
 

Inertial Movements of the Iris as the Origin of Postsaccadic Oscillations
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Recent studies on the human eye indicate that the pupil moves inside the eyeball due to deformations of
the iris. Here we show that this phenomenon can be originated by inertial forces undergone by the iris
during the rotation of the eyeball. Moreover, these forces affect the iris in such a way that the pupil behaves
effectively as a massive particle. To show this, we develop a model based on the Newton equation on the
noninertial reference frame of the eyeball. The model allows us to reproduce and interpret several important
findings of recent eye-tracking experiments on saccadic movements. In particular, we get correct results for
the dependence of the amplitude and period of the postsaccadic oscillations on the saccade size and also for
the peak velocity. The model developed may serve as a tool for characterizing eye properties of individuals.
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It has recently been shown that, during eyeball rotations,
the iris suffers deformations that can produce an effective
motion of the pupil inside the eyeball [1–4]. This phenome-
non is observed particularly at the end of the saccades [5,6].
Many high-quality videos (both professional and home-
made) have been spread on the Internet in the last years
showing details about this surprising issue [8]. The effect is
usually ascribed to the interplay between the viscoelastic
properties of the iris and the rotation of the eyeball, since this
seems rather intuitive from the observations of the videos.
However, a formal quantitative description is still lacking.
While eye-tracking techniques are turning into an impor-

tant tool for neuroscience, industry, andmarketing [7], recent
experiments indicate that the motion of the pupil inside the
eyeball can affect themeasurements [4]. This is because such
motion can be related to the observance of the so-called
postsaccadic oscillations (PSOs) [1]. Hence, the develop-
ment of models analyzing pupil motion is important not only
from the point of view of basic research, concerning the
characterization of the eye physiology, but also for the
interpretation of eye-tracking experiments. Concretely, mod-
els would help to shed light on the problem of distinguishing
information related to neural commands for eyemotion, from
data reflecting mechanical phenomena inside the eyeball.
With these considerations in mind, in this Letter we

develop a model for the separate dynamics of eyeball and
pupil during saccadic motion. The model helps us to answer
important questions such as to what extent the motion of the
pupil inside the eyeball can be related to the PSOs.
Moreover, it allows us to understand the dependence of
the PSO profiles on the saccade size reported in [3] and how
this is connected to the dependence of the peak velocity
found in [9,10]. Previously, mathematical models have been
found useful for studying other aspects of saccadic motion

[11–14], microsaccades [15,16] and fixation [17–19], but
the questions posed here were not analyzed.
Model for the eyeball and iris motion during saccades.—

We propose a one-dimensional model in which the eyeball
motion is described by a dynamical variable x representing
the angular position of the center of the cornea along a
saccade. Meanwhile, a second variable y represents the
relative angular position of the pupil centermeasured from x.
Assuming that the eyeball is driven by the extra ocular

muscles in an overdamped way, we consider the dynamical
equation

ν_x ¼ FðtÞ: ð1Þ
Here, ν is the viscosity acting on the eyeball and FðtÞ is the
force representing the action of the muscles. For simplicity,
we fix ν ¼ 1 so that the force is scaled. Given that we are
only interested in describing single saccades, we consider
the initial condition xð0Þ ¼ 0with no loss of generality. The
anisotropies that may affect the motion on different direc-
tions can be modeled by varying the characteristics of FðtÞ.
In order to describe the relative motion of the pupil, we

assume that the iris is elastically linked to the eyeball and
that its internal border (which defines the pupil) can
oscillate driven by inertial forces induced by the motion
of the eyeball. The idea is that such inertial forces could act
directly on the inner part of the iris (or on other internal
pieces of the eye linked to the iris) in such a way that the
pupil center behaves effectively as a massive particle.
Hence, we consider the equation

ÿþ γ _yþ ky ¼ −ẍ: ð2Þ
Here, k is the effective elastic constant that tends to bring
the center of the pupil to its rest position on the eyeball,
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while γ measures an effective viscosity affecting the relative
motion. Finally, −ẍ stands for the inertial force felt by the
inner part of the iris on the reference frame of the eyeball.
Note that the mass is set equal to 1 with no loss of
generality. The units of k and γ are chosen to express x and
y in degrees and the time in milliseconds. As initial
conditions, we consider yð0Þ ¼ _yð0Þ ¼ 0 so that the iris
is at rest at its relaxation position.
Although the motion of the pupil may obey complex

phenomena associated with three-dimensional movements
and deformations, by fitting the parameters k and γ and the
function FðtÞ, our approach aims at capturing as much as
possible the effective one-dimensional dynamics registered
by eye trackers. In most of our Letter, we consider k and γ
as constant parameters. This is enough to understand
several aspects of the phenomenology of the PSOs.
However, at the end of the Letter, we show that the
consideration of k and γ as functions of FðtÞ can lead to
better descriptions. Other versions of damped oscillators
have been used in [13,14] to describe saccadic motion.
However, no attempt was made to analyze the inertial
effects on the relative motion of the iris.
We consider the forcing profile as given by

FðtÞ ¼ At exp

�
−
tμ

τμ

�
; ð3Þ

where A, τ, and μ are positive parameters. Note that τ is a
time constant, whileA gives a globalmeasure of the strength
of the forcing. The particular functional form for FðtÞ given
in Eq. (3) is chosen for two reasons. First, it has the suitable
characteristics for describing the average muscle activity
during a saccade: it starts fromFð0Þ ¼ 0, then grows up to a
maximal value, and decays again to zero. More importantly,
as we will show, by varying only the parameter τ, FðtÞ
generates saccadeswhosemaximumvelocity growswith the
saccade size xm as xαm, with α ∼ 1=2, in close agreement with
experimental results found in [9] (using EyeLink 2 Eye
Tracker) and in [14] (with EyeLink 1000). A preliminary
analysis of data for accelerations and velocities suggests
values of μ in the range of 2–3. In this Letter, we find enough
to consider μ ¼ 2, while a complete study of the role of this
parameter will be discussed elsewhere.
Solutions for eyeball motion.—By considering Eq. (3)

with μ ¼ 2, we can integrate Eq. (1) to get xðtÞ ¼
1
2
Aτ2ð1 − exp½−t2=τ2�Þ. The saccade size xm is just xm≡

limt→∞xðtÞ ¼ Aτ2=2, while the maximal velocity of the
eyeball yields max½_x� ¼ Aτ=

ffiffiffiffiffi
2e

p
. Note that, at fixed A, the

saccade size can be controlled by the parameter τ. We have
τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xm=A
p

. Thus, from now on, we use xm instead of τ
as a relevant parameter. Interestingly, the saccades gen-
erated by varying xm at fixed A satisfy the relation
max½_x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Axm=e
p

, as can be seen by equating τ from
the formulas for xm and max½_x�. This is the relation between
the maximal velocity and x1=2m mentioned before. It should

be noted, however, that the maximal velocity of the pupil
registered in experiments would actually correspond to
max½_xþ _y�, not to max½_x�. This does not make a big
difference concerning the power law involved, as we
later show.
Results for pupil motion and PSO.—Because of the

particular form of FðtÞ, the analytical solution for Eq. (2) is
not straightforward and, in general, may involve hyper-
geometric functions. This may be matter for further studies.
Here, in order to analyze the phenomenology of the model,
we solve Eq. (2) numerically with ẍ derived from the
solution xðtÞ given above. We focus on the analysis of
families of saccades of different amplitudes performed by
the same eye in a fixed direction, as those studied in the
experiments in [3]. In order to generate a family of saccades
with these characteristics, we consider our model with
varying xm at constant A, k, and γ. As explained before, the
condition of constant A leads to the relation max½_x� ∼ ffiffiffiffiffiffi

xm
p

.
Meanwhile, the consideration of constant k and γ indicates
that the iris-eyeball interaction is the same for every xm.

(a) (b)

(c)

FIG. 1. Pupil motion. (a) Family of saccades with constant
A ¼ 0.06, γ ¼ 0.15, k ¼ 0.032, and varying xm. (b) Detail of
eyeball xðtÞ and pupil xðtÞ þ yðtÞ positions during saccades of
sizes xm ¼ 7 and xm ¼ 15 calculated for A ¼ 0.05, γ ¼ 0.1, and
k ¼ 0.035. (c) Maximal velocity vs xm. The red solid and the blue
dotted lines correspond to families of saccades with constant A, γ,
k for the values indicated [the red solid line corresponds to the
saccades in (a)]. The white squares are results from (single)
saccades from the same observer for a left eye moving to the left,
taken from experiments in [14]. The black circles are our
estimations using data recovered from the mean saccades shown
in Fig. 2 in [3] (pupil-corneal reflection signal) for the case of
observer 3, left eye, abduction. The green dashed line corre-
sponds to the model with force-dependent parameters presented
at the end of the Letter, with parameters as in Fig. 3(b). The dash-
dotted segment indicates the x1=2m behavior.
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In Fig. 1(a), we show a family of saccades of this type,
while in Fig. 1(b), we depict two saccades for another
parameter set in order to show the details of the eyeball and
pupil trajectories. The profiles found for xðtÞ þ yðtÞ are
compatible with observations for pupil motion performed
with EyeLink [3,14] and SMI [3,4] eye trackers, exhibiting
realistic shapes of PSO. Moreover, in agreement with what
some results in [4] suggest, the model indicates that the
pupil starts to move later than the eyeball, and it begins to
oscillate before the eyeball reaches its stationary position.
Even more, our results agree with the recent finding
concerning the fact that the peak velocity of the pupil is
larger than that of the corneal reflection [4]. All of these
effects are easy to understand as caused by the interplay
between the inertial and the elastic forces. Interestingly, our
model also predicts that the amplitude of the PSO decreases
with the saccade size at large xm, as found in [3]. This will
be discussed below. In Fig. 1(c), we show the dependence
of the maximal velocity of the pupil max½_xðtÞ þ _yðtÞ� as a
function of xm for two families of saccades with fixed γ, k,
and A, together with data from experiments and from the
model with force-dependent parameters described later.
The results obtained with constant parameters are in good
agreement with the experimental data, which have consid-
erable dispersion for different saccades, directions, and

observers, as shown in Ref. [14]. For xm ≳ 2 deg, the
calculated curves exhibit an approximately power-law
behavior with exponent ∼1=2.
The studies in [3] show that the amplitude of the PSO

decreases with the saccade size for xm ≳ 8 deg. Moreover,
for most of the subjects analyzed, the PSO amplitude
exhibits a maximum as a function of the saccade size at a
value of xm in the range of 5–8 deg. Thus, the amplitude
grows with xm at small xm. The experiments in [3] also
indicate that the PSO period decreases monotonically with
xm for xm ≳ 4 deg. Although these results were obtained
with pupil-minus-corneal reflection (p-CR) signals [20],
according to our developments in Ref. [20], we expect
similar behaviors for pupil signals. As we will show, our
model reproduces all the mentioned results. To define the
PSO amplitude and period, we use the following procedure
[see inset in Fig. 2(b)]. We label as (t1, z1) the time-space
position of the first local maximum of the saccade profile
and as (t2, z2) that of the first minimum. Then, we define the
PSO amplitude as z1 − z2 and the period as 2ðt2 − t1Þ [21].
Figure 2(a) shows the amplitude of the PSO as a function of
xm calculated for different parameter sets and also for the
model with force-dependent parameters. In all the cases, we
find amaximumof the PSOamplitude for a value of xm in the
range of 4–8 deg. This is compatible with the experimental

(a)

(c) (d)

(b)

FIG. 2. Amplitude and period of the PSO. (a) PSO amplitude as a function of xm. The black solid line is for A ¼ 0.06, γ ¼ 0.15,
k ¼ 0.032 [set in Fig. 1(a)], the red dashed line is for A ¼ 0.036, γ ¼ 0.15, k ¼ 0.032, and the green dotted line is for A ¼ 0.06,
γ ¼ 0.15, k ¼ 0.05. The blue dash-dotted line is for the model with force-dependent parameters with the values used in Fig. 3(b). The
arrows indicate the value of xm for which TF and TΩ match. (b) PSO period as a function of xm for the same calculations as in (a). The
inset sketches the method for calculation of the PSO amplitude and period. (c) Inertial force −ẍðtÞ for three values of xm from the set in
the black solid line in (a). (d) Tf and TΩ as functions of xm for the set in (c).
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curves shown in Figs. 5 and 9 in [3] for horizontal and
vertical saccades, respectively. In Fig. 2(b), we show the
period of the PSO as a function of xm for the same set of
calculations analyzed in Fig. 2(a). We see that, for xm ≲ 8
deg, the period is almost independent of xm and then it
exhibits a clear monotonic decreasing. This is also compat-
ible with the experimental results shown in Fig. 6 in [3].
The decreasing of the PSO amplitude with xm at large xm

was interpreted in [3] and references therein as due to a
“gentle breaking” of the eyeball motion. As we here show,
our model suggests that the existence of a maximum of the
PSO amplitude as a function of xm can be interpreted as a
resonantlike phenomenon related to the matching of a
characteristic time of the eyeball forcing with the natural
period of oscillation of the iris inside it. Figure 2(c) shows
the inertial force −ẍðtÞ plotted as a function of t for three
values of xm. The forcing profile for xm ¼ 7 is the one that
produces the maximal amplitude of PSO. It is not easy to
understand this result, since this forcing profile seems to
have nothing special. Its duration is intermediate between
those of the other two profiles plotted. One physically
grounded explanation arises by noticing that the shape for
the−ẍðtÞ curve resembles a sinusoidal oscillation for which
we can define a characteristic period. For this, we compute
the cosine Fourier transform of ΘðtÞẍðtÞ [with ΘðtÞ the
Heaviside function] and then the mean Fourier frequency
and its associated period, referred to as TF. On the other
hand, we consider the natural frequency of oscillation of
yðtÞ, namely, Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − ðγ20=4Þ

p
and its associated period

TΩ ¼ 2π=Ω, which is independent of xm. In Fig. 2(d), we
plot TΩ and TF vs xm for the same parameters considered in
Fig. 2(c). It can be seen that both periods match approx-
imately at xm ≃ 6 deg, which is close to the value of xm that
maximizes the PSO. The arrows in Fig. 2(a) indicate the
values of xm for which TΩ and TF match for the three
parameter sets considered. In all the cases, it is close to the
one that maximizes the PSO amplitude. This is reminiscent
of a resonant phenomenon, although the maximization does
not occur for a perfect matching. Note that this interpre-
tation does not contradict the idea of a gentle breaking at
large xm, but helps to understand the growth of the PSO
amplitude with xm at small xm.
Fitting families of saccades: Nonconstant parameters.—

Although the model with constant parameters A, k, and γ
enables us to understand the dependence of the PSO
amplitude and period on xm, an accurate fitting of a family
of experimental saccades may require additional sophisti-
cation. For instance, the consideration of a dependence of k
(or γ) on the relative position yðtÞ, the relative velocity _yðtÞ,
or the force FðtÞ may be in order. The development of a
complete model would require a strong interplay between
theory and experiments and an exhaustive analysis of many
families of saccades with varying directions and luminance
[22], which is out of the scope of the present Letter.
However, in order to give an example of a detailed fitting,

we focus on reproducing the family of averaged horizontal
saccades recovered from [3] that we show in Fig. 3.
Importantly, as these saccades were obtained from p-CR
signals, they may not describe accurately the actual motion
of the pupil [4,20], so that the fitted values of the para-
meters may not correspond exactly to those for the pupil
dynamics. Nevertheless, the model can be used as a
reasonable tool for fitting. Our results indicate that the
model with constantA, k, and γ overestimates the decay rate
of the PSO amplitudewith xm, as shown in Fig 3(a). Suitable
PSO amplitudes at large saccade sizes can only be obtained
by either overestimating the saccade velocity (by increasing
A) or by overestimating the PSO amplitude for small xm (by
decreasing k). In order to fit both the saccade velocities and
the PSO profiles for all saccade sizes, we here consider the
parameters k and γ as dependent on the force FðtÞ. This is
meaningful from a physiological point of view since the
forces exerted on the eyeball may not only rotate it, but also
produce smooth deformations, which can change the inter-
action of iris with the crystalline and other internal parts of
the eye. We consider the particular forms γ ¼ γ½FðtÞ� ¼
γ0 exp½−cFðtÞ� and k ¼ k½FðtÞ� ¼ k0 exp½−dFðtÞ�, with c,
d > 0. This represents a loosening of the eyeball-iris link
with the force. In Fig. 3(b),we show results for thismodel for
a fixed set of parameters with varying xm, together with the
data recovered from [3]. The agreement is evident. It isworth
remarking that the parameters A, k, γ, c, and d are the same
for all the saccades, and only xm changes. Still, we have not

(a) (b)

FIG. 3. Fitting families of saccades from experiments.
(a),(b) Open circles correspond to data recovered from experi-
ments in [3] for the case indicated in Fig. 1(c). The solid red curves
in (a) are our calculations for the model with constant parameters
A ¼ 0.04, k ¼ 0.032, γ ¼ 0.15 for various values of xm, while
those in (b) are for the model with force-dependent parameters
with A ¼ 0.036, k0 ¼ 0.04, γ0 ¼ 0.14, c ¼ 0.5, d ¼ 3. For the
sake of completeness, in both (a) and (b), we show calculations for
xm ¼ 16 although there are not experimental data for such
saccade size.
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performed a fine tuning of the parameters, and so the set
considered is not expected to be the optimal one. The curve
for themaximal velocity vs xm for these parameters is shown
in Fig. 1(c) and agrees with the points calculated from the
experimental saccades recovered. The results for the PSO
amplitude and the period for the same calculations are shown
in Figs. 2(a) and 2(b), respectively. We see that decay of the
PSO amplitude at large xm is slower than for the model with
constant parameters, as we expected.
Final remarks.—The simple model with constant param-

eters presented allows us to understand the PSO as a
consequence of the inertial motion of the iris inside the
eyeball. In particular, we get explanations for the depend-
ence of the PSO profiles on the saccade size, and we show
how this dependence is connected with that of the peak
velocity. More elaborated versions of the model, such as the
one with force-dependent parameters here considered, can
provide accurate fittings of families of saccades. The model
parameters could be fitted to determine individual charac-
teristics of the eyes related to the viscoelastic link between
iris and eyeball, and to the muscular force in different
directions, with possible application to diagnostics [23].
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