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Abstract
The white matter (WM) represents approximately half the cerebrum volume and is profoundly
affected in Alzheimer’s disease (AD). However, both the WM responses to AD as well as
potential influences of this compartment to dementia pathogenesis remain comparatively
neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD
and renewed interest in examining the pathologic basis and importance of these changes.

In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte
morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when
measured against non-demented control (NDC) tissue. Comparative proteomic analyses were
performed on pooled samples of periventricular WM (PVWM) obtained from AD (n = 4) and
NDC (n = 5) subjects with both groups having a mean age of death of 86 years. All subjects had
an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-
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detergent homogenates were analyzed using two different separation techniques: 2-dimensional
isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel
electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic
groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were
used to quantify proteins of interest in individual AD and NDC cases.

Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total
protein for comparative analyses, there were quantitative differences between the 2 groups.
Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as
glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2,
calmodulin, S100-P, annexin A1, α-internexin, α-and β-synuclein, α-B-crystalline, fascin-1,
ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools.

Our experiments suggest that WM activities become globally impaired during the course of AD
with significant morphological, biochemical and functional consequential implications for gray
matter function and cognitive deficits. These observations may endorse the hypothesis that WM
dysfunction is not only a consequence of AD pathology, but that it may precipitate and/or
potentiate AD dementia.
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Alzheimer’s disease; periventricular white matter; white matter rarefaction; proteomics; glial
fibrillary acidic protein; axonal loss; myelin loss

1. Introduction
Alzheimer’s disease (AD) is neuropathologically defined by the presence of neurofibrillary
tangles (NFT), amyloid plaques (AP) and cerebral amyloid angiopathy (CAA) mainly
observed in neocortical and allocortical gray matter (GM). In addition, gross abnormalities
in the white matter (WM), recognized as WM hyperintensities (WMH) by magnetic
resonance imaging (MRI), lucencies on computed tomography scans or neuropathologically
defined as WM rarefaction (WMR), are detected in approximately two/thirds of the patients
with confirmed AD. These abnormalities include partial loss of myelin, degeneration of
axons and oligodendrocytes, reactive astrocytosis, microglial activation with the presence of
macrophages, hyaline fibrosis of small vessels, loss of microvessels, interstitial fluid stasis
and chronic inflammation (Brun and Englund, 1986; Englund and Brun, 1990; Scheltens et
al., 1995; Kalaria, 2002; Bronge et al., 2002; Roher et al., 2003b; Sjobeck et al., 2006;
Kalback et al., 2004; Beach et al., 1989; Hachinski et al., 1987). WMH have also been found
to correlate with increased Braak staging and neuritic plaque core densities in AD subjects
(Polvikoski et al., 2010). In areas of white matter pathology (WMP), total cell and blood
vessel counts exhibit strong inverse correlations with the mini-mental state examination,
NFT score and Braak stage (Kalback et al., 2004). Using several biochemical methods, our
group demonstrated that AD WM harbors significantly increased quantities of Aβ40 and
Aβ42 accompanied by statistically significant decreases in the amounts of cholesterol, fatty
acids, myelin basic protein, myelin proteolipid protein, and 2′, 3′-cyclic nucleotide 3′-
phosphodiesterase compared with NDC subjects (Roher et al., 2002). WMP can be a
pervasive process that correlates with a dramatic decline in cognitive functions (Duan et al.,
2006).

Increasingly sophisticated neuroimaging studies have renewed interest in AD WMP.
Techniques such as diffusion tensor imaging (DTI) have been used to characterize WMP in
terms of tissue integrity, localization and functionality. DTI allows for a three-dimensional
description of both the direction and the average magnitude of water diffusion, which is
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more anisotropic in the highly organized WM than in the GM. DTI measures of WM
anisotropy such as fractional anisotropy are widely used as markers of WM integrity
(Pierpaoli and Basser, 1996; Beaulieu, 2002; Bozzali et al., 2002; Medina and Gaviria,
2008). In AD, fractional anisotropy reductions have been described in a variety of WM
regions including the posterior corpus callosum, posterior cingulum, fornix, uncinate,
commissural and parahippocampal fibers (reviewed by Zhang et al (2009)). Some of these
lesions isolate the hippocampus from neocortical input impairing learning and declarative
memory (Salat et al., 2010). Moreover, WM anisotropy in late myelination pathways such as
the posterior cingulum bundles correlates with declining declarative memory in patients with
mild cognitive impairment (MCI), of which 10-15% per year are known to progress to AD
(Fellgiebel et al., 2005; Rose et al., 2006). Postmortem quantitative MRI and
neuropathological correlation showed that axonal density was an independent determinant of
fractional anisotropy, whereas T-1 relaxation time was independently determined by axonal
and myelin density and microglial activation (Gouw et al., 2008). Semiquantitative and
automated volumetric studies of WMH using MRI suggest that periventricular WM
(PVWM) damage correlates better with cognitive decline than deep WMH (van Straaten et
al., 2008). A possible explanation is the compromise of long association tracts connecting
more distant cortical regions and the involvement of cholinergic pathways (Selden et al.,
1998).

Two major mechanisms may account for the WMP in AD: 1) anterograde degeneration of
axons originating in cortical areas with AP and NFT and 2) a primary compromise of WM
due to multiple causes, including oligemia/hypoperfusion, microinfarcts (Suter et al., 2002),
microvascular hypertensive disease, oxidative stress, myelin degeneration, traumatic brain
injury and leukoencephalopathies (Al-Hasani and Smith, 2011). In vivo imaging has
generated data in support for both possibilities (O’Dwyer et al., 2011b).

Multiple indices of diffusion in non-demented control (NDC), MCI (with or without
amnesia) and AD subjects demonstrated that late myelination pathways are particularly
affected in MCI and AD (O’Dwyer et al., 2011a). These results strengthen the
“retrogenesis” hypothesis which proposes that in AD WM degeneration proceeds in a
sequence that is the reverse of ontogenic myelinization in the CNS (Stricker et al., 2009;
Bartzokis, 2004; Bartzokis, 2011; Braak and Del Tredici, 2004; Choi et al., 2005; Reisberg
et al., 1992). The retrogenesis concept supports the possibility that AD pathogenesis may
commence in the WM, rather than in the GM, with oligodendrocyte dysfunction that results
in lack of axonal support leading to loss of myelin and alterations in the axonal cytoskeleton
(Braak and Braak, 1996).

To better understand the biochemical cascades that underlie the complex anatomo-
pathological and imaging features exhibited in the WM of AD patients, we performed a
comparative sub-proteomic analysis of the PVWM of AD and NDC cases. The PVWM
fractions examined in our current study contained only molecules which were soluble in
urea-detergent containing buffers. We utilized two different separation techniques: PF2D
liquid chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). In
addition, immunohistochemistry, electron microscopy and Western blot analyses were used
to examine WM changes that occurred in AD relative to those observed in NDC individuals.
Our findings complement and expand previous pathological reports concerning astrogliosis,
axonal damage, demyelination and microglial activation and emphasize the enormous
critical, direct role of WM in the pathogenesis and development of dementia. The
identification of several differentially expressed proteins provides more insights into the
possible mechanisms that participate in the multifactorial and chronic WM damage in AD.
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2. Material and Methods
2.1. Study Subjects

The subjects (AD = 4; NDC = 5) were selected from the Brain and Body Donation Program
at Banner Sun Health Research Institute (Beach et al., 2008). The relatively small sample
size is due, in part, to the stringent selection of individuals with extensive WMR of the
periventricular areas and with the diagnosis of pure and uncomplicated AD, free of other
simultaneous co-morbidities such as dementia with Lewy bodies, progressive supranuclear
palsy, frontotemporal lobar degeneration, parkinsonism, etc. In addition, our NDC subjects
do not have any of the common neurodegenerative disorders that affect the elderly
population and do not have the neuropathological hallmarks of AD (Table 1) including
evidence of WMR. Furthermore, we selected individuals with low postmortem intervals
(mean 2.8 h and 2.7 h, for the NDC and AD groups, respectively) to minimize postmortem
lysis. Likewise, the individuals were selected to match their ages (mean 86 years for both
cohorts). Table 1 shows the demographics and neuropathology of the AD and NDC subjects.
The mean brain weight of the NDC cohort was 1112 g and 1070 g for the AD group. All
subjects carried the apolipoprotein (ApoE) ε3/3 genotype, except for the NDC patient #5
which was an ApoE ε2/3. Forty μm thick coronal sections were stained with Campbell-
Switzer, Thioflavine-S, Gallyas and hematoxylin and eosin (H&E) to assess AP, NFT, CAA
and WMR. The occurrence of dementia and an NIA-Reagan rating of at least “intermediate”
in terms of neuritic plaque density and Braak NFT stage was used to determine the
clinicopathological diagnosis of AD (National Institute on Aging, 1997). Neuropathological
scoring included total plaque score (max. 15), total NFT score (max. 15), Braak stage (range
I-VI), total CAA score (max. 12) and total WMR score (max. 12). A detailed description of
the neuropathological scoring procedures is given elsewhere (Beach et al., 2008; Maarouf et
al., 2011; Roher et al., 2003a).

2.2. Immunohistochemistry
Coronal sections of 40 μm thickness from the frontal lobe were washed in phosphate
buffered saline (PBS) containing 0.3% Triton-X100 (PBS-T) 3 times to remove the storage
buffer. The sections were placed into rabbit anti-glial fibrillary acidic protein (GFAP,
DAKO, Carpinteria, CA, catalog #Z0334) at a dilution of 1:3000 and incubated at room
temperature (RT) for 20 h on an orbital shaker. The sections were removed from primary
antibody washed 6 times, 5 min each, in PBS-T and placed in Alexa Fluor 488-conjugated
goat anti-rabbit IgG antibody (Life Technology Corp., Carlsbad, CA, catalog #A-11034) at
1:1000 dilution for 2 h at RT on an orbital shaker. After washing (6 times, 5 min each in
PBS-T) the sections were mounted onto glass plus slides and dried. The slides were placed
into 70% ethanol for 5 min, 1% Sudan black in 70% ethanol for 2 min, 50% ethanol for 5
min, rinsed in dH2O and then cover slipped using Vectashield mounting media (Vector
Labs, Burlingame, CA).

2.3. Tissue samples
A pool of PVWM from 4 AD (250 mg each) and 5 NDC (200 mg each) subjects was
homogenized at 4°C in 20 ml of Beckman’s Proteome Lab Start Buffer which contains a
proprietary mix of urea, n-octylglucoside, triethanolamine and is adjusted to pH 8.5 with
iminodiacetic acid. The samples were centrifuged for 2 h at 280,000 x g with a Beckman
SW41 rotor at 4°C. The supernatant was collected and saved at −80°C for analysis in the
Beckman PF2D liquid chromatographic system.
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2.4. 2D-DIGE
The insoluble pellets were suspended in 7 M urea, 2 M thiourea, 4% CHAPS, 25 mM Tris-
HCl, pH 8.5. Fifty μg of the NDC proteins and 50 μg of the AD proteins were labeled with
Cy-3 and Cy-5 N-hydroxysuccinimidyl ester dyes, respectively. The proteins were first
separated by isoelectric focusing using pH 3-10 IPG strips and then by SDS gel
electrophoresis using 12.5% polyacrylamide gels. The gels were stained with Sypro Ruby
and scanned with different wavelengths on a GE Healthcare Typhoon 9410 Imager.
Quantitative analysis was performed with GE Healthcare DeCyder software to discover the
proteins that had different expression levels. Spots with at least 2-fold differences between
AD and NDC were robotically picked and digested with trypsin. Protein identification was
performed on an Applied Biosystems 4800 MALDI-Tof/Tof mass spectrometer and the data
analyzed by the Applied Biosystems GPS Explorer software. Mascot analysis against the
NCBInr database and a combined peptide mass fingerprint/MS/MS search was run. Only
proteins with significant Mascot scores of 80 or greater were included.

2.5. PF2D chromatography
Proteins were fractionated by their pI and then in the second dimension by their
hydrophobicity using a reverse phase column. The AD and NDC PVWM pools were run
with a ProteomeLab™ PF2D chemistry kit (Beckman Coulter, Fullerton, CA) following the
manufacturers protocols as well as detailed protocols that have been published elsewhere
(Linke et al., 2006; Ruelle et al., 2007). A total of 4 mg of protein for each diagnostic pool
was brought to 5 ml with Start Buffer and was injected into the first dimension
chromatofocusing column. A linear pH gradient was created in the column using the Start
Buffer (pH 8.5) and Eluent Buffer (pH 4.0) at a flow rate of 0.2 ml/min and fractions were
automatically collected every 0.3 pH units. After the protein gradient was completed, a high
salt wash (1 M NaCl) and then a water wash were passed through the column. Proteins
eluting above pH 8.5 and below pH 4.0 were collected every 5 min. The fractions were
collected in a 96-well plate inside a cooled collector/injector that is connected to the second
dimension. The fractions collected in the first dimension were submitted to a C18 reverse
phase column kept at 50°C using a linear gradient generated from 0.1% (v/v) trifluoroacetic
acid (TFA, Sigma, St. Louis, MO) in HPLC grade water (Aristar, VWR, West Chester, PA)
to 0.08% TFA in acetonitrile (JT Baker, Phillipsburg, NJ) at a flow rate of 0.75 ml/min over
45 min. Fractions were collected every 0.4 min in 96-well plates using a Gilson FC204
fraction collector between 10 and 22 min and stored at −80°C. Data analysis was performed
on the second dimension results with DeltaVue software (Beckman) which allows side-by-
side comparison of two different samples. Proteins from differential peaks between AD and
NDC samples were identified after trypsin digestion and mass spectrometry as described
above.

2.6. Western blot analysis
One-hundred mg of PVWM from each case in Table 1 was homogenized in 1000 μl of 5%
SDS, 5 mM EDTA, 20 mM Tris-HCl, pH 7.8 with an electric tissue grinder (Omni TH,
Kennesaw, GA). The supernatant was collected after centrifugation at 14,000 x g for 20 min
in a Beckman 22R centrifuge and total protein quantified with Pierce’s Micro BCA protein
assay kit (Rockford, IL). Ten or 40 μg of total protein was reconstituted in NuPage 2XLDS
sample buffer (Life Technologies Corp.), 50 mM dithiothreitol (Sigma, St. Louis, MO) and
heated for 10 min at 80°C. Protein separation was performed on 10 well 4-12% Bis-Tris gels
with NuPage 1XMES SDS running buffer with NuPage antioxidant (Life Technology
Corp.). The prestained Kaleidoscope marker (Bio-Rad, Hercules, CA) was used as a
molecular weight standard. After protein transfer onto 0.45 μm nitrocellulose membranes
(Life Technology Corp.) with NuPage transfer buffer (Life Technology Corp.) and 20%
methanol (Pharmco-Aaper), the membranes were blocked in 5% Quick-Blocker (G-
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Biosciences, Maryland Heights, MO) in PBS (EMD Chemicals, Gibbstown, NJ), 0.5%
Tween20. All antibodies were diluted in blocking buffer. The primary and secondary
antibodies employed in these Western blots are described in supp. Table I. Proteins were
detected with SuperSignal WestPico Chemiluminescent (Pierce) substrate on CL-Xpose film
(Pierce) with Kodak GBX developer and fixer. All membranes were stripped with Restore™
Western Blot Stripping Buffer (Pierce), washed, re-blocked and re-probed with anti-mouse
actin (BD Transduction Laboratories) or anti-rabbit actin antibody (Abcam). A GS-800
calibrated densitometer (Bio-Rad) and Quantity One software (Bio-Rad) were employed for
densitometry analysis and the units reported in optical density (OD) x mm.

3. Results
On average, the AD cohort had 6.4-fold and 4.2-fold higher total plaque scores and total
NFT scores than the NDC subjects, respectively (Table 1). The Braak stage was more
advanced in the AD cases (Table 1). The NDC group did not have observable CAA while
the AD individuals had a mean total CAA score of 2 (Table 1). The WMR score was
employed to select specific contrasting case groups for this study. The NDC cases exhibited
no discernable WMR while the AD cases examined all possessed severe WMR (Table 1). A
representative coronal section stained with H&E from each diagnostic group is shown in
Figures 1A and 1B. The lighter-stained areas represent WMR and the boxed areas delineate
the PVWM used in the experimental analyses (Figure 1A and 1B). Astrocytes were
visualized in the deep WM using an antibody against GFAP (Figure 1C and 1D). The
morphology of the astrocytes in an NDC subject (case #4) revealed stellar bodies, fine
ramified fibrous processes and smooth surfaces that extended over long distances (Figure
1C). In contrast, the astrocytes in the deep WM from AD case #13 showed astrocytic bodies
that resemble the protoplasmic type with shorter processes of variable caliber and an
abundance of granular positive GFAP (Figure 1D). These observations may correlate with
dilated astrocytic cell processes (see Figure 2). Electron microscopy depicts the loss of cells
and severe demise of axons and myelin in an AD subject with severe WMR relative to a
NDC subject without WMR (Figures 2A and 2B).

To obtain comprehensive 2D proteomic analytical patterns, we specifically selected
extraction strategies based on protein solubility that were compatible with the two proteomic
separation techniques. After ultracentrifugation, the urea/n-octylglucoside soluble fraction
was analyzed by PF2D liquid chromatography. The remaining pellet was re-homogenized in
urea/thiourea/CHAPS, centrifuged and the supernatant submitted to 2D-DIGE.

Separation of the insoluble pellet by 2D-DIGE yielded 27 spots with a >2-fold difference
between NDC (Figure 3A) and AD (Figure 3B) pools. Their identities are listed in Table 2.
Twenty-three spots were ultimately identified as GFAP. In the 2D-DIGE gels, a major field
of molecular differences between NDC and AD clustered between 35-50 kDa and pH 4-6
(Figure 3C), a profile consistent with a previous 2D gel report (Korolainen et al., 2005). The
same study found a 60% increase in AD brains of phosphorylated or N-glycosylated acidic
isoforms of GFAP (Korolainen et al., 2005). In addition, we identified 3 spots of about
75-80 kDa (spot #1-3) corresponding to SDS-resistant GFAP aggregates (Figure 3C). As
revealed by the presence of tryptic peptides corresponding to residues 320-330, these are
probably dimeric truncated GFAP forms that conserve the rod domain. These high
molecular-weight GFAP species were elevated 2-fold in the AD pool. Interestingly, the
highest quantitative differences (~6 to 8-fold increase in AD) were found in a ~38-40 kDa
acidic protein spot cluster corresponding to spot #21-26 (Figure 3C and Table 2). Taking as
a reference the 432-residue canonical GFAP-α isoform, the identification of tryptic peptides
from position 96 to position 367 suggests these are amino and carboxyl-terminally truncated
GFAP. Similar GFAP isoforms analyzed in a prior paper did not show major differences
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between AD and NDC subjects. However, the samples analyzed were from the frontal
cortex (Korolainen et al., 2005) and relatively more soluble than those from PVWM used in
the present study. Although the GFAP identified by 2D-DIGE was likely the most common
isoform1 (α), no peptides were identified by this method beyond position 390, after which
amino acid sequences differ between GFAP-α and GFAP-Δ/ε. Due to this limitation, we
cannot rule out a contribution of these rare isoforms to some of the differences observed
(Nielsen et al., 2002). Two spots (#4 and #6) at ~50 kDa and ~pI 5, with a 2-fold increase in
the AD group, yielded peptides derived from vimentin (VIM), likely corresponding to the
full-length protein (Figure 3C and Table 2). One spot at ~35 kDa and pI 7 with a 2.2-fold
increase was identified as annexin A1 (ANXA1) and one spot at ~50 kDa, pI 7 was
identified as fascin-1 (FSCN1) showing a 2.2.-fold reduction in AD samples compared to
NDC (Figure 3C and Table 2).

Proteins in the supernatant were separated by PF2D liquid chromatography with a first
dimension based on pI using a pH 4-8.5 gradient, followed by a second dimension partition
utilizing hydrophobic exchange. Because numerous tryptic peptides from different proteins
were expected in each peak due to the high sensitivity of the method, we applied stringent
selection criteria to unambiguously identify differentially expressed proteins after
chromatographic detection: 1) total peak absorbance ~0.1; 2) the presence of the same
protein in at least two different peaks with absorbance ~0.1; 3) the same tendency (higher or
lower absorbance in AD compared to NDC) in all the peaks in which the protein was found;
4) more than one peptide identified for each protein and 5) a MASCOT database score
cutoff of 82.

Of a total of 89 protein peaks, 4 peaks (I, II, III and V) had ODs between 0.1 to 0.6 and
showed a ~4 to 7-fold increase in AD as compared to NDC pools (Figure 4A-C and Tables
3, 4 and 6). Only one fraction (peak IV) with OD ~0.1 was highly increased (~10-fold) in
the NDC as compared to the AD group (Figure 4C and Table 5). These five fractions were
selected for protein identification by trypsin digestion and mass spectrometry. The complete
list of proteins identified in each of these peaks is shown in Tables 3-6. GFAP-α was
identified in all peaks (Tables 3-6) while VIM, tropomyosins (TPMs), calmodulin (CALM),
α-internexin (INA) and β-synuclein were found in two fractions with the highest ODs
(Figure 4B and Table 4), suggesting that these proteins were increased in the PVWM of AD
subjects as compared with NDC individuals. The extent of primary amino acid sequence
coverage by the identified tryptic peptides, which was greater than 90% for GFAP-α and
greater than 68% for VIM and CALM (Table 4), or the identification of peptides from
amino and carboxy-terminal regions in the case of INA (a 500-aa protein), suggested that
these proteins were not fragmented extensively during the extraction and chromatographic
procedures. Proteins identified in fraction IV with elevated NDC absorbance included
thymosine (TMS)-β4, GFAP, collapsin response mediator protein-2 (CRMP-2), myelin
basic protein and α-B-crystallin (Table 5 and Figure 4C). Two additional isoforms of TMS
were increased in the AD pool of fraction V (Table 6 and Figure 4C).

Well-characterized, commercially available antibodies for GFAP, VIM, ANXA1, FSCN1,
INA and TPM3 (Suppl. Table I) were used to further characterize these molecules by
Western blots. Quantitative analysis showed individual variability within groups which was
more notorious in AD cases (Figure 5). Both mean GFAP and VIM levels were increased in
the AD group by 20% (Figure 5A) and 45% (Figure 5B), respectively, when compared to
the NDC subjects. Mean quantities of ANXA1 showed a 2.4-fold increase (Figure 5C) while
FSCN1 was reduced 19% (Figure 5D) in the AD group compared to the NDC subjects,
consistent with the results obtained by 2D-DIGE. On the average, INA was increased ~9%
(Figure 5E) while TPM3 was decreased by 18%, in AD as compared with NDC individuals
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showing the same trend as in PF2D chromatography but without reaching statistical
significance.

The concurrent results of at least two out of three independent analytical methods indicate
that GFAP, VIM and ANXA1 are over-expressed while FSCN1 was reduced in the PVWM
of AD individuals. INA was also observed to be increased in AD by PF2D and Western
blots. The only proteins found to be higher in NDC subjects were those in fraction IV (see
Figure 4C and Table 5). This increase was remarkable (10-fold) and some of the proteins
involved have been related in several ways with AD pathogenesis. However, caution must
be applied when comparing and interpreting results from different separative and
quantitative technologies. For example, the polyclonal anti-GFAP antibody used in Western
blots was raised against a recombinant DNA engineered amino acid sequence and does not
show the many post-translational modifications that occur in this protein. On the other hand,
the proteomic maps (ideally) give an account of multiple isoforms that exist under healthy or
deviate under pathological conditions, which include N- and C-terminal degradations and a
flurry of post-translationally modifications at different sites with different rates of
occurrence.

4. Discussion
Despite the fact that the WM represents 50% of the cerebrum and that WM tissues become
substantially atrophied and profoundly abnormal in AD (Brunetti et al., 2000; Smith et al.,
2000; DeCarli et al., 1996; Kawamura et al., 1992), there is a paucity of information
regarding WM biochemical alterations and their contribution to the pathogenesis of this
dementia. A query of the PubMed database using combined search terms of “proteomics,
white matter, Alzheimer’s disease” confirmed the lack of investigations in this general area.

Electron microscopy studies of AD patient WM demonstrate widespread loss of axons and
myelin in areas of WMR that are replaced with an extensive network of hypertrophic
astrocytes. Although we did not find a strong difference in the overall amount of GFAP, as
detected by Western blot, there are clear qualitative alterations in many of the isoforms of
this molecule between AD and NDC PVWM pools as assessed by two different proteomic
techniques. A large number of molecular mediators of astrogliosis associated with aging and
neurodegenerative disorders (Sofroniew, 2009) have been identified including growth
factors, cytokines, Aβ peptides, hypoxia related molecules, reactive oxygen species and
glutamate. In AD, increased GFAP immunoreactivity has been found consistently in
astrocytes surrounding neuritic plaques and blood vessels (Duffy et al., 1980; Schechter et
al., 1981; Mancardi et al., 1983; Beach et al., 1989; Muramori et al., 1998). Furthermore, it
has been suggested that the levels of GFAP in several cortical regions correlate inversely
with cognitive performance (Kashon et al., 2004) and this molecule is elevated in the
cerebrospinal fluid of demented patients (AD and non-AD) as compared to controls (Jesse et
al., 2009; Wallin et al., 1996). Interestingly, an early work showed a strong increase of
GFAP in brain regions with few or no typical AD lesions (such as cerebellum, striatum and
brain stem) similar to our findings, demonstrating that PVWM astrocyte reaction does not
depend on Aβ and/or tau aggregate physical proximity (Delacourte, 1990).

Interestingly, GFAP toxicity may be mitigated by the small heat shock protein α-B-
crystallin (Tang et al., 2010; Hagemann et al., 2009), which exhibited a net reduction in AD
PVWM in our PF2D proteomic analysis. Alpha-B-crystallin is a molecule of the family of
heath shock proteins that may have important neuroprotective activities in AD (reviewed by
Smith et al (2005)), and act as chaperones that prevents protein aggregation (Ecroyd and
Carver, 2009). Increased GFAP levels coupled with reduced α-B-crystallin suggest a
possible pathogenic loop promoting GFAP toxicity in the WM.
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The concurrent overexpression of GFAP and VIM in WMP is suggestive of diffuse reactive
astrocytosis associated with pronounced hypertrophy of cell body and processes, disruption
of individual astrocytic domains and proliferation and migration into sites of injury (Petito et
al., 1990; Wang et al., 2004). WM reactive astrogliosis may contribute to the AD
neurodegenerative process by inhibiting axonal regeneration (Wilhelmsson et al., 2004;
Toyooka et al., 2011).

The up-regulation of ANXA1 in AD WMP which we found by 2D-DIGE and Western blot,
is concurrent with the activation of microglial cells in the WM of AD patients (Gouw et al.,
2008). ANXA1 overexpression may indicate an attempt to limit sustained inflammatory
damage due to unknown factors in AD WM. Fibrillar Aβ deposits are capable of activating
microglia (Jana et al., 2008) and it remains to be tested whether non-fibrillar Aβ, at the
levels found in AD WM, which are ~4-fold of those observed in NDC subjects (Roher et al.,
2002), are capable of promoting ANXA1 expression.

Our 2D-DIGE and Western blot analysis revealed a decrease in FSCN1 in the AD pool
relative to the NDC pool. FSCN1 is present in neurons, glia and endothelial cells and
promotes F-actin assembly into ordered bundles in the cytoplasm and cell protrusions
contributing to cell adhesion and migration (reviewed by Adams (2004)). Interestingly,
FSCN1 interacts with voltage-dependent anion channel 1 (VDAC1) (Ewing et al., 2007), a
mediator of endothelial cell apoptosis triggered by endostatin which in turn binds to Aβ42
(Yuan et al., 2008; Faye et al., 2009). Since vascular depletion is a major and pathogenically
relevant feature in AD WMP (Kalback et al., 2004), FSCN1 reduction may also affect
endothelial survival adversely.

Our proteomic analysis of the soluble fraction of the PVWM found that two molecules
potentially affecting cytoskeleton organization and activities were altered in AD. TMP3 is
elevated in the hippocampus of AD brains (Owen et al., 2009). In vitro studies have shown
that TMPs enhance the pointed-end capping activity of tropomodulins on actin
microfilaments and that TMP3 overexpression in primary neurons is capable of inhibiting
neurite outgrowth (Fath et al., 2011; Schevzov et al., 2005). Together, the reduction of
FSCN1 and the accumulation of TPM3 in the WMP of AD may have profound deleterious
effects on the dynamics of actin cytoskeleton organization. The decrease of CRMP-2 in AD
relative to NDC subjects suggests disturbances in the extension and retraction of cell
processes in neurons and oligodendrocytes which are critical for cell migration, axonal
contact and myelination (Dawson et al., 2003). In neurons, phosphorylation of CRMP-2
assists in microtubule disassembly (Arimura et al., 2005; Uchida et al., 2005). We have
recently shown that phosphorylation of CRMP-2 promotes retraction of oligodendrocyte
processes in response to non-lethal oxidative stress (Fernandez-Gamba et al., 2012).

The peptide TMS-β4 was identified in both peaks IV and V with opposite quantitative
trends. TMS-β4 is differentially acetylated and phosphorylated at several Lys and Thr
residues (Hannappel, 2010) and these differences may reflect post-translational
modifications that result in different isoelectric points. TMS-β4 is a multifunctional peptide
that promotes stem cell differentiation, cell migration, cell survival and angiogenesis and
intervenes in tissue regeneration and repair (Crockford et al., 2010).

The Ca2+ binding proteins S100P and CALM were also increased in AD PVWM. It is
possible that increases in S100P are an attempt to enhance cell proliferation (Arumugam et
al., 2004), while CALM up-regulation may be an effort to maintain multiple metabolic
cascades, including signal transduction, essential for cell survival (Chin and Means, 2000).

Elevated quantities of ubiquitin carboxy-terminal esterase L1, as shown in the PF2D
analysis, may be involved in the degradation of excessive Aβ via the proteosome system
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(Gong et al., 2006). In addition, our proteomic analysis also revealed that α- and β-
synuclein are accumulated in the AD PVWM. Although the precise functions of these
molecules have not been defined it was recently found that α-synuclein is also often
elevated in AD (Larson et al., 2012).

Our proteomic examination of PVWM shows several proteins that are differentially
accumulated between AD and NDC individuals. Most of them have been reported to be
modified in the GM, particularly in the vicinity of AP and NFT. The absence of such lesions
in PVWM implies that direct proximity is not necessary to induce changes in this group of
proteins, which may represent a non-specific and pervasive reaction to several factors such
as oligemia, chronic inflammation and oxidative stress that also affect WMP. It has been
postulated that loss of proper blood supply to the PVWM is the major cause of
“leukoariosis’, since these watershed areas are irrigated by the terminal branches of the deep
perforating arteries (reviewed by Brown and Thore (2011)). Moreover, in previous studies
from our laboratory, we evaluated the WM circulation pathology in AD (Roher et al., 2003b;
Kalback et al., 2004; Hunter et al., 2012). Our data suggest that increased vascular amyloid
deposits in cortical vessels apparently block the periarterial spaces inducing stagnation of
interstitial fluid leading to dilation of the periarterial spaces and edema in the white matter
(etat criblé). Furthermore, the number of blood vessels in the areas of rarefaction are
significantly decreased which suggest severe white matter hypoperfusion.

5. Conclusions
In summary, the present study attempts to comprehensively assess the morphological and
biochemical substrates that underlie WMP in AD. Overall, the proteomic data suggest that a
series of proteins involved in the maintenance of the neuronal and glial cytoskeletons,
calcium binding proteins and cellular survival are profoundly altered in the PVWM.
Immunocytochemical and electron microscopy analyses of WMR areas clearly reveals an
extensive demise of axons and myelin with concomitant enlargement of astroglial processes
partially infiltrating the vacuum left by the loss of myelinated axons which amount to as
much as 30%.

The rapidly accumulating data suggest the intriguing possibility that sustained WM
ischemia/hypoxia generates an environment of energy depletion profoundly deranging the
normal levels of multiple proteins to trigger a series of devastating biochemical and
morphological cascades underlying AD pathogenesis.

Our experiments suggest the provocative hypothesis that not only is WM dysfunction a
consequence of AD, but that the magnitude of these lesions may be a precipitating factor in
both dementia emergence and evolution. Elucidating the nature of these WM molecular
changes will permit a better understanding of AD dementia and define new targets for
therapeutic assessment and intervention.
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Abbreviations

2D-DIGE 2-dimensional difference gel electrophoresis

AD Alzheimer’s disease

ANXA1 annexin A1

AP amyloid plaques

ApoE apolipoprotein E

CAA cerebral amyloid angiopathy

CALM calmodulin

CRMP-2 collapsin response mediator protein-2

DTI diffusion tenor imaging

FSCN1 fascin 1

GFAP glial fibrillary acidic protein

GM gray matter

H&E hematoxylin and eosin

INA α-internexin

MCI mild cognitive impairment

MRI magnetic resonance imaging

NDC non-demented control

NFT neurofibrillary tangles

OD optical density

PBS phosphate buffered saline

PBS-T phosphate buffered saline containing 0.3% Tween20

PVWM periventricular white matter

RT room temperature

TFA trifluoroacetic acid

TMS thymosine

TPM tropomyosin

WM white matter

WMH white matter hyperintensities

WMP white matter pathology

WMR white matter rarefaction

VDAC1 voltage-dependent anion channel 1

VIM vimentin
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Figure 1.
Coronal sections from the frontal lobe at the level of the genu of the corpus callosum and
immunohistological sections of deep WM stained with anti-GFAP/Alexa Fluor 488. A) A
representative section of a NDC individual (case #4) showing an intense and homogeneous
distribution of the H&E stain throughout the WM. B) An example of extensive WM
rarefaction in AD (case #13). In this section, the apparent pallor of the H&E stain reveals
extensive WM loss comprising the periventricular and deep WM. The boxed areas in both
cases depict the areas of PVWM tissue used in the proteomic analysis and the arrows
designate the superior angle of the anterior horn of the lateral ventricle. C)
Immunohistological section of the deep WM of NDC case #4 astrocytes. The morphology of
the astrocyte shows a stellar body with fine ramified fibrous processes with smooth surfaces
that extend over long distances. D) Section of the deep WM from AD case #13. Most of the
astrocyte bodies resemble the protoplasmic type with shorter processes of variable caliber.
There is an extensive distribution of granular positive GFAP that may correspond to dilated
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astrocytic cell processes probably filling areas of extensive axonal demise (see Figure 2).
Magnification = 200X. Scale bar in (C) also applies to (D). CC, corpus callosum; CG,
cingulate gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior
frontal gyrus.
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Figure 2.
Electron micrographs of frontal WM. A) Electron micrograph section of a 90 year old NDC
female, with a total WMR score of 0, showing a homogeneous distribution of axons with
different degrees of myelination. B) An 87 year old AD female with a total WMR score of
10, demonstrating a severe loss of axons and myelin surrounded by dilated astrocytic
processes (designated by asterisks) with a ‘watery appearance’ that fill the gaps left by
axonal downfall that may explain the granular positive GFAP impression shown in Figure
1D. Axonal counting revealed a difference of 30% loss in the AD case relative to the NDC.
Magnification = 2000X. Scale bar in (A) applies to (B). The tissues were fixed in the
immediate postmortem in 2% paraformaldehyde, 1.25% glutaraldehyde, 0.075% calcium
chloride in 0.1 M Na cacodylate buffer pH 7.4. The electron micrographs are a courtesy of
Dr. Bernd Bohrmann, Hoffman-La Roche, Basel Switzerland.
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Figure 3.
2D-DIGE analysis of the NDC pool (A) and AD pool (B) of PVWM pellet proteins. C)
Zoomed in area of the NDC gel showing identified spots in more detail. The numbers in (C)
correspond to Table 2 spot numbers with mass spectrometry protein identifications.
Isoelectric points (pI) are given across the top of each gel and molecular weigh in
kiloDaltons (kDa) along the left side. Note that pI and molecular weight are approximate.
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Figure 4.
After fractionation based on pH, AD (red) and NDC (green) PVWM soluble protein pools
were separated on a reverse phase column. After filtering the data, 5 fractions were selected
for mass spectrometry protein identification. A) Fraction I mass spectrometry results are
shown in Table 3. B) Fractions II and III mass spectrometry results are shown in Table 5. C)
Fraction IV mass spectrometry results are shown in Table 5 and Fraction V shown in Table
6.
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Figure 5.
1D SDS-PAGE Western blots of individual AD and NDC subjects. Antibody details are
given in supplementary Table I. Case numbers provided at the top of each blot correspond to
those in Table 1: Cases 1-5 = NDC and cases 10-13 = AD. All blots were stripped and re-
probed with actin and are provided below each blot. Statistical analysis was performed with
an unpaired, 2-tailed, t-test.
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