fields encompassing
the pixel, the lesser the errors due to biased priors. Sit-
uations with high heterogeneity in soil moisture should
be carefully evaluated and they are out of the scope of
this paper. Disaggregation algorithms were developed to
downscale coarse resolution radiometer data into an in-
termediate product by means of SAR data [5], this way
minimizing the incidence of heterogeneity in the guess es-
timate. However, this intermediate radiometer data might
be highly correlated to SAR data.

Ideally, a Bayesian Combined Active/Passive (B-CAP)
retrieval algorithm yields the smaller errors when active and
passive information is collected at similar spatial resolution (for
instance, using data from an airborne campaign).

Previous studies employing Bayesian merging techniques
adopt Gaussian distributions to include the speckle noise and
the model errors [6], [7]. However, when dealing with polari-
metric data with small number of looks or when the shape of the
posterior is wanted to be estimated accurately, a better modeling
of the speckle noise is needed. The shape of the posterior, which
is related to the forward model chosen, the error sources consid-
ered (speckle noise, model or instrument errors, etc.), and the
contextual information, furnishes information about the entire
process of a rough, dielectric surface being observed by a SAR
sensor and the uncertainty about the soil parameters. One of the
distinctive aspect of the methodology presented in this paper
is that the residual speckle noise after multilooking is mod-
eled using the exact distribution for a bivariate intensity-pair
image.

Low resolution radiometer data has been combined with high
resolution SAR data using the radar backscatter spatial patterns
within the radiometer footprint to disaggregate the radiome-
ter brightness temperature [8]. This method is used as baseline
SMAP algorithm [9] and was recently evaluated using airborne
active and passive observations in a diverse agricultural region
[10]. Other combined active/passive (CAP) approaches involve
joint-physics [11] where optimum model parameters, which
minimize an unified cost function of the active and passive
data, are recorded as retrieved soil moisture [11], the use of
SAR to determine the relative amount of change in soil mois-
ture within the footprint of a radiometer through a time series
analysis [12], and SMAP optional algorithms: 7}, disaggregation
at high (3 km) and medium (9 km) resolutions [9].
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In a recent paper [13], microwave radiometer observations
from Soil Moisture Active Passive Validation Experiment 2012
(SMAPVEX12) field experiment data has been exploited to es-
timate soil moisture. This soil moisture retrieval is based on L-
band brightness temperature, where a correction for the rough
surface reflectivity is defined and tuned for different soil texture
conditions. This reflectivity correction depends on soil moisture
level and the proximity of the last rain event. Therefore, this
retrieval algorithm needs a number of ancillary data such as soil
texture (to estimate wilting point and field capacity) and precip-
itation occurrence (to estimate the number of days since the last
precipitation event) whose availability may be limited in large
croplands.

Validation of field-based retrieved estimates against ground-
truth data should be done carefully, since different spatial scales
are involved. On the one hand, retrieved estimates represent
mean soil moisture over a spatial domain defined by the outer
limits of the field, typically ranging from 1 to 50 ha. On the
other hand, soil moisture estimates derived from ground-based
sampling involve a finite (and often small) number of point
measurements (over an extent of 1 m x 1 m) performed with
nonideal (i.e., with errors) instruments. Since agricultural fields
are regarded as the unit for retrieving purposes, field-intrinsic
soil moisture variability should be taken into account. This vari-
ability cannot be measured from a high resolution SAR image
over the agricultural field, due to radiometric uncertainties from
speckle noise. It only can be estimated by means of a field exper-
iment (see, for example, Famiglietti et al. [14]). This variability
becomes critical when comparing the performance of retrieved
estimates against ground-truth data [15]. Despite this, and to the
authors knowledge, errors in ground-based estimates are usu-
ally disregarded. Accounting for the errors in the ground-truth
data due to the well-known spatial variability of soil moisture
constitutes another distinctive aspect in this paper.

We present here a Bayesian active/passive methodology in
which soil moisture estimations from passive microwave data
are used to constrain the estimation from active radar ones
through a preliminary soil moisture guess (through a single
channel algorithm (SCA)), providing active and passive obser-
vations correspond to similar field extents. This methodology
exploits outstanding IEM2M as forward model [16] to describe
radar rough-surface scattering of bare or sparsely vegetated soils
and can be used to test SMAP active/passive soil moisture prod-
uct in bare soils over agricultural lands. The capability of passive
microwave measurements to improve radar soil moisture pre-
dictions is demonstrated in this paper with in sifu and airborne
observations from the SMAPVEXx12 field campaign.

II. DATASET DESCRIPTION

A. Site Description and Airborne Instruments (UAVSAR
and PALS)

The dataset to test the Bayesian approach were taken from the
SMAPVEXx12 over southwest of Winnipeg, Manitoba, Canada.
The reader is referred to [17] and [18] for a complete description
of the dedicated field campaign. Seventeen bare and sparsely
vegetated soybean fields were chosen. Soybean fields were
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imaged by NASA/JPL’s Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) and by Passive Active L-band Sys-
tem (PALS) every 2-3 days during a six-week campaign from
June 7 to July 19. Because of the different acquisition dates,
fields were imaged several times during the campaign. More-
over, each acquisition of the UAVSAR was comprised of four
main flight lines, namely 31603, 31604, 31605, and 31606, with
different incidence angles.

UAVSAR provided fully polarimetric L-band imagery at
beam incidence angles comprising 20-60° due its right-looking
antenna at a nominal incidence angle of 40°. It acquires
backscattering coefficients HH, HV, and VV at a frequency of
1.26 GHz with absolute radiometric calibration bias better than
1 dB and residual root-mean-square (RMS) errors of ~0.7 dB
[19]. The pixel size on the ground projected image is 5.00 m
x 7.20 m. Multilooking of the pixels within a field leads to a
backscattering coefficient related to an area of about 800 m by
800 m (field size).

PALS was mounted at a 40° incidence angle looking to the
rear of the aircraft, so that a 40° nominal incidence angle was
fixed throughout the images. It acquires H- and V-polarized
brightness temperatures at a frequency of 1.413 GHz with un-
certainties of 1 K (bias) and 0.2 K (stability) [20]. The flight
altitude was about 2600 m above ground level with an effective
spatial resolution of about 900 m by 1600 m (see [17, Table 3]).
Co-located surface soil temperature using an infrared camera
attached to the aircraft was also measured.

The brightness temperature 7;, were spatially collocated by
averaging those PALS measurements that felt within each field.
The low-altitude radiometer footprint size was approximately
500 m and 7} was acquired over separate flight lines which did
not cover all the fields. For this reason some fields had not their
corresponding 7}, measurement. It is also important to note that
PALS provides a single beam of data along a flight track and that
any mapping must rely upon multiple flight lines at a spacing of
the footprint width.

Concurrent with the airborne acquisitions, in situ soil mois-
ture (0—6 cm) was collected using handheld probes. Each field
was sampled at N =16 locations along two transects across the
field. At each location, M =3 replicates were measured. Ad-
ditional soil and vegetation characterization took place on the
non-flight days during the campaign: roughness RMS height s
and correlation length [, soil texture (sand S and clay C' contents)
and vegetation water content VWC.

B. Preprocessing

Agricultural lands are often divided into smaller fields each
one characterized by the same land management and land use
over several growing seasons. Thus, it is appropriate to assume
that those fields are the larger agricultural extents in which land
properties can be regarded as homogeneous. The relevance of
this consideration is twofold: first, it sets the maximum aver-
age window over which neighboring pixels can be average to
reduce the impact on radiometric uncertainties due to speckle
noise, leading to a definite (i.e., with low variance) backscatter-
ing coefficient. Second, accurate remotely sensed soil moisture
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estimates arise from a definite backscattering coefficient. For
this reason, SAR-based soil moisture estimates are best defined
on a field basis. These estimates will be referred to as “field-
based retrieved estimates’ hereafter.

For each field, the number of looks n was computed as fol-
lows. First, image is multilooked averaging pixels within squares
of increasing size (2 x 2, 3 x 3, and so on). Then, the sample
variance of the backscattering coefficient from each multilooked
images is computed. When the variance is not decreased as the
number of looks increased, the corresponding n = pu?/var is
used, where  is the mean value and var the variance for HH. In
other words, the speckle effect is reduced until the heterogeneity
of the scatter dominates the variance of the target. The rationale
behind this procedure is that it is meaningless to multilook an
image beyond the intrinsic heterogeneity of the underlying scat-
ter, since the resulting n will be overestimated. Thus, the number
of looks takes into account the residual speckle as well as the
heterogeneity of the underlying scatter. At this step, the mean
values (HH,eas, VVimeas) Of the backscatter coefficients and the
correlation p between HH and VV channels are also computed.

III. OVERVIEW OF THE CAP BAYESIAN APPROACH
A. Bayesian Theorem in the Context of SAR Products

The Bayesian approach presented here is based on the bi-
variate version of the Bayes’ theorem. An expression for the
conditional (“posterior”) probability of measuring a certain set
of soil parameters (¢ and s) given measurements of backscatter-
ing coefficients z; and z, can be obtained from Bayes’ theorem:

Py, 7, (21, 22|e, ) Prs (€, 5)
Py, 7,(z1,22)

ey

P(e, s|z1,20) =

where Pz, z,(z1,22]e,s) is the probability of measuring a
certain set (27, 29) of backscattering coefficients given mea-
surements of soil dielectric constant € and RMS height s (the
“likelihood function”), Pgg is the prior joint density function
of € and s and P(z, z2) (the “evidence”) is a global normal-
izing factor and it is the probability of a certain set (21, 22) to
be measured. The likelihood function is a stochastic version of
the forward model and measures the degree of compatibility
between a certain SAR measurement and certain soil parame-
ters constrained to some given forward model. The higher the
values of the likelihood, the more likely that the SAR measure-
ment come from that specific combination of soil parameters,
provided an error-free model is available. The likelihood takes
into account the forward model as well as the speckle noise
and therefore its spread is due to soil parameter sensitivity and
the speckle noise [21]. The prior involves all the information
available about soil parameters ¢ and s. It can be available from
historical records, estimation from other sensors, in situ data
and/or contextual information. With the likelihood and the prior
at hand, the posterior is computed by a point-by-point product
of them.

Then, providing the conditional density function (1) is exact,
the optimal unbiased estimator for the mean value of ¢ that has
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Fig. 1.

Posterior as the product of the prior and the likelihood. The prior is assumed to be constructed with information from passive microwaves. The likelihood

spans the region where the measured backscattering coefficients are compatible to residual speckle noise and heterogeneities within the target. The mean estimator
"%, the SCA for V-polarized brightness temperature estimator SCAV and the in situ estimator for real dielectric constant are indicated on the posterior.

the minimum variance is the mean of (1)

ghay — // eP (5|21, 22) deds )
D

and similarly the squared standard deviation std[-] of this esti-
mator is

std[e"™)? = // (e = ")’ P (e, 8|21, 2) deds  (3)
D

where an explicit expression for (1) must be found in order to
calculate " and its standard deviation. The integration domain
D in (2) and (3) spans the same validity range than the forward
model with respect to (¢, s). The standard deviation std[e"* ] can
be used as a measure of the error of the retrieved estimate " .
In addition, a number of error metrics will be used to assess the
performance of the retrieved estimates against ground-truth data
[22] (e.g., maximum absolute error, MAE; root mean squared
error, RMSE; bias, b; unbiased-RMSE, ubRMSE; and sample
correlation, r).

B. Posterior

The posterior is built as the product of the likelihood function
by the prior distribution as shown in Fig. 1. Dielectric constant
estimates are computed from the posterior distribution as men-
tioned in Section I1I-A, and then converted into soil moisture us-
ing the empirical relationship described further in Section IV-D.
Measured backscattering coefficients HHyy, a5 and VVy,eas are
shown on the likelihood as contours. Residual speckle noise
on intensity images and heterogeneity of the backscatter en-
larges the region on the space (g, s) compatible to measured
coefficients HH,, ¢, and VVeas.

C. Likelihood Function Construction

Let be assumed that co-polarized backscattering coefficients
are at hand, i.e., (Z1,22) = (HH,VV), so that (z1,22) =
(hh, vv). The likelihood function is constructed as follows. First,
the validity range of a forward model, referred to as C, in
terms of € and s is discretized (for a fixed wavelength, see

Section IV-A). The remaining parameters, (correlation length [,
incidence angle 6, and wavelength 1) will be assumed to be
known, either by ground-based measurements (I) or by the
sensor parameters (6, A). Second, each pair (g, s) is converted
to backscattering coefficient throughout the forward model
C(e,s,1;0,1), leading to a grid of pairs (hh, vv) which rep-
resents the backscattering properties of the target. The vari-
ance due to speckle noise of the expected value of (HH, VV)
is modeled by means of the bivariate gamma distribution
Pupvy (hh, vv|Cyp, Cyv, n, p), as explained in Section IV-B.
Thus, each pair (e, s) is associated to a bidimensional bivariate
distribution Pygyy (hh, vv|e, s;1, 6, %, n, p) throughout the for-
ward model C; (¢, s,1;0, 1), i = HH, VV. This is the likelihood
function. By using the procedure described in Section II-B, the
likelihood spreads on an area onto the (g, s)-space which takes
into account the model uncertainties as well as the residual
speckle noise at the same time.

D. Prior Distribution

The prior distribution describes the possible values of soil
dielectric constant ¢ and RMS height s before SAR acquisition
takes place. In what follows, it will be assumed independence be-
tween ¢ and s, i.e., Pgs(e,s) = Pg(e)Ps(s). Two kinds of pri-
ors are taken into account. When passive microwave-based soil
moisture guess is not available, an uniform prior Py ~ U(3, 30)
for ¢ is used instead. A normal distribution is used to describe
the uncertainty around the mean value p4 of the ground-based
estimate s. Mathematically, Ps ~ N (us, o). The uncertainty
0 is arbitrarily set to 0.20 .

When passive microwave observations are available, they en-
able the use of soil moisture estimations from the brightness
temperature of the soil as the prior Pg (). The w — 7 model
[9], [23] is a rather simple physical model used to link the ob-
served brightness temperature (7;) with surface dielectric and
geometric properties. The w — 7 model is of the form

Tov=Ts(1—r,)e o7 4+ Te(1— w)(1 — e & )(1 4+ 7 e o)
4
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where T's and T~ are the soil surface and vegetation temperature,
respectively (that will be assumed equal), 7, is the reflectivity,
T represents the optical depth, and is b parameter multiplied by
vegetation water content (VWC, [kg/m?]), and 6 is the incidence
angle. For the soybeans fields analyzed here, vegetation param-
eter b was set to be 0.13 based on [24, Table I]. Vegetation water
content was derived from plant water content obtained from
in situ measurements [18]. Vegetation scattering parameter w
was set to 0.05 following again [24, Table I].

The w — 7 is readily invertible by means of the SCA [25].
Thus, the estimated dielectric constant from passive V-polarized
brightness temperature 73y is used to center a Maximum En-
tropy (MaxEnt) probability distribution into the prior. The main
advantage of the MaxEnt statistical inference is the absence of
any external hypothesis other than the mean and the upper and
lower bound of the range. One way to generate such a Max-
Ent probability distribution subject to these constraints is to use
Lagrange multipliers [26]. The lower and upper bound for the di-
electric constant was £y,i, = 3 and £,,;, = 30, respectively. Error
sources in SCA are mainly related to the uncertainties on the
brightness temperature and to the estimation of soil and vegeta-
tion temperature from infrared camera on board PALS.

IV. CAP BAYESIAN ALGORITHM
A. Forward Model

The integral equation model with multiple scattering at sec-
ond order, named as IEM2M [16], is the name given to an
improved, enhanced version of the integral equation model
originally developed by Fung [27] to describe rough-surface
scattering in the field of radar remote sensing for Earth observa-
tion. The backscattering coefficient in the IEM2M formulation
can be written as the sum of a single scattering term and a
multiple scattering term

ou, =00, (S) + o0, (M) (5)

qp

where o, (:S) is the single scattering term, o, (M) is the multi-
ple scattering term, and the subscripts g, p state for the receiving
and transmitting polarizations, respectively. The single scatter-
ing term O'gp (S) accounts for the electromagnetic radiation that
leaves the rough surface after only one interaction with its in-
terface. This is a local phenomenon and depends only on the
contact point between the radiation and the surface. Conversely,
radiation that have multiple interactions at the interface is ac-
counted for in ng (M). This latter is not a phenomenon merely
local as depends on the entire configuration of the rough surface.
Mathematically, the single scattering term agp (S) corresponds
to terms fully integrated, which are readily evaluated, whereas
o, (M) involves a number of high-dimensional integrations
[16].

Since IEM2M is based on Kirchhoff approximation, its va-
lidity range in terms of RMS height s, correlation length [, and

wavenumber k (= 2Z) is [28], [29]

12 942 3/2
kQ—\/gs <1+;) > 1 (6)
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which physically implies a large local radius of curvature.

To avoid multiple scattering calculations (which requires at
least a four-dimensional integration) found in the term o, (M),
further approximations are made in order to numerically evalu-

ate expression (5) so that o, ~ o) (S). The term o, (M) can
be neglected under the following conditions [30]:
ks < 2 (7a)
s/l < 0.3. (7b)

Care was taken to perform the retrieval only using measure-
ments that agreed with conditions (6) and (7).

A pre-requisite for the use of a theoretical model is the vali-
dation of the model against the field measurements and related
backscattering coefficients. First, [IEM2M validity range were
checked using (6). Measurements where pairs (s,!) yield (6)
greater than 3 were kept. Second, it turned out that measure-
ments with quite small and quite large incidence angle were
poorly described by the IEM2M. Thus, only measurements be-
tween 6 = 35° and # = 55° were kept. Finally, since IEM2M
assumes bare or sparsely vegetated soil, Radar Vegetation Index
(RVI) [31] was used to characterize the vegetation volume scat-
tering. Thus, fields with low RVI (RVI < 0.3) were assumed
to behave as a bare soil at L-band. Model prediction against
observations is shown in Fig. 2 for the measurements that ful-
filled inequation (6) larger than 3, incidence angle 35° < 6
< 55° and RVI < 0.3. The IEM2M models reasonably well
the dataset, where contrasting soil conditions were presented.
Fields are color-coded and indicated with text arrows. Some
similar studies comparing IEM model simulations and remotely
sensed radar measurements at L-band reported errors ranging
from 2 [32] to 3-5 dB [33].

Microwave backscattering from a random surface is mono-
tonically increasing with dielectric constant € and roughness s.
Also, HH and V'V backscattering coefficients have different sen-
sitivities to soil moisture, so that the larger the soil moisture, the
greater the difference between HH and VV. The same holds for
soil roughness. Thus, since soil roughness is considered to re-
main stationary over time for each field, the difference between
measured HH and V'V is related to soil moisture.

The effect of model overestimation on the predicted soil
moisture can be understood as follows. Let be assumed that
a pair (HHy,cas, VVineas) s observed. These backscattering co-
efficients correspond to a surface with actual (¢, s) provided the
model is accurate (i.e., no model errors). If the model overesti-
mates the measured (HHy, a5, VVineas), it follows that smaller
(g, s) will reproduce the observed backscattering coefficients
via the inaccurate model. Roughly speaking, fields 63, 111, and
113 for acquisition 31605, and fields 103 and 113 for acquisi-
tion 31606 are expected to underestimate in sifu soil moisture.
Conversely, field 14 for acquisition 31606 is expected to overes-
timate in situ soil moisture since for this field model prediction
underestimates observed backscattering coefficient. Since no
model biases were accounted for in the simulation, the likeli-
hood spreads around the intersection of the level curves given
by (HHneas; VVimeas). However, the intrinsic heterogeneity of
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IEM2M model validation against field measurements for HH and V'V backscattering coefficients. Data were collected from four different UAVSAR flight

lines (31603-31606) on different acquisition dates. Dataset were selected among those (s,l) pairs for which (6) is larger than 3, incidence angle 35° < 6 < 55°,
and RVI < 0.3. Fields are color-coded and indicated with text arrows. (a) Flight line 31603. (b) Flight line 31604. (c) Flight line 31605. (d) Flight line 31606.

the underlying scatter is taken into account by the number of
looks since the average standard deviation of the backscattering
coefficients is about the RMSE shown in Fig. 2.

B. Speckle Noise

The estimator derived from the stochastic (Bayesian) proce-
dure described in Section III-A is affected by speckle noise. The
Bayesian procedure relies on diminishing speckle noise in a pre-
processing stage to attain reliable estimates. Also, the Bayesian
approach includes a model for speckle noise and therefore can
deal with residual speckle noise in a systematic way after the
preprocessing stage.

The preprocessing stage is described in Section II-B and
roughly consists of averaging pixels (multilooking process) over
each field) for an intensity (HH,VV)-pair image until the vari-
ance of the backscattering coefficient is not decreased. The sta-
tistical properties of the resulting (multilooked) intensity image

is described by a bivariate gamma distribution [34, Eq. (30)],

ie.,
z1 z9
—-n| 4+ )
17+l( (Ol 02
1—p?

n zlzg)“”’l)/z exp

(n) _
Plez (21722)_ (CICQ)(nJrl)/QI‘(n)(l _ p2)pnfl

[ Z1%2 14
X In,1 (271 7(0102) 1— p2> (8)

where C and Cy are the expectation value of Z; and 75, i.e.,
Cy = E[Z;] and Cy = E[Z,], respectively, and are given by
means of a forward model which predicts the value of C and
(5 in terms of dielectric constant, roughness, beam incidence
angle, and wavelength. In expression (8), n is the number of
looks of z; and 29, and p is the correlation between z; and z5.
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Fig. 3.

Retrieved soil moisture using SCA for V-polarized brightness temperature 7} . A bias correction for surface temperature 7" = 1.107’s is applied.

Error metrics correspond to bias-corrected SCAV. (a) 31603. (b) 31604. (c) 31605. (d) 31606.

As mentioned, a forward model maps dielectric constant €
and roughness s, [ into the expected value C' = C; (e, s,1; 0, 1),
i =1, 2. The measured (2, 22 ) differs from C' for several rea-
sons, such as the instrumental errors, the residual speckle after
multilooking, and the influence of further soil parameters affect-
ing the radar response, which have not been accounted for in the
forward model. Heterogeneities within the radar resolution cell
may also represent a source of discrepancy since the forward
relation C'(e, s, 1) is non-linear.

C. Bias Correction for Soil Temperature Tg

A bias were found on PALS data when comparing retrieved
soil moisture from 73y using SCA to in sifu soil moisture, as
shown in Fig. 3. PALS radiometer calibration stability assured
brightness temperature measurements to be within 1 (bias) and
0.2 K (stability) [20]. For typical T3,V values of about 270 K over
land, this led to relative errors less than 0.5%. On the other hand,
surface soil temperature 7 as required by the w — 7 model in (4)
is estimated by means of an infrared camera on board the aircraft
carrying the PALS. Since the brightness temperature observed
at L-band (A = 23 cm) originates from a layer of the soil surface
whose thickness is several centimeters deep, the soil temperature
T, used to parameterize the w — 7 model should account for
this extended layer. However, thermal infrared radiation (TIR)
as measured by PALS camera is sensitive to the uppermost
layer of the soil, known as skin temperature [18]. This skin
temperature differs from deeper layers due to thermal inertia
of soil. Since PALS acquisitions started around 14:00 h and
stopped around 19:00 h, skin layer cooled as the deeper layers
heated as heat flowed downwards. Physical temperature at 5 cm
depth, measured with in situ probes from temporary stations
provided by the USDA [18], as underestimated by roughly 10%
in the PALS measurements (figure not shown). For this reason,
the PALS skin temperature used into SCA caused the bias shown
in Fig. 3.

In any case, it was found that the bias shown in Fig. 3 can
be corrected adding a 10% to the measured soil temperature,
ie., T = 1.10Ts, where the superscript stands for “cor-
rected.” This bias-corrected surface soil temperature was used
throughout this study.

Bias can also be corrected by increasing soil roughness. How-
ever, it was found that the corrected soil roughness corresponded
to RMS heights of about 1.5-2.0 cm, more rough than the

commonly accepted value of 1 cm for no-till croplands such
as the soybean fields of this study.

D. Soil Dielectric Constant and Volumetric Soil Moisture

The estimator given by expression (2) is an estimator for soil
real dielectric constant. However, validation from retrieved es-
timates is often performed against ground-truth data in terms
of volumetric soil moisture m,, . Conversion from real dielectric
constant to soil moisture is done by means of a second-order
polynomial empirical relationship as stated in [35]. Other di-
electric models to convert € to m, can be found in [36] and
[37]. Hence, inversion to obtain m,, from ¢ is straightforward

ml}

—b(f,S,C) +/b(f,S,0)2 —4c(f, S,C)(a(f,S,C) —¢)
2¢(£,S,C)

&)

where coefficients a, b, and ¢ depend on frequency f, and .S
and C' are the percentage of sand and clay contained in the soil,
respectively. Coefficients for 1.4 and 6 GHz, among others, are
explicitly shown in [35, Table II]. Moreover, the error in the
estimate m, can be computed from the error in € as follows:

dm,
de

where std[m>®] is the error computed as the standard deviation
of the soil moisture estimator and the total derivative is readily
computed from (9) and is evaluated at £"2¥.

std[abay]

Ehay

(10)

v

std[mb“ly] — ‘

E. Total Error in Field-Based in situ Soil Moisture

Portable impedance probes measure the dielectric properties
of the soil-water—air mixture from which the volumetric soil
moisture can be inferred. The instrument error after performing
a field-specific calibration is [15]

o2

“rmse
M
where M is the number of measurement replicates (M = 3),
€hias and e,y se are the bias (which refers to the accuracy) and the
statistical error (which refers to the precision) of the linear fitting
among the volumetric water content using gravimetric (oven-
dry) method for core samples and the calculated volumetric
water content using the field-specific calibration for the probes.

el2)ias + (1 1)

€inst =
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For the SMAPVEx12 campaign, such a calibration yielded a
negligible bias and a statistical error ranging from 0.012 to
0.054 cm’/cm® for the soybean fields analyzed here [38,
Table 2]. In addition to instrument errors, a second error source
comes from the spatial variability of the soil moisture at field
size S, quantified by the standard deviation o(m3) [14]. An
error estimate og for the true field-mean soil moisture m, com-
puted from NN sparse site measurements over the field extent is
given by [39, Ch. 7]

a(m?)

TUN e

where te N-1 is the a quantile of the Student’s ¢ distribu-
tion with NV — 1 degrees of freedom. Expression (12) defines
a 100a% confidence region for the true mean value m,,. In (12),
the standard deviation of soil moisture at field size .S is computed
as [14], [15]

o5 = 12)

7
X7

13)

where D = 0.086, X, = 2.879 x 10'" m, and S is the spatial
scale on which soil moisture is retrieved. Thus, S is the size of
each field (i.e., 800 m by 800 m or 6.4 x 10° m?), since this
paper deals with field-based retrieved estimates.

The standard deviation allowed by expression (13) has a dy-
namic range of 0.040 cm?/cm? for the spatial scale S; = 256 m*
to 0.059 cm’/cm? for the spatial scale S,, = 2.56 km? [14]. S,
and S, are the lower and upper spatial scales corresponding to
the feasible region in (13), respectively.

Instrument Forward
parameters Model Likelihood
(active)
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Flowchart of the B-CAP retrieval scheme. Symbol of a cross mark encircled indicates product operation. Single line encircled indicates an ‘Or’ statement.

TABLE I
COMPONENTS AND TOTAL ERROR FOR IN SITU SOIL MOISTURE FOR EACH SITE

€inst os egrd
Field [em3/cm?] [em3/ecm?] [em3/cm?]
14 0.012 0.055 0.056
33 0.047 0.055 0.062
63 0.034 0.055 0.058
64 0.027 0.055 0.057
82 0.040 0.055 0.060
103 0.038 0.055 0.060
111 0.043 0.055 0.061
113 0.040 0.055 0.060
114 0.044 0.055 0.061
123 0.054 0.055 0.064

Finally, the total error e4q in the ground estimate is

— /2 2
Cgrd = Cinst + Og

where ej,5 is the total instrument error and og is the uncertainty
related to the spatial variability of the soil moisture at extent .S.
Numerical evaluation of (11), (13), and (14) is shown in Table I.

The in situ soil moisture estimates shown in Section V have
error bars computed from (14).

(14)

F. Flowchart of the Methodology

A flowchart of the procedure adopted in this paper is shown in
Fig. 4. The electromagnetic forward model describes, at a certain
level of accuracy, the interaction of the radar pulse with the soil
and predicts how this amount of energy is modified by the dielec-
tric and geometric properties of the target in his way back to the
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Retrieved estimates for volumetric soil moisture m,, against measured ground-truth data for bare or sparsely-vegetated soil (RVI < 0.3). Uniform prior

P. ~ U(3,30) for dielectric constant £ and Normal prior Pg ~ N (115,05 ) for RMS height s, with the mean y; determined by the ground-truth data were used.
The four flight lines are displayed: (a) 31603, (b) 31605, (c) 31605, and (d) 31606. Error metrics correspond to only active retrieval. Error metrics for bias-corrected

passive are shown in Fig. 3.

sensor. This depends on soil and system parameters. The integral
equation model with multiple scattering at second order, named
as [EM2M [16], is the rigorous forward model adopted in this
paper. Aninitial grid of dielectric constant € and RMS height s is
used to generate outputs for HH and VV co-polarized intensity
images. The Bayesian approach includes a model for speckle
noise and therefore can deal with the residual speckle noise
after multilooking in a systematic way. The statistical prop-
erties of two multilooked intensity images are described by a
bivariate gamma Puyyy (hh, vv|Chy, Cyv, n, p) [34, Eq. (30)],
where Cyy and Clyy are the predicted (expected) values of the
forward model, n is the number of looks, and p is the corre-
lation between HH and VV. The likelihood function is then
constructed on evaluating the distribution Pypyy on the mea-
sured backscattering coefficient HH,; 05 and VV 0,5 after mul-
tilooking, i.e., Papvv(HHueas, VVieas|Chn, Cvv, 1, p). The
posterior is the product of the likelihood function by the prior

distribution. Dielectric constant estimates are computed from
the posterior distribution as above mentioned, and then con-
verted into soil moisture using the empirical relationship from
[35] described in Section IV-D.

V. RESULTS

Retrieved estimates for volumetric soil moisture m, against
measured ground-truth data are shown in Fig. 5 for the four
flight lines described in Section II-A. The black squares are the
estimates from the radar (active) HH- and VV-measurements
using priors uniform and normal for € and s, respectively. The
red squares indicate estimates from passive microwave data in-
dependently of the radar estimation. (Brightness temperature
were partly available for the entire radar dataset.) Red points
within black markers indicate that passive microwave-based soil
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Retrieved estimates for volumetric soil moisture m, against measured ground-truth data for bare or sparsely-vegetated soil (RVI < 0.3). Max Ent prior

for e with . given by the SCA retrieval algorithm and Normal prior Pg ~ N (us, o) for RMS height s, with the mean /s determined by the ground-truth data
were used. The four flight lines are displayed: (a) 31603, (b) 31605, (c) 31605, and (d) 31606.

moisture guess is available. Error bars in ground-truth data are
computed as mentioned in Section IV-E and accounted for the
instrument error (dielectric probe) and the ground-based soil
moisture variability. Error bars in the retrieval estimate are re-
lated to the spread of the posterior, which in turn is related to
the residual speckle noise and the heterogeneity of the scatter.
Retrieved estimates that underestimate measured m, can be
related to an overestimation of the IEM2M model, causing that
lower values of m,, matched the observed backscattering coeffi-
cient. For instance, cluster of points around measured 0.15 and
0.30 cm?/cm? in Fig. 5(c) can be traced to sites 63, and 111 and
113, respectively [see Fig. 2(c)]. A similar statement holds for
an overestimation in retrieved soil moisture and an underestima-
tion in backscattering coefficients by the IEM2M. Error metrics
indicate a poor retrieval performance with RMSE around 0.08—
0.11 cm®/cm? and a correlation coefficient at most r = 0.53.
MAE is the most evident error metric for tracing back model

misestimations. MAE has values as large as 0.21 cm?/cm?,
indicating a poor agreement with the forward model.

In Fig. 6, the CAP estimates are shown. Crosses onto green
circles indicate radar estimates enhanced by passive measure-
ments, where the Uniform prior was replaced by a MaxEnt one
with mean value given by the dielectric constant estimate from
SCA. The CAP estimation shows an overall well agreement
with an rmse = 0.06-0.07 cm?/cm® and a higher sensitivity
with correlation coefficient » ~ 0.6 — 0.7 for datasets 31603—
31605. Retrieval performance of dataset 31606 is poorer since a
large amount of measurements had not their passive counterpart.
It is worth mentioning that combined retrieval performs better
also than only bias-calibrated passive retrieval. This could be
seen from comparing the error metrics from Figs. 3 and 6.

Finally, to assess the performance of the B-CAP algorithm
for each location, results on a time series basis are shown
in Fig. 7. The retrieval generally performed with an rmse
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< 0.07 cm® /em?® and a correlation 7 2 0.6 except for the fields
63, 113, and 114. For fields 63 and 113, retrieved soil moisture
overestimation is expected from model simulation comparison,
as described in Section II-B. The low value of r for field 114
can be ascribed to the low amount of measurements.

VI. CONCLUSION

When remotely sensed active and passive microwave obser-
vations are available at similar extents, a Bayesian merging
technique can be used to retrieve radar soil moisture estimations
constrained by a preliminary soil moisture guess from passive
microwave observations. In addition, soil moisture retrieved
on an field basis minimize errors due to uncertainties in soil
roughness.

A complete dataset containing backscattering coefficients and
brightness temperatures were used to test the B-CAP retrieval
algorithm using HH, VV, and T;v. The dataset is based on a
field experiment over bare and sparsely-vegetated soils (RVI
< 0.3), covering a wide range of moisture and roughness con-
ditions, which turned it suitable for validation purposes. A bias
correction was performed on PALS infrared sensor adding a
10% to the measured surface temperature, thus, compensating a
systematic uncertainty. No further calibration was required for
the SAR sensor on UAVSAR. Nonetheless, the forward model
did overestimate or underestimate the observed backscattering
coefficients. This can be related to the presence of developing
vegetation, wet stubble, or crop rows, the features not modeled
by the forward model IEM2M.

Yet, an overall improvement of the radar prediction on
field-based soil moisture were achieved by including infor-
mation from passive microwaves. Comparison were done by
taking into account soil moisture uncertainties that involves soil
moisture variability and dielectric probe error. Performance met-
rics are used to assess the retrieval methodology. Agreement
ranges from 0.08 to 0.11 cm®/cm? for only active and improves
to 0.06-0.10 cm?/cm? for the combined technique. It is worth
mentioning that the active dataset has only partially its passive
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Time series of the measured (in situ) estimates and the CAP retrieved estimates for soil moisture versus the day of the year (DoY).

counterpart. The combined technique also showed a better clus-
tering of the data along the 1:1 line, highlighting the improve-
ment on sensitivity of the soil moisture estimates. By analyzing
the time series for each field, an RMSE less than 0.07 cm?/cm?
and a correlation coefficient r larger than 0.6 were found pro-
viding the forward model is accurate enough. Thus, this pa-
per contributed to demonstrate that the active/passive synergy
can produce an enhanced soil moisture product, with a better
performance than each one separately. The B-CAP algorithm
can exploit ongoing ALOS-2 mission and planned SAOCOM
mission for the radar observations, and SMAP mission for the
radiometer ones.
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