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Abstract

It is well established that the conservation of protein structure during evolution constrains sequence divergence. The conser-
vation of certain physicochemical environments to preserve protein folds and then the biological function originates a
site-specific structurally constrained substitution pattern. However, protein native structure is not unique. It is known that
the native state is better described by an ensemble of conformers in a dynamic equilibrium. In this work, we studied the influence
of conformational diversity in sequence divergence and protein evolution. For this purpose, we derived a set of 900 proteins with
different degrees of conformational diversity from the PCDB database, a conformer database. With the aid of a structurally
constrained protein evolutionary model, we explored the influence of the different conformations on sequence divergence.
We found that the presence of conformational diversity strongly modulates the substitution pattern. Although the conformers
share several of the structurally constrained sites, 30% of them are conformer specific. Also, we found that in 76% of the proteins
studied, a single conformer outperforms the others in the prediction of sequence divergence. It is interesting to note that this
conformer is usually the one that binds ligands participating in the biological function of the protein. The existence of a
conformer-specific site-substitution pattern indicates that conformational diversity could play a central role in modulating
protein evolution. Furthermore, our findings suggest that new evolutionary models and bioinformatics tools should be developed
taking into account this substitution bias.
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Introduction
Protein sequences are a source of invaluable information used
in many diverse fields, such as molecular evolution, structural
bioinformatics, and proteomics. This information is derived
from site-specific substitution patterns encoded in an align-
ment as the differential probability of occurrence of the
amino acids in different positions of a protein. The under-
standing of substitution patterns will provide us with a deeper
insight of the underlying evolutionary process. This is a central
issue to develop and improve bioinformatics tools that use
sequence information. The discovery that the conservation of
protein structure is related to sequence divergence has rep-
resented a significant improvement in the field (Lesk and
Chothia 1980; Chothia and Lesk 1986). As proteins evolve,
they are subjected to selective pressures to conserve their
structures constraining sequence divergence, evidencing
that sequences have structural information encoded in
their substitution patterns. One of the first tools that impli-
citly captured the importance of this information was the use
of profiles to search for distant homologous proteins
(Gribskov et al. 1987), which soon after was followed by the
use of Hidden Markov Models (HMM) for sequential studies
(Krogh et al. 1994; Karplus et al. 1997). When structural sig-
natures were considered explicitly, both methodologies
increased their performance in distant homologous searches,
fold recognition, and protein structure model assessment

(Gribskov et al. 1988; Luthy et al. 1991, 1992; Eisenberg et al.
1992). The inclusion of structural information to obtain a
better description of substitution patterns was in agreement
with the early mechanistic view that certain amino acids
occur preferentially in given secondary structure elements
(Guzzo 1965; Levitt 1978). This view evolved to the idea
that local structural environments could modulate the sub-
stitution patterns of amino acids (Overington et al. 1990;
Overington 1992). As in the case of profiles and HMMs, evo-
lutionary models gained reliability to describe the substitution
pattern when they include explicit structural information.
Several of these models have been developed considering a
variety of structurally related properties including the protein
fold and its thermodynamic stability, evolutionary derived
potentials, physicochemical environments, quaternary pro-
tein structures, and structural perturbations due to nonsy-
nonymous mutations (Koshi and Goldstein 1995; Bastolla
et al. 1999; Dokholyan and Shakhnovich 2001; Parisi and
Echave 2001; Fornasari et al. 2007; Kleinman et al. 2010).

Although the relationships between substitution pattern
and protein structure are well established and have been used
in several bioinformatics analysis, most of the conclusions
were obtained describing the protein native state as a single
structure. However, increasing experimental evidence sup-
ports the notion that the native state is better described by
an ensemble of interchangeable conformers moving in a
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free-energy landscape (Volkman et al. 2001; James and Tawfik
2003; Henzler-Wildman et al. 2007; Lange et al. 2008). This
notion has been previously used to explain the heterogeneity
in the binding properties of bovine seroalbumin (Karush
1950). However, a more formal description was included in
the Monod–Wyman–Changeux model of allosteric regula-
tion also known as preexisting equilibrium model (Monod
et al. 1965). The idea was later included in the concept of
folding funnels (Bryngelson and Wolynes 1989; Bryngelson
et al. 1995) explaining protein-folding pathways with a
rugged bottom representing a collection of conformational
isomers. According to this view, the populations of these
conformers follow statistical thermodynamic distributions,
and the energy barriers separating them define their conform-
ational exchange (Nienhaus et al. 1997; Tsai, Ma, et al. 1999).
The extent of conformational diversity is then related to the
extent of the ruggedness at the bottom of the funnel includ-
ing the distribution and heights of barriers between confor-
mers. Rigid proteins, that is, proteins with relatively small
structural differences between their conformers, can be
related with very rugged landscapes. Similarly, more flexible
proteins presenting large conformational diversity can be
associated with very smooth landscapes. Moreover, the rela-
tive population in the conformational ensemble was shown
to be related with the protein fold (Keskin et al. 2000), with
the presence of certain mutations (Sinha and Nussinov 2001),
and with the evolutionary history of the protein (Maguid et al.
2006). The early idea of the “static” folding funnels was later
extended to the notion of dynamic funnels to include the
effect of the environment in their overall shape (Kumar et al.
2000). Dynamic landscapes support the conformational bind-
ing selection hypothesis according to which the ligand selects
the conformation with better affinity as antigens select the
highest affinity antibody in the immunological response
(Foote and Milstein 1994). Furthermore, despite that the
highest ligand affinity conformer may correspond to a con-
formation with a high relative energy, the conformers belong-
ing to a scarcely populated state in the ensemble could still
bind to the ligand and shift the equilibrium toward the bound
form to proceed with the reaction (Kumar et al. 2000). The
description of dynamic landscapes offers a central view to
explain structure–function–dynamics relationships (James
and Tawfik 2003; Tokuriki and Tawfik 2009), and it is in
agreement with most recent experimental data describing
protein behavior (Boehr et al. 2006; Hilser 2010). These con-
cepts provide more satisfactory explanations to several ex-
perimental data and have replaced the well-known and
long-established “lock-key” (Fischer 1894) or “induced-fit”
models to describe protein–ligand interaction (Koshland
et al. 1958).

Considering the native state of proteins as an ensemble of
conformers as well as the constraints that structure conser-
vation imposes to sequence divergence, a specific character-
istic substitution pattern should be expected for each
conformer. Following this idea, the sequence information
contained in an alignment of homologous proteins could
be a complex blend of different structural constraints intro-
duced by the native ensemble. Therefore, in the present work,

we studied the effect that protein conformational diversity
could have on the sequence substitution pattern originated
from structural constraints. To this end, we estimated the
conformational diversity using a data set of redundant struc-
tures for the same protein retrieved from the Protein
Conformational Diversity Database (PCDB) recently de-
veloped in our group (Juritz et al. 2011). Our procedure is
validated by previous works that have proved the corres-
pondence between structural deformations detected under
different crystallographic conditions and conformational
changes related to the flexibility of the native state (Zoete
et al. 2002; Best et al. 2006). For each protein with more than
two different structures, we estimated its substitution pattern
using SCPE (from structurally constrained protein evolution),
a model of protein evolution developed previously (Parisi and
Echave 2001). The main output of the model is a whole set of
site-specific substitution matrices (Fornasari et al. 2002). The
influence of each conformer in the substitution pattern found
in the alignment of homologous proteins was studied using a
maximum likelihood (ML) approach. Briefly, we found that
conformational diversity strongly modulates the substitution
pattern derived from structural constraints. Although each
conformer has its own specific structural constraints, we
found that, in 76% of the proteins under study, one confor-
mer is associated with the best ML value and statistically
outperforms the other members of the structural ensemble.
Interestingly, 62% of these conformers are involved in cognate
ligand binding, and only 28% of these correspond to the
minimum relative energy structure.

Materials and Methods

Data Set Collections

We used the Protein Conformational Database (http://pcdb.
unq.edu.ar) (Juritz et al. 2011) to retrieve a data set of 900
randomly chosen proteins with different degrees of conform-
ational diversity. The maximum Root Mean Square Deviation
(RMSDmax) between alpha carbon coordinates of the differ-
ent conformers, calculated with MAMMOTH (Ortiz et al.
2002), is taken as a measure of the conformational diversity
of the protein. In the data set studied, the range of RMSDmax
is between 0 and 22.65 Å. The average RMSDmax value of
multiple conformers for each protein is 7.5 Å. The solvent
accessible area for each residue in each structure was obtained
using the program Naccess (Hubbard and Thornton,
Computer program, Dept of Biochemistry and Molecular
Biology, University College London).

SCPE Simulations

Site-specific substitution matrices were obtained using SCPE
(from structurally constrained protein evolution model)
(Parisi and Echave 2001). SCPE simulates protein evolution
by introducing random mutations in a protein with known
crystallographic- or NMR-derived structure. Mutations are
selected against too much structural perturbation using a
score that measures the energetic difference introduced by
the mutation. The mutation is accepted using a derived prob-
ability, which is a function of the score and a parameter l that
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is a measure of the selective pressure for the acceptance of
nonsynonymous substitutions. The parameter l is related
with the selection pressure for structural conservation: high
values of l correspond to stronger structural constraints and
then a low acceptance probability. On the other hand, low
values of l correspond with weaker structural constraints and
a high acceptance probability. The main output of SCPE is a
set of site-specific substitution matrices derived by counting
the accepted mutations in the simulation (Fornasari et al.
2002). In this manuscript, SCPE was run using 8,000 independ-
ent calculations for each structure, with a default l= 0.25 and
a divergence time of 20 nonsynonymous substitutions per site
in average. These parameter values were previously assessed
as the best set of values for different unrelated proteins (Parisi
G, unpublished results). Value l= 0.0001 was used to explore
mutational sites, implying a complete relaxation of the select-
ive pressure against structural constraints. In this way, the
obtained substitution matrices are dominated by the under-
lying mutational process that in SCPE is defined by an em-
pirical codon substitution model (Schneider et al. 2005).

ML Calculations

ML calculations require a model of evolution, a multiple align-
ment, and the corresponding phylogenetic tree. The program
HYPHY (Pond et al. 2005) was used with custom scripts to
allow the inclusion of the site-specific substitution matrices
from SCPE. For each protein in the data set, an alignment of
homologous sequences was derived from the HSSP database
(Sander and Schneider 1993). Each alignment contains at least
20 sequences with no less than 35% of sequence identity
referred to the sequence of the known structure. The phylo-
genetic inference was made for each alignment using the
PROTPARS maximum parsimony approach (Felsenstein
1989). Jones, Taylor, and Thorton (JTT) model was used as
a reference model (Jones et al. 1992). As it is very frequent that
crystallographic structures have missing residues, all ML cal-
culations were made for residues shared by all the conformers
for each protein in the data set. A model is said to outperform
another model if it has a significantly higher ML value. Model
comparisons were statistically assayed using Akaike informa-
tion criteria (AIC) coefficient (Akaike 1974), and a ranking for
the estimated models was estimated using DAIC (Burnham
and Anderson 2003). A difference of DAIC < 2 was taken as
the accepted upper limit measure of model support.

For each protein, the SCPE sites were identified comparing
SCPE and JTT performances for each site. SCPE sites were
estimated for each protein using each of the different struc-
tures derived from PCDB representing the conformational
ensemble of the native state. As SCPE is a structurally con-
strained model, each structure originates a different substitu-
tion pattern. When SCPE outperforms JTT in a particular site,
it is called a SCPEs (SCPE site/s), otherwise, it is a JTTs (JTT
site/s). When both models are undistinguishable, the sites are
called Ms (Mutational site/s). We then registered common
SCPEs to all structures and conformer-specific sites. We have
also obtained the total ML (sum of the log ML per site) using

SCPE runs and JTT. The statistical performance of the total
ML obtained was again assessed using DAIC.

Ligand Occurrence and Minimum Relative Energy
Data Set

To study the relationships between ligand occurrence, relative
energy between conformers, number of interatomic contacts,
and likelihood values obtained for the different structures, we
used a set of 55 proteins (and their 320 corresponding struc-
tures) extracted from the original data set. These proteins
fulfill some conditions required for the analysis. For example,
the relative energy between the conformers for each protein
was estimated using the knowledge-based potential derived
by Ferrada and Melo (2009), which requires lengths above 90
residues. The presence of cognate ligands in each structure
was made using the Procognate database (Bashton et al.
2008). The cognate ligands deposited in this database are
those involved in the biological function of the proteins.
The proteins in the data set contain at least a pair of confor-
mer with and without a bound ligand. The number of con-
tacts in each protein conformer were determined using the
contact definition of Berrera et al. (2003) that is also used by
the SCPE program (Parisi and Echave 2001).

The list of the proteins and structures used in this work can
be downloaded as supplementary material (Supplementary
Material online). The scripts to perform site-specific ML cal-
culations using HYPHY are available upon request to the
author.

Results

Evolution under Structural Constraints

We are interested in the analysis of protein conformational
diversity impact on amino acid substitution pattern. To elu-
cidate this effect, it is important to know in what extent the
structural information is operating on protein evolution. For
this purpose, ML calculations (Felsenstein 1981) were per-
formed using alignments derived from the HSSP database
and their estimated phylogenies (see Materials and
Methods). We first compared ML estimations obtained
using two models of protein evolution, the SCPE (Parisi and
Echave 2001) and JTT (Jones et al. 1992) models. The SCPE is a
model of evolution that explicitly considers the conservation
of protein structure to simulate sequence divergence. For this
reason, SCPE is called a “constrained” model. The main result
of SCPE runs is a whole set of site-specific substitution matri-
ces. The model was proved to be useful for detecting signa-
tures derived from structural constraints in protein families
(Parisi and Echave 2001, 2004, 2005; Fornasari et al. 2007). On
the other hand, JTT is a well-established and extensively used
molecular evolution model that uses a single substitution
matrix for all sites of any protein. This matrix is derived
from the accumulation of amino acid replacements from a
large number of proteins. Consequently, JTT can be con-
sidered an “unconstrained” model, in the sense that it does
not consider explicitly specific structural constraints. We have
selected JTT as a reference unconstrained model, but others
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could have been chosen as well, for example, LG (Le and
Gascuel 2008) or WAG (Whelan and Goldman 2001).

ML calculations allow us to compare the performance of
both models to describe the substitution pattern found in the
alignment. As it has been mentioned before, model compari-
son was made using AIC (Akaike 1974), and their statistical
significance was evaluated following Burnham and Anderson
(2003) (see Materials and Methods). In those cases where
SCPE outperforms JTT, structural restrictions are expected
to be an important component in the sequence alignment.
Otherwise, when JTT outperforms SCPE, two different situ-
ations could occur. On one hand, the alignments might not
contain enough structural information or SCPE is unable to
detect it. On the other hand, a given physicochemical trend
or other determining factor of the substitution pattern could
be better described by JTT. Additionally, a third possible out-
come is obtained when both models explain equally well the
substitution pattern. We show below that these sites are not
evolving under structural neither other physicochemical
constrains.

Our data set is composed by a redundant set of 3,896
domains from the CATH database (Greene et al. 2007) that
belong to 900 proteins from different structural families ex-
tracted from PCDB (Juritz et al. 2011). Using ML calculations
for each domain, we found that SCPE outperforms JTT in 89%
of the cases. This result suggests that most of the proteins in
our data set have structurally constrained positions affecting
sequence divergence. This hypothesis could be explored in
more detail performing ML estimations and statistical evalu-
ations per position to calculate the percentage of sites where
SCPE outperforms JTT. We found an average of 37% of these
sites per protein and we called them SCPEs (SCPE sites)
(fig. 1). On the other hand, JTT outperforms SCPE in only
12% of the sites and then we called them JTTs (JTT sites). It is
important to note that the classification of SCPE, JTT, and
mutational sites is operational and probably depends on the
reference unconstrained model considered. To explore this
influence, we also compared SCPE with the LG model. The
estimation of the fraction of SCPE sites using LG as reference
model is 35% in average in 100 randomly taken structures of
the data set used compared with 38% estimated using JTT as
reference in the same set. Although LG model has been
proven to outperform JTT model (Le and Gascuel 2008),
the structural information these type of models contain
seems to have little impact on the characterization of struc-
turally constrained sites distribution.

SCPEs are protein positions that evolve under well-defined
tertiary structure constraints. However, it is clear that add-
itional structural constraints could influence protein diver-
gence, like protein–protein interactions (Fornasari et al.
2002), misfolding (Drummond and Wilke 2008), or protein
aggregation (Monsellier and Chiti 2007). The structural con-
straints in SCPE emerge as a function of the number of inter-
atomic contacts between residues. In supplementary figure 1
(Supplementary Material online), the distribution of SCPEs
and JTTs as a function of the number of contacts is shown.
Most of the SCPEs have between four and six contacts per
residue, whereas the JTTs have a mean of one. Furthermore,

SCPEs usually correspond to buried residues, whereas JTTs are
mostly exposed to solvent (supplementary fig. 2,
Supplementary Material online). In figure 2, the different
types of sites are shown for an example protein.

It is interesting to note that the majority of the sites (in
average 45%) cannot be classified neither as SCPEs nor JTTs
(fig. 1 gray circles). These sites are equally well described by
JTT and SCPE. To study their properties, an independent set
of SCPE simulations were performed but without imposing
structural constraints (see Materials and Methods). Under
these conditions, the resulting substitution patterns corres-
pond to the empirical codon substitution model used by
SCPE in the mutational process (Schneider et al. 2005). This
means that the substitution matrices obtained by these simu-
lations contain no specific information about structural con-
straints. When they were used to calculate the ML per site, we
found that 89% of the sites that are equally explained by SCPE
and JTT are also equally explained by these mutational sub-
stitution matrices. Consequently, these sites are called Ms
(mutational site/s), and according to our results, they
evolve under no other constraints beyond the mutational
process considered.

At this point, it is interesting to analyze how SCPEs, being
in average only the 37% of all sites, can explain the overall
better performance of SCPE over JTT in the 89% of the 3,896
structures studied. The reason for this outperformance could
be found calculating the average ML difference per site
(MLSCPE � MLJTT). We have found a value of 2.47 for SCPEs

FIG. 1. Protein frequency distribution of percent of site classes in the
proteins studied in our data set. Site classes describe different substitu-
tion patterns related with the corresponding structural constraints. The
classes were derived from the comparison between an evolutionary
model which contains structural information (SCPE) and other model
without this information (JTT). Those sites where SCPE outperforms JTT
are called SCPE sites, and those where JTT outperforms SCPE are JTT
sites. When both models are indistinguishable, the sites are called mu-
tational sites (Ms) because, at protein level and under these models,
they could not be detected as subjected to structural or other physico-
chemical selective pressures. Taking only one structure to describe the
native state of a protein, most sites evolve without structural or other
physicochemical constraints (gray circles) followed by those subjected
to structural constraints (white circles).

82

Juritz et al. . doi:10.1093/molbev/mss080 MBE

Downloaded from https://academic.oup.com/mbe/article-abstract/30/1/79/1018768
by guest
on 29 November 2017

http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss080/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss080/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss080/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss080/-/DC1


representing a significantly large improvement in the evolu-
tionary description of these sites according to the AIC.
Therefore, these improvements gained at the SCPEs are
large enough to lead to an average improvement of the
whole structure. However, an important proportion of the
sites (45% in average) are equally described by the two models
meaning that neither structural nor other physicochemical
aspects are required to explain these sites. The consideration
of conformational diversity will alter this view.

Evolution under Loose or Absent Structural
Constraints

As it has been mentioned above, we found that JTT outper-
forms SCPE in 11% of the CATH domains in our data set. For
these cases, structural constraints could be absent or SCPE
could fail to adequately describe their substitution pattern.
The individual analysis of these structures has shown that at
least two main causes could explain the observed model per-
formances. On one hand, we have found that in very few
examples, the structures are associated with large ligands
involving the occurrence of large cavities. These types of inter-
actions (protein–ligand) are not explicitly considered in SCPE.
Thus, the residues evolving under the structural constraints
related to the binding of large ligands would be not correctly
simulated by this model. On the other hand, we have stated
that most of the structures belonging to this set correspond
to structures with loose or absent structural constraints.
Supplementary figure 3 (Supplementary Material online)
shows proteins with different types of structural organization
to exemplify these observations. Some of these proteins have
very few secondary structural elements, large loops, or folds
with low density of interresidue contacts. For these cases, the
distribution between SCPEs and JTTs is inverted compared to

structurally constrained proteins (fig. 1), whereas the distri-
bution of Ms remains almost the same (fig. 3). Therefore,
most of the residues in these proteins are structurally uncon-
strained (mutational sites). JTT matrix accumulates the sub-
stitution probabilities from different proteins and then from
different structural and functional environments. This aver-
aged information could explain the better description of the
substitution pattern found in sites without specific structural
constraints (in average 30%) but still showing a substitution
bias with some kind of physicochemical pattern. As muta-
tional sites are equally explained by the three models (SCPE,
JTT, and mutational), this fraction of JTT sites explains the
outperformance of this model over SCPE.

Evolution under Conformational Diversity

In order to study the effect of conformational diversity on
protein sequence divergence, we used the same redundant
collection of structures used before (from 3,896 CATH
domain structures) to describe the substitution pattern of
900 proteins. We have, then, an average of 4.3 structures
per protein to describe the influence of the conformational
ensemble on the substitution process evaluated with ML
methods. As a measure of conformational diversity, we
used the RMSDmax derived from an all-against-all compari-
son between all collected structures of each protein in the
database. The distribution of these values is shown in supple-
mentary figure 4 (Supplementary Material online), and it is in
agreement with the distribution reported by previous studies
in a larger data set (Burra et al. 2009). More than 40% of the
proteins in the data set show RMSDmax above 0.4 Å, which is
the value commonly observed between different crystals of a
protein obtained under the same crystallization conditions
(Berman et al. 2000). Structures with differences above this

FIG. 3. Protein frequency distribution of percent of site classes in pro-
teins with loose or absent structural constraints. As could be expected,
SCPE and JTT sites change their relative positions compared with
figure 1 where most proteins have larger proportions of structural con-
straints. Also, it is interesting to note that the fraction of mutational sites
(gray circles) remains almost the same, independently of the level of
structural constraints, when the native state of the protein is described
with only one structure.

FIG. 2. Example using mesh and stick representation of the distribution
of different site classes in a protein evolving under structural constraints
(Bone morphogenetic protein receptor type IA; PDB code 1goo, CATH
1gooB00). The figure shows the relative distribution of SCPE sites
(in red), JTT sites (in blue), and mutational sites (Ms) (yellow). The
structural constraints over the substitution process along evolution ex-
plain why SCPE sites usually correspond to buried residues, whereas JTT
sites are mostly solvent exposed.
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value are expected to be obtained in different crystallization
conditions (i.e., presence/absence of ligands, changes in oligo-
merization state, changes in pH, etc.). The different structures
could be taken as different instances of protein conform-
ational diversity or protein dynamism (Tokuriki and Tawfik
2009). This view is supported by the correlation found be-
tween collections of crystallographic structures for the same
protein and NMR measurements in several systems (Zoete
et al. 2002; Best et al. 2006; Kondrashov et al. 2008; Friedland
et al. 2009).

Using the same approach explained above to classify the
sites, the number of SCPEs, JTTs, and Ms were calculated for
each protein as the sum of the number of different sites over
the different conformations. Figure 4 shows the distribution
obtained for these three classes. It can be seen now that the
average of the total number of SCPEs increases from 37% to
48% when all the members in the ensemble are considered.
Comparing distributions in figures 1 and 4, it is clear that the
main consequence of considering conformational diversity is
an increment in the number of SCPEs that now accounts for
the majority of the sites of the protein. Moreover, the total
SCPEs can be classified as: 1) SCPEs shared by all the conform-
ations (73% of the SCPEs), that is, sites that can be classified as
SCPEs in all the conformations of the protein and, 2) SCPEs
that are distinctive of a single conformation (27% of SCPEs),
that is, sites that can be classified as SCPEs in only one of the
conformations of the ensemble. To study the relationship
between the percentage of SCPE sites and the extension of
conformational diversity, we calculated the Spearman cor-
relation coefficient using a log-log distribution between
RMSDmax and the percentage of total SCPEs. A value of
0.36 was obtained using the SCPE sites collected over all the
conformations. However, a better correlation (0.48) is ob-
tained when we considered the percent of SCPEs that are

characteristic of different single conformations. This last
value evidently better captures the relationship between pro-
tein mobility and structural constraints in evolution.

It is important to note that in 76% of the proteins, we
found that a single conformer outperforms the rest in terms
of the total ML using the AIC test. The importance of the
existence of this “best conformer” is related with its influence
to explain sequence divergence. This feature could be asso-
ciated with a stronger selective pressure during evolution;
therefore, these conformers could be important from a bio-
logical perspective. In order to get a deeper understanding of
this finding, we studied the relationship between the presence
of a best conformer, the relative energies between confor-
mers, and the presence of ligands. We have used a
knowledge-based potential (Ferrada and Melo 2009) to esti-
mate the relative energies between conformers and the
Procognate database (Bashton et al. 2008) to assign the pres-
ence of ligands for each conformer in our set. Using the
knowledge-based potential, we found that the best confor-
mer corresponds to the conformer with the minimum energy
in only 28% of the cases but in 62% to the conformer with a
bound ligand. These findings could indicate that conformers
with bound ligands, in spite of being less represented in the
conformational ensemble, are under the strongest selective
pressure influencing the substitution pattern during
evolution.

Discussion and Conclusions
In this study, we have found that the presence of structural
conformational diversity modulates protein sequence diver-
gence. Although the conformers share most of their SCPEs,
almost 30% of them are specific of each conformer. This
means that a sequence alignment of homologous proteins
contains conformational information, an observation that
agrees with previous findings describing that dynamism is a
conserved feature in protein evolution (Maguid et al. 2005,
2006, 2008). However, the different conformations in the en-
semble do not impact in the substitution pattern in the same
degree. It is interesting to note that among all the conform-
ations, in 76% of the proteins, a single conformation (called
here the “best conformer”) outperforms the rest considering
ML calculations. Searching for a deeper understanding of this
result, we related the distribution of conformers to two of the
major factors (relative energy and presence of ligands) influ-
encing the equilibrium between the conformers in the en-
semble according to the pre-equilibrium hypothesis (Monod
et al. 1965; Tsai, Kumar, et al. 1999; Tsai, Ma, et al. 1999). We
found that the characterized best conformer is mostly asso-
ciated (62%) with the conformer that binds the ligand rather
than with the conformer with the lowest relative energy.
Consequently, the conformer with the lowest energy, that is
usually associated with low binding activity (Kantrowitz and
Lipscomb 1990; Velyvis et al. 2007), could have a weaker in-
fluence on sequence divergence than those conformers, less
populated in the preexisting equilibrium, supporting the bio-
logical function due to the binding of cognate ligands.

In general, it is established that the so-called “close con-
formation” is associated with binding capacity and biological

FIG. 4. Protein frequency distribution of site classes when different con-
formations for each protein are considered (900 proteins and their
corresponding putative conformers). The main consequence of con-
sidering conformational diversity is the increase of the number of
SCPE sites that now accounts for the majority of the site classes studied
(please see fig. 1). This increase reflects that some sites could be classified
as mutational or SCPE sites according to the selected conformer.
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activity (Gutteridge and Thornton 2005). Thus, it is possible
that best conformer could be a compact conformer with a
higher level of contacts between residues favoring the occur-
rence of SCPEs. However, in our data set, the best conformer
is associated with the conformer with the relatively higher
number of contacts in only 25% of the cases. In this way, the
reported bias in the substitution patterns of the different
conformers could reflect the outcome of differential selective
pressures during evolution and may not be related with the
conformers’ compactness.

Our results are in agreement with previous ideas explaining
general trends in protein evolution and protein folding, in
particular the “minimal frustration” theory (Bryngelson
et al. 1995). According to this view, amino acid replacements
are selected for the occurrence of side chain interactions in
such a way that favors the acquisition of the folded state of
the protein. However, a small fraction of energetically
“frustrated” residues could still occur and have been asso-
ciated with binding residues (Ferreiro et al. 2007). In a similar
way, and although the conformers share the majority of the
SCPEs, we have found SCPEs specific of less-populated (higher
energy) conformers and therefore energetically frustrated.
SCPE simulations do not include selective functions to dis-
criminate functional residues, using this term in the classical
way to indicate residues associated with catalysis and binding.
However, as protein function relies on conformational diver-
sity (Karplus and Kuriyan 2005; Zhuravlev and Papoian 2010),
the conformer-specific substitution pattern found in this
work could indicate the existence of a broader class of “func-
tional residues” related with the dynamism required to sus-
tain the biological activity. Moreover, in a given protein family
with well-conserved residues involved in catalysis and binding,
it is expected certain functional diversification that could be
related with the presence of substrate promiscuity as well as
multispecificity (Tokuriki and Tawfik 2009). This functional
divergence could be explained in terms of the conformational
sampling of catalytic or binding residues due to local (flexi-
bility of loops and side chains) and global (domain move-
ments or fold transitions) rearrangements found in the
conformational ensemble. Different mutations occurring
during evolution could affect the relative population of
conformers in the ensemble originating the functional diver-
gence (Ma et al. 2002). The information associated to the
conformer-specific SCPEs could help in the estimation of
the sequence space defined by a given conformational en-
semble and then could be an important tool in the charac-
terization of functional clusters or subfamilies (Hannenhalli
and Russell 2000; Abhiman and Sonnhammer 2005).

We also found that SCPEs represent as much as 37% of
protein sites in average considering a single structure per
protein and up to 48% when conformational diversity is
taken into account. Additionally, we observed that the distri-
bution of structurally constrained sites is very broad (span-
ning from 20% to 90%, fig. 3). Although it is beyond the scope
of this manuscript, the amount of structural constraints has
been recently related with the evolutionary rate of proteins.
By far, one of the strongest and consistent correlations be-
tween genomic data and rates of evolutionary change is the

expression level of genes (Drummond et al. 2005). Previous
estimations have established that structural constraints could
explain as much as 10% of the variation of evolutionary rate
(Bloom et al. 2006). However, recent findings indicate that
structure–function features and translation rates could have
comparable contributions to explain evolutionary rates (Wolf
et al. 2010). The observation that each conformation modu-
lates the substitution pattern and that conformational diver-
sity could involve in average 48% of the residues indicate that
structural constraints could be a major force modeling pro-
tein divergence and could play a crucial role in the under-
standing of evolutionary rates.

Our results show the relevance of considering conform-
ational diversity in our understanding of protein evolution
mechanisms and consequently reveal the possibility to de-
velop better evolutionary models. Besides that, the study of
the substitution pattern and the understanding of the se-
quence conservation heterogeneity are central issues in sev-
eral bioinformatics techniques. We suggest that the
consideration of conformational diversity and its derived
amino acid substitution bias is an essential aspect to be
taking into account in the development of new bioinfor-
matics tools.

Supplementary Material
Supplementary figures S1–S5 and material are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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