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Abstract
Alternative splicing and post-translational modifications are key events for the generation of proteome diversity in
eukaryotes. The study of the molecular mechanisms governing these processes, and every other step of gene ex-
pression, has underscored the existing interconnectedness among them. Therefore, molecules that could concert-
edly regulate different stages from transcription to pre-mRNA processing, translation and even protein activity
have called our attention. Serine/arginine-rich proteins, initially identified as splicing regulators, are involved in
diverse aspects of gene expression. Although most of the roles exerted by members of this family are related to
mRNA biogenesis and metabolism, few recently uncovered ones link these proteins to other regulatory steps
along gene expression, particularly the regulation of post-translational modification by conjugation of the small
ubiquitin-related modifier.This along with the established link between ubiquitin, transcription and pre-mRNA pro-
cessing points to a general mechanism of interaction between different cellular machineries, such as ubiquitin/
ubiquitin-like conjugation pathways, transcription apparatus and the spliceosome.
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INTRODUCTION
After the sequencing of the human genome, it

became apparent that the unexpectedly low number

of genes could not account for the complexity of our

organism. Thereafter, the general interest in the pro-

cesses involved in generating transcriptome as well as

proteome diversity has increased considerably.

Although many processes contribute to this diversity,

including alternative transcription start sites, alterna-

tive splicing, alternative polyadenylation and alterna-

tive translation among others, alternative splicing at

the pre-mRNA level and post-translational modifi-

cations (PTMs) at the protein level account for most

of the proteome variability generated [1, 2]. Cur-

rently, we not only know that the aforementioned

processes generate an enormous proteomic expan-

sion but also that there exists an intricate connection

between them. In this review, we summarize differ-

ent findings from our laboratory and others regarding

the involvement of serine–arginine-rich (SR) pro-

teins, in particular SRSF1, at different steps of gene

expression and present a provocative and emerging

connection between the machineries involved in

mRNA metabolism and small ubiquitin-related

modifier (SUMO) conjugation.

Alternative splicing
Pre-mRNA splicing is an essential step for gene ex-

pression in mammalian cells as most protein-coding

genes contain intervening sequences known as
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introns. Intron removal is efficient and precise; how-

ever, most transcripts in higher eukaryotic cells also

contain regions that are subjected to alternative se-

lection, resulting in the production of different

mature mRNA isoforms [3]. This process, known

as alternative splicing, has been recognized as a key

mechanism to increase the functional diversity of the

proteome and to introduce additional layers for

regulated gene expression. Different mRNA iso-

forms from a given gene are often produced in dif-

ferent cell types, tissues or developmental stages.

Thus, alternative splicing has been increasingly

linked to important biological pathways both in

physiological as well as pathological situations [4–7].

Pre-mRNA splicing, whether constitutive or al-

ternative, is catalyzed by the macromolecular ma-

chinery known as the spliceosome consisting of

U1, U2, U4/U6 and U5 small nuclear ribonucleo-

protein particles (snRNPs) and numerous protein

factors [8].

Crucial auxiliary factors for constitutive and alter-

native splicing are two well-characterized families of

RNA-binding proteins: SR proteins and heteroge-

neous nuclear ribonucleoproteins (hnRNPs) [9].

These proteins are capable of either promoting or

inhibiting the inclusion of alternative regions into

mature mRNA through their binding to RNA se-

quence elements termed splicing enhancers or spli-

cing silencers, respectively, and which are found in a

combinatorial architecture along most transcripts stu-

died so far.

SR and hnRNP proteins not only participate in

splicing regulation but also play important roles in

nuclear and cytoplasmic steps of mRNA metabolism.

In particular, members of the SR protein family have

been implicated in different cellular processes such as

genome stability, chromatin binding, transcription

elongation, mRNA stability, mRNA export and

mRNA translation [10]. Intriguingly, the list of SR

protein activities keeps growing constantly.

Post-translational modifications
Reversible PTMs are a versatile way to regulate pro-

tein activity. The most-studied PTM is phosphoryl-

ation, largely because of the current relative ease of

detecting protein phosphorylation in vivo and in vitro
[11]. However, many other types of reversible

PTMs exist: acetylation, methylation, O-GlcNacyla-

tion, etc. Not only may small molecules be cova-

lently attached to target proteins but also small

peptides. Thus, cellular proteins are also modified

by the covalent attachment of other polypeptides

such as ubiquitin (Ub) or members of the Ub

family referred to as ubiquitin-like proteins (Ubls).

These PTMs control a wide variety of cellular pro-

cesses [12]. There are at least 12 members of the Ubl

family encoded by the human genome (the most

studied being SUMO and NEDD8) known to

affect activity, structure, sub-cellular localization

and repertoire of interactions of the target proteins,

without labelling them for degradation.

SUMO conjugation is a reversible, ATP-

dependent process that involves an activating

enzyme (E1), a conjugating enzyme (E2) and differ-

ent ligases (E3) [13]. In the Ub pathway, substrate

specificity is usually provided by E3 ligases, which

typically contain substrate-binding sites [14, 15]. In

the SUMO pathway, the sole E2 enzyme (Ubc9 in

mammals) usually binds the substrate directly, but the

SUMO E3 ligases seem to contribute to substrate

specificity. The best-characterized SUMO E3s are

the protein inhibitor of activated STAT1, PIAS1 [16],

Topors [17] and the polycomb protein Pc2, also

known as CBX4 [18]. SUMO E3 ligases vary in

their mechanism of action. Catalytic activity

(SUMO transfer in sub-stoichiometric amounts) has

been proven for RanBP2 [19, 20], Topors [17, 21]

and PIAS [22].

Connection between mRNA
metabolism and PTMs
SR protein phosphorylation
Sub-cellular localization and activity of SR and

hnRNP proteins is regulated by phosphorylation,

thus the search for different kinases responsible for

phosphorylating them and signaling pathways con-

necting extracellular cues with the splicing machinery

has been the goal of several laboratories, including

ours [23]. Studying the regulation of fibronectin and

Rac1 pre-mRNA alternative splicing in the context

of cell–cell and cell–extracellular matrix (ECM)

interactions as well as during epithelia–mesenchymal

transitions, our group found that the activation of the

PI3kinase-Akt pathway by mesenchymal soluble fac-

tors or certain growth factors stimulates inclusion of

two alternative regions within fibronectin mRNA in

mammary epithelial cells and other cell lines. This

effect is mediated by the SR proteins SRSF1

and SRSF7, which were revealed as Akt substrates

[24, 25]. Several reports have also implicated Akt in

alternative splicing regulation, reinforcing and

expanding these findings [26–29]. Furthermore, in
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collaboration with the Cáceres laboratory, we

demonstrated that this ‘PI3kinase-Akt-SR protein’

axis also regulates translation in a splicing enhan-

cer-dependent manner [25], concluding that the

activation of a given signal transduction cascade

regulates the activity of at least two SR proteins,

SRSF1 and SRSF7, simultaneously altering both

nuclear and cytoplasmic steps of RNA metabolism:

alternative splicing and translation. These results sug-

gest that this concerted effort could increase both the

speed and strength of the cellular response to a given

extracellular stimulation [30]. Further studies from

our laboratory have also implicated SRSF1 in regu-

lating the balance between CAP- and IRES-

dependent translation [31]. These functions exerted

by SRSF1 are summarized in Figure 1, left panel.

Ubls and mRNAmetabolism
High-throughput identification of specific ubiquity-

lation sites by mass spectrometry not only confirmed

already known ubiquitylation sites but also mapped

more than 10 000 previously unidentified ones,

including putative sites in almost every member of

the SR protein family [32]. Site-specific ubiquityla-

tion in response to proteasome inhibition by

MG-132 was quantified by SILAC/mass spectrom-

etry revealing not only that 40% of the quantified

sites did not show an increase in ubiquitylation but

also that ubiquitylation in 15% of the sites was sig-

nificantly reduced under this condition.

Interestingly, SR protein ubiquitylation sites were

included in this latter category. These results clearly

show that a significant fraction of ubiquitylation sites

seems to be unrelated to proteasomal-mediated deg-

radation and suggests that Ub conjugation to certain

substrates, such as SR proteins, may work instead as a

regulatory signal [32, 33]. Also by proteomic

approaches, RNA-binding proteins have been re-

vealed as the predominant group among SUMO

conjugation substrates, including several hnRNPs

[34, 35], SR family members and spliceosome com-

ponents [36–38].

It is worth mentioning that a close connection

between splicing and Ub conjugation has already

been proposed as ubiquitylation substrates together

with components of the ubiquitylation/

de-ubiquitylation pathway have been shown to co-

exist within the spliceosome. In particular, the Prp19

complex promotes a non-proteolytic ubiquitylation

of the U4 component Prp3, which is required for

stabilization of tri-snRNP U4–U5/U6. Moreover,

de-ubiquitylation of Prp3 by Usp4/Sart3 is required

for further U4 dissociation and recycling [39].

With respect to SUMO conjugation, this particu-

lar PTM has been found to regulate at least two

events along mRNA metabolism: pre-mRNA

30-end processing and RNA editing, by modifying

the function of poly(A) polymerase, symplekin and

CPSF-73 in the former case and ADAR1 in the

latter [40–42]. Whether Ub or Ubl conjugation, in

particular SUMO, could affect SR protein activities

awaits further investigation.

Taking the connection further
While studying different PTMs that could regulate

the activity of splicing factors modulating Rac1 al-

ternative splicing in the context of a mammary epi-

thelial–mesenchymal transition [43], we came into a

completely unexpected finding: certain SR proteins,

in particular the prototypic member of this family

SRSF1, function as modulators of the SUMO con-

jugation pathway [44].

We found that SRSF1 interacts with the SUMO

E2 conjugating enzyme Ubc9 and enhances sumoy-

lation of specific substrates, including RNA-

processing factors such as Sam68 (Figure 1, left

panel). Moreover, SRSF1 interacts with the

SUMO E3 ligase PIAS1 (reported to be a compo-

nent of the human spliceosome, [45]), regulating

PIAS1-induced global protein sumoylation. This

rather unexpected activity of SRSF1 is dependent

on its RNA recognition motif (RRM) 2, as it is its

re-localization to nuclear stress bodies (nSBs) upon

heat shock [46]. nSBs are sub-nuclear domains form

in human and other primate cells exposed to thermal

stress and known to recruit not only heat shock tran-

scription factors but also a subset of pre-mRNA pro-

cessing factors (Sam68, hnRNP A1-related protein

and SRSF1 among others) [47]. Even though SRSF1

involvement in the heat shock response has been

studied [46–48], the precise role it plays under this

condition is not completely clear. We have shown

that SRSF1 is required for the increase in the levels

of protein sumoylation observed upon heat shock,

and furthermore that nSBs co-localize with SUMO-

conjugated proteins. Based on these results, we

speculate that SRSF1 could be part of a regulatory

network accounting not only for splicing regulation

but also for the regulation of sumoylation-dependent

protein activity required for cell recovery upon

hyperthermic stress.
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The SUMO conjugation-stimulatory activity dis-

played by SRSF1 is also performed by SRSF9 but is

neither carried out by SRSF5 nor by SRSF3. It is

worth mentioning that SRSF1 and SRSF9 RRM2

domains share 72% sequence identity, this drops to

37% between SRSF1 and SRSF5 RRM2 domains,

while SRSF3 does not contain an RRM2. Thus,

deciphering the RRM2-mediated protein–protein

interaction networks both within the spliceosome

and between the components of the spliceosome

and other cellular machineries could provide some

interesting insights into this complex regulation.

Certainly, the mechanism by which SRSF1 exerts

its effect on SUMO conjugation is yet to be deter-

mined. A provocative possibility, currently under in-

vestigation, is that different RNA molecules known

to interact with SRSF1 may serve as scaffolds that

mediate SRSF1-regulated SUMO conjugation to

specific target proteins (Figure 1, right panel).

Perspectives
A large body of work has demonstrated that the de-

lineation of RNA transcription, splicing or export

‘machineries’ as independent entities is outdated.

The more we learn about the mechanisms and the

molecules engaged in different steps of gene expres-

sion, the more we realize about their interconnec-

tion and thus the requirement for an integrative

vision of gene expression regulation.

Multi-subunit protein complexes and RNA–pro-

tein complexes are responsible for a great variety of

cellular functions. Thus, unraveling the interactions

Figure 1: Left panel, the schemes summarize different activities described for the SR protein SRSF1 at the level of
alternative splicing (top), translation (middle) and SUMO conjugation (bottom), reported by our laboratory and
others [24, 25, 31, 44, 50, 51]. Right panel, the scheme depicts our current hypothesis involving the regulation of
SRSF1-dependent SUMO conjugation to specific substrates by different RNA molecules.
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among the different components and the dynamic of

their assembly in response to different stimuli would

certainly improve our understanding of living cells,

tissues and organisms, both under normal and patho-

logical circumstances.

We are currently aware of the co-regulation that

exists among different processes during mRNA bio-

genesis and metabolism. We also know that PTMs

represent a fast and reversible way of modulating

these processes in response to a wide variety of

extra- and intra-cellular cues. Under this perspective,

it becomes appealing to look for molecules able to

regulate different stages, from transcription to protein

function, in a concerted manner. Several members of

the SR family of proteins have been defined as

multitasking proteins due to their involvement in

different events along gene expression regulation.

Their ability to engage in a broad range of molecular

interactions with proteins, RNA and chromatin [49],

place them as attractive candidates for this duty of

linking molecules. We envision a scenario in which

SRSF1-mediated sumoylation might be regulated by

the different RNA molecules it encounters during

transcription/splicing/export. In this model, different

RNA molecules would drive SRSF1 target selectiv-

ity (Figure 1, right panel). Noteworthy, this could

also apply to all other functions performed by SRSF1

as well as to other SR proteins.

Key points

� Alternative splicing and PTMs are a great source of transcrip-
tome and proteome variability.

� Different stages of gene expression are regulated in a concerted
manner.

� The search for nexus molecules that can account for the
co-regulation of those stages is an attractive and growing field.

� Members of the SR family of proteins, in particular SRSF1, have
been lately defined as multitasking proteins participating at a
wide variety of gene expression regulatory steps.
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