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Radiation from a moving planar dipole layer: Patch potentials versus dynamical Casimir effect
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We study the classical electromagnetic radiation due to the presence of a dipole layer on a plane that performs
a bounded motion along its normal direction, to the first nontrivial order in the amplitude of that motion. We
show that the total emitted power may be written in terms of the dipole layer autocorrelation function. We then
apply the general expression for the emitted power to cases where the dipole layer models the presence of patch
potentials, comparing the magnitude of the emitted radiation with that coming from the quantum vacuum in the
presence of a moving perfect conductor (dynamical Casimir effect).
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I. INTRODUCTION

Due to the unavoidable presence of imperfections, impuri-
ties, and even spatial variations in its chemical composition,
the surface of a real metal is not a perfect equipotential. In other
words, those effects manifest themselves in the existence of an
electrostatic potential, with a nontrivial space dependence, on
the metallic surface [1]. These residual “patch potentials” may
even produce forces between different metallic surfaces, which
become relevant for high sensitivity experiments, in many
areas of physics [2]. In particular, they can be crucial when
determining the vacuum forces of quantum electromagnetic
(EM) origin between neutral objects (static Casimir effect) and
in experiments looking for modifications to the gravitational
inverse-square law [2–5]. In those experimental setups, the
existence of patch potentials results in the presence of a
force, electrostatic in origin, and the theoretical goal is then
to have a proper, and hopefully simple, way to quantify it.
Ideally one should be able to disentangle its contribution
in any experimental attempt to determine forces which are
of a different nature. For static situations, one is usually
able to derive general expressions of the effects due to
the patch potentials in terms of just their autocorrelation
functions.

In this paper we quantify an effect due to the presence
of patch potentials in a rather different, complementary
situation: namely, we consider a metallic object that undergoes
accelerated motion and study the resulting EM radiation. The
physical reason to expect such radiation becomes clear when
one recalls that patch potentials can be thought of as due to the
existence of a (space-dependent) dipole layer on the surface of
an otherwise neutral body [3]. Therefore, when accelerated, the
moving dipole layer shall emit radiation. Our main goal here
is to evaluate the power emitted by a flat surface containing
patch potentials, in terms of the acceleration of the plane and
the characteristics of the patch potentials.

One of the motivations that lead us to this calculation is to
make a quantitative comparison between the magnitudes of this
classical effect with the power emitted by an accelerated ideal,
perfectly conducting mirror. This “motion-induced radiation”
or “dynamical Casimir effect” (DCE) [6] is a purely quantum
effect, that, as we will see, could also be interpreted as coming
from a moving dipole layer with an ad hoc autocorrelation
function.

The radiation field of a single time-dependent dipole at
rest is a classical problem, described in almost all texts on
classical electrodynamics. The radiation field of a moving
dipole, however, is not so widely known, although it has
already been investigated in the sixties [7]. To our knowledge,
the spectrum of classical EM radiation due to the presence
of a dipole layer on a plane that moves rigidly has not been
computed before. Therefore, since it is a crucial ingredient for
our study, we present this calculation in Sec. II. As we shall
show, there is a rather simple formula for the spectral density
associated to the radiated energy, in terms of a two-point
function that describes the correlation of the dipoles at different
points of the surface. Using the model of Ref. [3], this leads
immediately to an expression for the emitted power by moving
patch potentials. In this section, we also comment on the case
of time dependent dipole layers. In Sec. III we compute the
spectral density for the particular autocorrelations previously
used in the literature to describe patch potentials, and make a
comparison between the classical emitted power and the DCE.
Section IV contains the conclusions of our work.

II. RADIATION

In this section we evaluate the classical EM radiation due
to the presence of a dipole layer on a plane that moves
rigidly along the direction defined by its normal (we use
CGS-Gaussian units throughout). The instantaneous position
of the plane may be defined in terms of a single function
q(t) such that x3 = q(t). Here x3 is one of the three Cartesian
coordinates (x1,x2,x3), for which we shall also use the notation
x‖ ≡ (x1,x2). The dipole layer density D shall then be a
function of the two coordinates parallel to the plane, namely,
with the notation just introduced, D = D(x‖).

To proceed to the calculation of the emitted radiation, we
need the charge and current densities ρ and j, which for the
system we are considering are given by

ρ(x,t) = −D(x‖) δ′(x3 − q(t)),
(1)

j(x,t) = −D(x‖) δ′(x3 − q(t)) q̇(t) ê3,

where ê3 is the unit vector along the direction of motion.
Finally, we shall assume that the motion is bounded,

namely, that there is a length l such that |q(t)| � l, ∀t .
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To determine the radiated power, we introduce the retarded
potentials, and use the Lorentz gauge fixing condition, obtain-
ing for the potentials the inhomogeneous wave equations

φ(x,t) =
∫

d3x ′ dt ′ G(x,t ; x′,t ′) ρ(x′,t ′),

(2)

A(x,t) = 1

c

∫
d3x ′ dt ′G(x,t ; x′,t ′)j(x′,t ′),

where G denotes the retarded Green’s function for the wave
equation, which satisfies(

c−2∂2
t − ∇2

x

)
G(x,t ; x′,t ′) = 4π δ(x − x′) δ(t − t ′). (3)

A more explicit expression may be obtained by introducing
the Fourier transformation:

G(x,t ; x′,t ′) =
∫

dω

2π

d3k
(2π )3

e−iω(t−t ′)+ik·(x−x′)G̃(k‖,k3,ω),

(4)

with

G̃(k‖,k3,ω) = 4π

k2
‖ + k2

3 − (
ω
c

+ iη
)2 . (5)

The next step in the derivation of the emitted power is the
introduction of the Poynting vector, S = c

4π
E × B, where

E = −∇φ − 1

c

∂

∂t
A,

(6)
B = ∇ × A.

Of course, for an arbitrary dipole layer, the radiation flux may
have a rather cumbersome spatial dependence on the details of
the layer. On the other hand, one is presumably more interested
in the global effect, namely, the average flux of energy, since
the spatial dependence of that flux is hardly detectable. The
geometry of the system suggests to evaluate the total flux of
radiated energy due to the moving plane. It is then convenient
to evaluate the third component of S, on a constant-x3 plane,
far from the region where the plane moves (|x3| > l).

We see that the third component of S may be written as
follows:

S3 = c

4π
εij EiBj , (7)

where the indices i, j shall be assumed, from now on, to run
from 1 to 2. Since A points in the ê3 direction, we see that the
components of the electric and magnetic field relevant to the
calculation of (7) are given by

Ei = −∂iφ, Bi = εij ∂jA3. (8)

Thus S3 becomes

S3 = c

4π
∂jφ ∂jA3. (9)

The total flux of energy through one such plane shall be, in
general, a divergent quantity, something that may be dealt with
by dividing it by the total area. Besides, it is also convenient to
calculate the total radiated energy since, when written in terms
of the Fourier transforms of the time-dependent functions, it
will allow us to extract the spectral density of radiation.

Thus, the (average) radiated energy per unit area through a
constant-x3 plane becomes

Urad(x3) = 1

L2

∫
dt

∫
d2x‖ S3(x‖,x3,t), (10)

where L2 is the area of the plane, assumed temporarily large
and finite, but an L → ∞ limit at the end is assumed. We
expect it to be independent of x3 far from the planes.

After some algebra, we see that, to second order in q(t),
Urad(x3) may be written as follows:

Urad(x3)

= −4π

∫
d2k‖
4π2

dω

2π

dk3

2π

dp3

2π

×
{

|k‖|2k2
3p3ω[

k2
‖ + k2

3 − (
ω
c

+ iη
)2][

k2
‖ + p2

3 − (
ω
c

− iη
)2]

× 
̃(k‖) |q̃(ω)|2eix3(k3+p3)

}
, (11)

where we have introduced the Fourier transform of the dipole
layer autocorrelation function


(x‖) = 1

L2

∫
d2y‖D(y‖)D(x‖ + y‖). (12)

It is worth noting that, in natural (� = 1 and c = 1) units,

̃ is a dimensionless quantity. We mention at this point
that a similar expression to the one above could have been
obtained if one had a random patch potential distribution, with
a translation invariant stochastic correlation. Namely, even
without evaluating the average over a constant-x3 plane, the
translation invariance of the system does produce an entirely
analogous expression to the one above, now interpreting 
 as
the result of an average with a statistical weight.

We then evaluate the integrals over k3 and p3, which can
be performed, for example, by using Cauchy’s theorem in a
rather straightforward way, obtaining a result that contains both
convection and radiation terms. The latter are, for x3 > 0, inde-
pendent of x3. On the other hand, an evaluation of Urad(−x3),
the average energy flux through a plane symmetrically located
with respect to x3 = 0, yields the same result as Urad(x3).

Next we introduce Urad, the total radiated energy per unit
area:

Urad = Urad(x3) + Urad(−x3) = 2Urad(x3), (13)

which, moreover, may be conveniently written as follows:

Urad =
∫ ∞

0

dω

2π
P(ω), (14)

where the spectral density P(ω) is

P(ω) = |ω||q̃(ω)|2
∫ ω/c

0
dk‖ k3

‖ 
̃(k‖)

√(ω

c

)2
− k2

‖, (15)

where we have assumed the autocorrelation function to be
isotropic.

Equations (14) and (15) constitute the main result of this
section, namely, a rather general and compact expression for
the spectral density of emitted energy in terms of the two main
ingredients that characterize the system: its motion q̃(ω) and
the autocorrelation function of the dipole layer density.
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Assuming that the correlation length is much smaller
than c/ω, we can approximate 
̃(k‖) 	 
̃(0). With this
approximation

Urad 	 2

15

̃(0)

∫
dt ȧ2, (16)

where a is the acceleration. From this equation, one can show
that the radiation reaction force per unit area on the dipole
layer is

frad 	 2
15 
̃(0)

...
a . (17)

Notably, in this approximation the results coincide with those
of a single moving dipole d with d2 ≡ 
̃(0)c5 [7,8].

Until now we considered a dipole layer. In order to
describe an imperfect conductor with patch potentials, fol-
lowing Ref. [3] we can consider a dipole layer close to a
grounded perfect conductor. For this configuration, and for
nonrelativistic motion of the mirror, the radiated power can be
computed using the method of images: in the presence of the
grounded conductor, the dipole density is increased by a factor
2, and therefore the spectral density by a factor 4.

Finally, we consider the case of time dependent dipole
layers, namely, D = D(x‖,t). This time dependence may
be produced by an external agent or may describe intrinsic
fluctuations of the material. The generalization of (1) to this
situation is

ρ(x,t) = −D(x‖,t) δ′(x3 − q(t))

j(x,t) =
[
−D(x‖,t) δ′(x3 − q(t)) q̇(t) (18)

+ ∂D(x‖,t)
∂t

δ(x3 − q(t))
]
ê3,

where the presence of the last term is required by current
conservation.

A lengthier but otherwise entirely analogous calculation
allows one to obtain the spectral density for this case:

P(ω) = 1

L2
|ω|

∫ ω/c

0
dk‖ k3

‖

√(
ω

c

)2

− k2
‖

∫
dν

2π

dν ′

2π

× q̃(ν) D̃(k‖,ω − ν)D̃(−k‖, − ω − ν ′) q̃(ν ′), (19)

in terms of the space and time Fourier transforms on the patch
potentials [9].

The derivation was performed without any assumption
about the origin of the time dependence. Let us now focus on
the case in which the time dependences are correlated. In the
absence of external agents producing that time dependence,
it is reasonable to assume that they depend only on the time
difference between the two potentials. In Fourier space, that
amounts to

1

L2
D̃(k‖,ω)D̃(−k‖,ω′) → 
̃(k‖,ω) (2π )δ(ω + ω′), (20)

which inserted into (19) yields

P(ω) = 1

L2
|ω|

∫ ω/c

0
dk‖ k3

‖

√(ω

c

)2
− k2

‖

×
∫

dν

2π
q̃(−ν) 
̃(k‖,ω − ν) q̃(ν). (21)

The last equation reduces to the static one for instantaneous
correlation, namely, when


̃(k‖,ω) = 
̃(k‖)(2π )δ(ω). (22)

The calculation for time dependent dipole layers could be a
useful starting point to develop a microscopic approach of the
DCE. One should consider both electric and magnetic dipoles
as sources, with a particular time-dependent correlation func-
tion to describe the quantum fluctuations.

III. EXAMPLES AND COMPARISON WITH THE DCE

As a first example of a patch potential autocorrelation, we
first consider the Gaussian approximation to the quasilocal
correlation function proposed in Ref. [10]:


̃(k‖) = π

8
V 2

rms�
2 exp

[
− 1

16
|k‖|2�2

]
, (23)

where Vrms is the variance of the potential and � a characteristic
length. For this particular correlation, the spectral density reads

P(ω) = V 2
rms|q̃(ω)|2 ω4

c3
f (�ω/4c) , (24)

with

f (x) = 2π

x3
[3x − (3 + 2x2)D+(x)], (25)

where D+ denotes the Dawson function (note that in the
equations above we have included the factor 4 coming from
the image dipole layer). For a fixed frequency, the spectral
density is a nonmonotonous function of the correlation length
�. Indeed, P vanishes for � → 0 (no patch potentials) and
also vanishes in the opposite limit � → ∞, since by a simple
application of symmetry arguments and Gauss’s law one sees
that a uniform density of charges or dipoles on a plane
cannot radiate. Therefore, it must have a maximum at an
intermediate value. A plot of the function f (x) shows that
the maximum is located at x ∼ 1.5. As a consequence, if
the plane moves with a definite frequency ω0, the radiation
emitted is maximum when the characteristic size of the patches
is � ∼ 6c/ω0.

As a second example, we will consider the sharp-cutoff
model proposed in Ref. [3]:


̃(k‖) = 4πV 2
rms

k2
max − k2

min

θ (|k‖| − kmin)θ (kmax − |k‖|), (26)

which yields for the spectral density

P(ω) = 64πV 2
rms

15c5
(
k2

max − k2
min

)ω6|q̃(ω)|2

×
[

1 −
(

kminc

ω

)2
]3/2 [

2 + 3

(
kminc

ω

)2
]

, (27)

where we assumed that kminc
ω

< 1 and kmaxc

ω
> 1. Note thatP(ω)

vanishes for kminc
ω

> 1. As a consequence, for the particular
case in which the plane moves with a definite frequency ω0,
there is a threshold to have a nonvanishing emitted radiation
kmin < ω0/c.
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In both examples one can consider the limiting case of
small correlation length �ω/c � 1, which is physically the
more relevant limit. For the quasilocal correlations we obtain

P(ω) 	 π

60
V 2

rms�
2 ω6

c5
|q̃(ω)|2 . (28)

A similar expression can be obtained for the sharp-cutoff
model.

We will now compare the last result with that coming
form the DCE. A single accelerated perfect mirror produces
photons due to the interaction with the quantum fluctuations
of the electromagnetic field. On dimensional grounds, in
the nonrelativistic limit we expect the dissipative force per
unit length on the mirror (fDCE) to be proportional to
�

...
a /c4. This corresponds to a spectral density proportional

to �ω6|q̃(ω)|2/c4. An explicit calculation yields [6]

PDCE(ω) = �

30π2

ω6

c4
|q̃(ω)|2 . (29)

Defining ξ = P/PDCE = frad/fDCE, we obtain

ξ = π3V 2
rms�

2

2�c
	 V 2

rms

(40 mV)2

�2

(100 nm)2
, (30)

where we have written the result in terms of typical values that
characterize the patch potentials. This shows that the reaction
force due to the classical radiation could be comparable or
even larger than the one in the DCE.

IV. CONCLUSIONS

We have shown that a real, accelerated metallic surface
produces classical EM radiation due to the unavoidable

presence of patch potentials. The calculation of the total
emission spectrum for a flat surface undergoing bounded
motion is a rather straightforward exercise in classical elec-
trodynamics, and the result depends only on the most relevant
physical quantity characterizing the patch potentials: their
autocorrelation function.

Remarkably, when the correlation length of the patch
potentials is sufficiently small, the emitted radiation coincides
with that of a single moving dipole and has the same frequency
dependence than the radiation induced by the motion of a
perfect conductor through the quantum vacuum. Although
these facts could have been anticipated by dimensional
analysis, the explicit calculations in this paper allowed us to
compare the classical radiation of the moving patches with
the quantum radiation associated to the DCE. Depending
on the characteristics of the patches, the dissipative effects
associated to the classical radiation could be comparable
with those coming from the quantum vacuum for perfect
conductors.

We have considered the simplest situation, corresponding
to a single accelerated mirror. It is well known that the
dynamical Casimir effect for this configuration is far from
being optimal regarding the possibility of its experimental
detection. It would be interesting to assess whether classical
radiation from patch potential masks the dynamical Casimir
effect or not in more realistic experimental settings, such as a
closed cavity with variable length, in a regime of parametric
resonance [6].
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