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We present full three-dimensional numerical calculations of single vortex states in rotating dipolar
condensates. We consider a Bose-Einstein condensate of 52Cr atoms with dipole-dipole and s-
wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex
states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further
approximations. We investigate the properties of a single vortex and calculate the critical angular
velocity for different values of the s-wave scattering length. We show that, whereas the standard
variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the
Gross-Pitaevskii equation can be obtained for values of the s-wave scattering length down to zero.
The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement
from the rotation axis for different values of the angular velocity of the rotating trap.

PACS numbers: 03.75.Lm, 03.75.Hh, 03.75.Nt

I. INTRODUCTION

The experimental realization of a Bose-Einstein con-
densate of chromium atoms [1, 2] has encouraged research
on the new field of dipolar gases at very low temperature.
An ultracold gas of chromium atoms is a very suitable
system for studying dipolar condensates because, in con-
trast to alkali atoms, 52Cr atoms possess an anomalously
large magnetic dipole moment. Moreover, the magnitude
and sign of the s-wave scattering length between 52Cr
atoms, and therefore the strength of the contact interac-
tion, can be experimentally controlled through Feshbach
resonances [3, 4].

While the contact interaction is isotropic, the dipolar
potential is anisotropic and long range. The atom-atom
interaction is then determined by the balance of both po-
tentials, giving rise to interesting phenomena in a dipolar
Bose-Einstein condensate (BEC). One of them is their
stability, which in contrast to s-wave condensates cru-
cially depends on the trap geometry. In addition, there
are other factors that affect the stability of the conden-
sate, such as the scattering length, the magnetic (or elec-
tric) moment of the atoms and the number of trapped
dipoles. The problem of stability and collapse in dipolar
condensates has been the subject of intensive experimen-
tal [5–7] and theoretical investigations [8–12].

Another interesting feature is the appearance of new
structured biconcave ground states for certain values of
the strength of the dipolar interaction and the harmonic
trap anisotropy [11, 12]. In contrast to condensates with
the maximum of the density at the center, which have a
roton-like excitation spectrum, these biconcave conden-
sates become unstable due to angular excitations [12].

An important issue that is presently under investiga-

tion is the superfluid character of dipolar condensates.
The presence of quantized vortices is a clear signature of
superfluidity in quantum systems [13]. Dipolar conden-
sates constitute a unique testing ground of the interplay
between different interatomic interactions in the super-
fluid properties. Since the s-wave scattering length a can
be experimentally controlled, it is appealing to study vor-
tex states in different regimes, going from a pure dipolar
(i.e. a = 0) to a pure contact interaction condensate,
passing through BECs with both s-wave and dipolar in-
teractions. As a tends to zero, the dipolar interaction
becomes comparatively stronger and its effect on the nu-
cleation of vortices is enhanced.

Vortices in dipolar condensates have been studied
within the Gross-Pitaevskii framework [14–16]. It has
been shown that the presence of vortex states affects the
stability of a dipolar condensate [14, 15] and that the ef-
fect of dipolar interactions on the critical angular velocity
depends on the geometry of the trap [16]. In Ref. [15] the
authors have focused on attractive contact interactions
in quasi-two-dimensional rotating dipolar condensates,
whereas in Ref. [14] an axially symmetric non-rotating
condensate has been studied. In Ref. [16] a variational
approach has been used to describe a vortex state in the
dipolar Thomas-Fermi (TF) limit.

The stability of vortices in dipolar condensates has
been recently adressed. In Ref. [17], the authors have
studied the stability and excitations of singly and dou-
bly quantized vortices in dipolar BECs, while in Ref. [18]
a phase transition has been predicted between straight
and twisted vortex lines. Also, the transverse instability
of vortex lines has been studied in Ref. [19].

In this work we consider vortex states in three-
dimensional (3D) rotating dipolar condensates. Our aim
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is to investigate the effect of the dipolar interaction on
the vortex properties when the contact interaction is low
enough to consider that the dipole-dipole interaction is
dominant. To this end, we use a full 3D approach to nu-
merically solve the Gross-Pitaevskii equation (GP). We
concentrate on dipolar condensates with s-wave scatter-
ing length approaching zero and, in particular, we study
the structure of the vortex core and obtain the critical
rotation frequency necessary to nucleate a vortex. We
also evaluate the energy barrier for vortex formation as
a function of the vortex distance from the trap center.

This work is organized as follows. In Sec. II we describe
the theoretical framework and the system under study.
In Sec. III we revisit some properties of the ground state
of dipolar BECs. In Sec. IV we investigate the formation
of a centered vortex in a rotating frame, and in Sec. V we
present the calculation of the nucleation barrier. Finally,
a summary and concluding remarks are offered in Sec. VI.

II. THEORETICAL FRAMEWORK

We consider a Bose-Einstein condensate of N
chromium atoms at zero temperature, confined by an ax-
ially symmetric harmonic potential

Vtrap(r) =
m

2
(ω2

⊥r
2
⊥ + ω2

zz
2) , (1)

where r2
⊥

= x2 + y2, m is the atomic mass, and ω⊥ and
ωz are the radial and axial angular trap frequencies, re-
spectively. The aspect ratio of the trapping potential is
λ = ωz/ω⊥. We shall only consider pancake shape con-
densates, in which case λ > 1 [20].

Since 52Cr has a large magnetic dipole moment, µ =
6µB (µB is the Bohr magneton), chromium atoms inter-
act not only via s-wave contact interactions but also via
the dipole-dipole interaction, which can be written as:

vdip(r − r
′) =

µ0µ
2

4π

1 − 3 cos2 θ

|r − r
′|3 , (2)

where µ0 is the vacuum permeability, r−r
′ is the distance

between the dipoles, and θ is the angle between the vector
r− r

′ and the dipole axis, which we take to be z. In this
configuration the dipoles are situated head to tail along
the z axis. The dipolar interaction is then attractive
along the magnetization direction and repulsive in the
perpendicular one. Since we are considering a pancake
geometry, this interaction is mainly repulsive.

In the mean-field framework, the GP equation provides
a good description of a weakly interacting dipolar BEC,
provided that the dipolar interaction is not too large. In
order to investigate vortex states, we assume that the
condensate is rotating around the symmetry axis z with
angular frequency Ω. Using the imaginary-time propa-
gation method in 3D we obtain the solutions of the GP
equation in the rotating frame:
[

− h̄2

2m
∇2 + Vtrap + g |ψ(r)|2 + Vdip(r) − ΩL̂z

]

ψ(r) =

= µ̃ ψ(r) , (3)

where ψ(r) is the condensate wave function normalized

to the total number of particles, L̂z is the angular mo-
mentum operator along the z axis and µ̃ is the chemical
potential. The contact interaction potential is charac-
terized by the coupling constant g = 4πh̄2a/m and the
mean-field dipolar interaction Vdip(r) is given by:

Vdip(r) =

∫

dr′vdip(r − r
′)|ψ(r′)|2 . (4)

When the dipolar BEC is at rest, the ground state is
obtained from Eq. (3) by setting Ω = 0.

The dipolar term in Eq. (3) transforms the usual GP
equation in a more complicated integro-differential equa-
tion. However, the dipolar interaction integral (4) can
be evaluated by using fast-Fourier transform (FFT) tech-
niques [21] and the introduction of a cutoff at small dis-
tances [22]. We have used the FFTW package [23] to
compute the discrete Fourier transforms.

The energy density functional in the rotating frame
has the standard GP form but with a new term, Edip,
which is the interaction energy due to the dipole-dipole
potential:

E[ψ] = Ekin + Etrap + Eint + Edip + EL =

=

∫

h̄2

2m
|∇ψ|2dr +

∫

Vtrap |ψ|2dr +

∫

g

2
|ψ|4dr +

+
1

2

∫

Vdip |ψ|2dr − Ω

∫

ψ∗L̂zψ dr. (5)

From scaling considerations (see Appendix A), one can
show that the virial theorem for a dipolar condensate
reads:

2Ekin − 2Etrap + 3Eint + 3Edip = 0 . (6)

The fulfillment of this expression constitutes a good check
of the accuracy of the numerical solution. In all the nu-
merical calculations presented here we have checked that
the condition (6) is well satisfied.

For purely dipolar condensates, it is useful to intro-
duce a dimensionless parameter that measures the effec-
tive strength of the dipolar interaction [12]:

D =
N µ0 µ

2m

4π h̄2 a⊥
, (7)

where a⊥ =
√

h̄/(mω⊥) is the transverse harmonic os-
cillator length that characterizes the radial mean size of
the noninteracting condensate. Increasing the value of D
is equivalent to increase the number of atoms in the trap
or their dipolar moment.

For dipolar condensates with also contact interactions,
one can introduce another dimensionless quantity to
characterize the relative strength of the dipolar and s-
wave interactions [24]:

ǫdd =
µ0µ

2m

12πh̄2a
. (8)
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This parameter is defined in such a way that a homo-
geneous BEC with ǫdd > 1 is unstable [25]. It has been
shown [26] that in the Thomas-Fermi limit a dipolar BEC
also becomes unstable when ǫdd > 1. In this work we
mainly study systems with a → 0 that are far from the
TF limit. This means that ǫdd does not need to be smaller
than one for the BEC to be stable and indeed we still find
stable solutions for ǫdd > 1.

III. GROUND STATE

Before studying vortex states it is interesting to char-
acterize the ground state wave function of the system,
ψ0(r). It can be obtained from the minimization of the
total energy (5), that is, by solving the GP equation (3)
in the laboratory frame (Ω = 0). As a starting point, we
have checked that the results of our full 3D calculation are
in agreement with the stability diagram of a pure dipolar
condensate in a pancake trap previously calculated [12].

The main effect of the dipolar interaction on the
ground state of the system is to deform the conden-
sate as compared to the s-wave case. This effect is a
direct consequence of the anisotropy of the dipolar poten-
tial and depends on the specific trap that is considered.
For a spherical trap, the effect of the dipolar interac-
tion is to squeeze the cloud along the repulsive direction
while stretching it in the attractive direction. Although
this might be somewhat counter-intuitive, it is easily ex-
plained taking into consideration the particular shape of
the dipolar potential (see, for instance, Ref. [27]): since
the dipolar potential shows a saddle configuration with
two minima along the magnetization axis (attractive di-
rection) it is less expensive for the system to accommo-
date more dipoles along this direction than along the
repulsive one, thus the cloud size becomes larger in the
former and smaller in the latter.

However, the deformation of the condensate is differ-
ent for non-spherical traps. In Fig. 1 we show the density
profiles in the perpendicular and parallel directions to the
magnetization axis (x and z, respectively) for three dif-
ferent condensates: a pure dipolar BEC, a pure s-wave
BEC (a = 5 aB) and one with the two types of inter-
actions. All of them contain N = 105 bosons in a trap
with frequencies ω⊥ = 8.4 × 2π s−1 and ωz = 92.5 × 2π
s−1. The asymmetry parameter of such a configuration
is λ = 11 and the dipolar parameters take the values
D = 50 and ǫdd = 3.03.

In order to quantitatively analyze the deformation of
the condensate, we compute the root-mean-square radii
in the radial and axial directions, namely R⊥ and Rz.
Figure 1 shows that the deformation is different to the
spherical case: the gas is stretched in both directions of
space, even though the cloud aspect ratio κ = R⊥/Rz

increases (κ = 8.28 for the s-wave case, κ = 9.06 for
the purely dipolar case and κ = 9.65 when both inter-
actions are considered) [28]. The difference now is that
the condensate is tightly trapped in the z direction so
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FIG. 1: (Color online) Ground state densities of pure s-wave
(dashed line, with a = 5 aB), pure dipolar (µ = 6µB , solid
line) and both s-wave and dipolar (a = 5 aB , µ = 6µB , dot-
dashed line) condensates. They all correspond to the case
D = 50, λ = 11, with N = 105 and ω⊥ = 8.4 × 2π s−1.

that the energy decrease achieved by putting more and
more dipoles along the magnetization direction has to
overcome a stronger trapping potential. The result of
this energetic balance is that the system cannot accom-
modate so many atoms along the z axis, hence the cloud
has to stretch in all directions.

On the other hand, the ground state of a dipolar con-
densate may present some stable density structures with
the density maximum away from the center. They are
usually found in isolated regions of the parameter space
(D,λ) that are close to instability. This means that by
increasing a little the value of D the condensate enters
the unstable regime and overcomes a collapse which is
thought to be of angular type [12]. Figure 2 shows the
density profiles of two different stable ground state con-
figurations of a pure dipolar (a = 0) condensate, one of
them having a normal shape, while the other shows a bi-
concave structure. They both correspond to a condensate
confined in a harmonic potential with asymmetry λ = 11
(ω⊥ = 8.4 × 2π s−1 and ωz = 92.5 × 2π s−1), but two
different numbers of trapped atoms N = 105 (solid line)
and 1.6× 105 (dashed line), which correspond to dipolar
interaction parameters D = 50 and 80, respectively.

It is important to note that although the parameter D
is well suited to determine the regions where the density
presents a biconcave shape, it fails to characterize all the
physics underlying purely dipolar condensates. Clearly,
we need at least three parameters to properly describe
such systems since we have three degrees of freedom,
namely N , ω⊥ and ωz.
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FIG. 2: (Color online) Density profile for the ground state
configuration of pure dipolar BECs cointaining N = 105 (solid
line) and N = 1.6 × 105 (dashed line) atoms in the trap with
ω⊥ = 8.4 × 2π s−1 and ωz = 92.5 × 2π s−1.

IV. VORTEX STATES

A. Critical rotation frequency and vortex

generation

The inclusion of vorticity is accompanied by an en-
ergy cost due to the appearance of angular momentum.
Thus, in order to generate vortices the condensate must
rotate. In a frame rotating at an angular frequency Ω
about the z axis, the energy of the condensate carrying
angular momentum Lz becomes (E−ΩLz), where E and
Lz are evaluated in the laboratory frame. At low rota-
tion frequencies this energy is minimal without the vor-
tex (ground state configuration). But if Ω is large enough
the creation of a vortex can become favorable due to the
−ΩL̂z term. This happens at the critical frequency Ωc.
The thermodynamical critical angular velocity for nucle-
ating a singly quantized vortex is obtained by subtracting
from the vortex state energy Ev in the laboratory frame
the ground-state energy E0, i.e., Ωc = (Ev − E0)/Nh̄,
and it provides a lower bound to the experimental criti-
cal angular velocity [29, 30].

Depending on the value of Ω, condensates with differ-
ent number of vortices can be obtained, from a single
vortex configuration at low angular velocities (Ω ∼ Ωc)
to vortex lattices at high rotation frequencies. When the
rotation frequency is close to the radial frequency of the
trap the number of vortices becomes so large that the
distance between them is smaller than the vortex cores,
entering the strongly interacting regime [31]. In this work
we are interested in single vortex configurations that are
favorable when the angular velocity slightly exceeds the
critical value.

We have numerically computed a vortex state by im-
printing a phase to the initial wave function and solving
the GP equation (3) in the rotating frame without fix-
ing the vorticity during the minimization process. We
have used the following ansatz for the initial wave func-
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FIG. 3: (Color online) Critical angular velocity above which a
singly quantized vortex is energetically favorable in a pancake
trap with aspect ratio λ = 5, as a function of the s-wave scat-
tering length. The solid line corresponds to s-wave plus dipo-
lar interactions. The dashed line corresponds to only s-wave
contact interaction. Inset: behavior of Ωc(a) corresponding
to both s-wave and dipolar interactions close to the instability
limit.

tion [32]:

ψ(r) = ψ0(r)
x+ iy
√

x2 + y2
, (9)

where ψ0 is the ground state wave function. From this
ansatz, it is straightforward to see that ψ and ψ0 have the
same density profile, but ψ has an imprinted velocity field
which is irrotational everywhere except at the vorticity
line (z axis). Moreover, ψ is an eigenstate of L̂z with
eigenvalue Nh̄.

Solving the GP equation (3), we have obtained, as ex-
pected, that for small values of Ω the system converges
to a vortex-free configuration that corresponds to the
ground state. However, for values of the angular fre-
quency equal or slightly larger than the critical one, a
centered vortex state configuration minimizes the energy.
We have checked that the circulation is quantized around
the vorticity line.

The value of the critical angular frequency Ωc above
which a vortex state is energetically favorable depends
on the interaction parameters (scattering length, dipole
moment), as well as on the number of atoms and on
the trap geometry. We plot in Fig. 3 the critical an-
gular velocity for vortex nucleation as a function of the
scattering length, for a condensate with N = 1.5 × 105,
ω⊥ = 2π × 200 s−1, λ = 5 and D = 365.68. These are
the same parameters as in Ref. [16], where a variational
ansatz was used to describe the vortex solution. By di-
rectly solving the dipolar GP equation without any fur-
ther approximation we can go below the limit a = 17.5 aB

imposed by their variational ansatz and reach smaller
scattering lengths. However, for a < 9.5 aB the s-wave
repulsion in the z direction is not strong enough to bal-
ance the attraction brought about by the dipole-dipole
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interaction and the system becomes unstable.

As a reference we have also calculated the critical an-
gular velocity necessary to nucleate a vortex in a non-
dipolar condensate (with only s-wave interaction), see
dashed curve in Fig. 3. In the noninteracting limit
(a = 0) a vortex state corresponds to the first excited
state with energy Ev = E0 + Nh̄ω⊥, and therefore the
critical angular frequency is Ωc = ω⊥ [30]. The inclusion
of the dipolar interaction (solid curve) causes a decrease
of the critical angular frequency, which becomes more
sizeable for small s-wave interactions. As has been al-
ready pointed out [16], it follows from Fig. 3 that in a
pancake trap it is easier to nucleate a vortex in the pres-
ence of dipolar interactions. This can be understood as
follows: in a pancake shaped condensate, the interaction
between dipoles aligned along the z axis is repulsive on
average, hence the maximum density diminishes with re-
spect to the pure s-wave value (see the variation of the
central density in Fig. 1) and it becomes easier to take
the atoms away from the z axis to nucleate a centered
vortex. Thus, the effect of dipolar interactions is to de-
crease the critical angular frequency of vortex nucleation
in a pancake shaped condensate.

We have found a good agreement between our results
and those in Ref. [16] for large values of the scattering
length, while for small values our Ωc(a) curve exhibits
a maximum around a = 15aB (see the inset in Fig. 3).
The maximum value of the critical angular frequency is
about Ωmax

c ≃ 0.16 ω⊥ at a = 15aB, and corresponds to a
dipolar condensate with ǫdd = 1.01 and D = 365.68. De-
creasing further the scattering length the critical angular
velocity necessary to nucleate a vortex also decreases, in
contrast to the general trend at large s-wave values.

The presence of a maximum value in the Ωc(a) curve is
a consequence of the balance between contact and dipo-
lar interactions. To explore the origin of Ωmax

c we have
also studied the critical angular velocity as a function of
the s-wave scattering length for a system that remains
stable at vanishing values of the scattering length, which
corresponds to a pure dipolar condensate. We plot Ωc

in Fig. 4 for D = 50, ω⊥ = 2π × 8.4 s−1, λ = 11, and
N = 105. A detail of the behavior of Ωc(a) correspond-
ing to contact plus dipolar interactions for small values
of the s-wave scattering length is shown in the inset. A
maximum value of Ωc appears also in Fig.4 around a
scattering length a ≃ 2aB, which corresponds to a di-
mensionless parameter ǫdd = 7.57. In this case, the effect
of the dipolar interaction becomes more clear: for a fixed
value of the s-wave scattering length, the inclusion of the
dipole-dipole interaction decreases the value of the criti-
cal angular velocity for vortex formation. In the limit of
a = 0, that is for a pure dipolar condensate, Ωc is around
a factor 0.25 smaller than the non-interacting value.

The critical angular velocity for producing a vortex is
plotted in Fig. 5 as a function of the number of atoms
confined in the same trap as in Fig. 4, for a pure dipolar
condensate (solid line) and for a condensate with only
contact interaction with a = 5aB (dashed line). For
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FIG. 4: (Color online) Critical angular velocity for a singly
quantized vortex in a pancake trap with aspect ratio λ = 11,
as a function of the s-wave scattering length. The solid line
corresponds to s-wave plus dipolar interactions. The dashed
line corresponds to only s-wave contact interaction. Inset:
behavior of Ωc(a) around a ∼ 0 for a condensate with s-wave
plus dipolar interactions.
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FIG. 5: (Color online) Critical angular velocity as a function
of the number of atoms trapped in the same trap as in Fig. 4.
The solid line corresponds to a pure dipolar condensate, and
the dashed line to a condensate with only contact interaction
(a = 5a0).

a given number of atoms the effective repulsion of the
dipolar interaction in a pancake shaped condensate is
larger than the repulsive contact interaction; therefore,
Ωc is smaller in a pure dipolar condensate. However,
both curves have a similar behavior: Ωc decreases with
increasing N , as the repulsion also increases.

B. Vortex core size

The vortex states we have obtained as a result of the
3D minimization process are straight vortex lines. For a
condensate with only contact interaction a characteristic
length for describing the core size of a vortex is given by
the local healing length. In particular, the balance be-
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tween the kinetic energy and the interaction energy fixes
a typical distance over which the condensate wave func-
tion can heal. For a dilute Bose gas the healing length
is given by ξ = 1/

√
8πn0a [33], where the ground state

density n0 is evaluated at the vortex position. However,
in the presence of dipole-dipole interactions this parame-
ter does no longer provide a good estimate of the vortex
core size.

A possible characterization has been given by O’Dell
and Eberlein [16] assuming a variational ansatz for the
vortex density profile:

ρv(r⊥, z) = n0

(

1 − r2
⊥

R2
− z2

Z2

)(

1 − β2

r2
⊥

+ β2

)

, (10)

where β, R and Z are variational parameters that de-
scribe the size of the core, and the radii in the transver-
sal and axial direction, respectively. We want to note
that for a pure s-wave condensate in the Thomas-Fermi
approximation the product of the first two factors in
Eq. (10) correctly describes the ground state density,
identifying R and Z with the Thomas-Fermi radii. On
the other hand, the third factor in the above formula
satisfactorily models the vortex core shape. Clearly, the
quotient between the vortex and ground state densities
in the TF limit is zero at the vortex position and unity
outside the vortex core. In particular, it is easy to verify
that β corresponds to the radius at which this quotient
is equal to 1/2 at the z = 0 plane.

From the calculated vortex and ground state densities
ρv(r) and ρ0(r), we propose as a definition of the core
radius β the r⊥ value in the z = 0 plane that satisfies:

f(r⊥ = β, z = 0) =
ρv(r⊥ = β, z = 0)

ρ0(r⊥ = β, z = 0)
=

1

2
. (11)

This generalizes the definition given in Ref. [16]. We
show in Fig. 6 the density profile as a function of x at
y = z = 0, ρv(x, y = 0, z = 0), corresponding to a vor-
tex state of a condensate with dipolar plus contact in-
teractions (solid line) and with only contact interaction
(dashed line). Here a = 5aB and the parameters are the
same as in Fig. 1: N = 105, λ = 11 and ω⊥ = 8.4 × 2π
s−1, which correspond to D = 50. In the inset, the ratio
f is depicted as a function of the distance to the vortex
core for both cases. We can see that f does not take the
value f = 1 outside the core. This is due to the fact that
we are not in the TF regime and the structure of the BEC
surface becomes important. When no dipolar effects are
considered the deviation from the value f = 1 is larger.
Nevertheless, Eq. (11) still provides a good definition of
the vortex core.

Figure 7 shows the ratio (β/R⊥) of the vortex core
size to the radial size of the disk-shaped condensate of
Fig. 6 for different values of the s-wave scattering length.
The effect of the dipolar interactions for large scattering
lengths is to slightly increase the relative value of the
core size with respect to the radial size of the condensate
above the value of the pure s-wave case, as already dis-
cussed [16]. However, when a < 20aB, the ratio β/R⊥ is
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FIG. 6: (Color online) Vortex density profile as a function of
x at y = z = 0 for BECs with contact (a = 5aB) plus dipolar
interaction (solid line) and only contact interaction (dashed
line). The parameters are the same as in Fig. 1. Inset: f as
a function of the distance to the vortex core for both cases;
the value of the core radius β is also indicated.
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FIG. 7: (Color online) Ratio of the vortex core size (β) and
the radial size of the condensate with respect to the scattering
length for a disk-shaped condensate with λ = 11, N = 105

and D = 50. Solid curve: s-wave plus dipolar interactions.
Dashed curve: only s-wave interactions.

larger for a condensate with dipolar interactions than in
a pure contact interaction BEC. This is due to the small
repulsive interaction brought by the dipole-dipole poten-
tial, which becomes noticeable only for small scattering
lengths. This interaction has the effect of decreasing the
central density of the condensate as compared to the pure
s-wave case and this causes a smaller core radius and a
broader ground state.

V. ENERGY BARRIER

The nucleation of a vortex is associated with the ex-
istence of an energy barrier in the configuration space
between the initial vortex-free state and the final vortex
state. Therefore, the system has to overcome this barrier
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in order to nucleate a stable vortex. It is usually found
that the vortex is nucleated at the boundary by surface
excitations and it is stable at the center of the trap for ro-
tational frequencies Ω ≥ Ωc. Then, the formation energy
of a vortex can be obtained by calculating the energy of
a single off-center vortex as a function of the vortex core
position.

We have generalized the ansatz of an axially symmetric
vortex line Eq. (9) to describe an off-center vortex at
rv = (xv , yv, z) [32, 34]:

ψ(r) = ψ0(r)
(x− xv) + i (y − yv)
√

(x − xv)2 + (y − yv)2
. (12)

Here the phase has been written in cartesian coordi-
nates and corresponds to the azimuthal angle around the
shifted position of the vortex core rv.

To calculate the energy of an off-center vortex line at a
fixed distance d =

√

x2
v + y2

v from the z axis, E(d,Ω), we
have solved the GP equation in the rotating frame taking
Eq. (12) as initial wave function. In order to obtain the
solution for the displaced vortex, which is not a minimum
of Eq. (3), we have imposed that during the minimization
process the initial nodal planes are kept constant, that
is:

Re [Ψ(xv, y, z)] = 0 ∀ y, z (13)

Im [Ψ(x, yv, z)] = 0 ∀x, z . (14)

With this method, the quantization of the circulation is
assured in all cases, but the solutions are restricted to
the case of straight vortex lines. An upper bound to the
formation energy of the vortex is then obtained from the
difference ∆E(d,Ω) = E(d,Ω) − E0.

We plot in Fig. 8 the vortex formation energy as a
function of the vortex displacement from the center, cor-
responding to the same condensate as in Fig. 6 rotating
at the critical rotational frequency Ωc. The distance of
the vortex core to the symmetry axis is expressed in units
of R⊥ of the corresponding ground state.

The dashed line corresponds to the pure contact in-
teraction BEC (with a = 5 aB), the dash-dotted line
to a condensate with contact plus dipolar interactions,
and the solid line corresponds to a pure dipolar BEC
(D = 50). Each curve has been calculated at the corre-
sponding critical angular velocity (see Table I). It is in-
teresting to note that even thoughR⊥ is different for each
curve, the three critical barriers have the same qualitative
behavior as a function of the dimensionless displacement
of the vortex core d/R⊥. At Ωc the centered vortex state
and the vortex-free state have the same energy but they
are separated by an energy barrier. The maximum of the
barrier height ∆E is located around dmax/R⊥ ∼ 1.1 for
the contact interaction BEC and around dmax/R⊥ ∼ 1.2
for the other cases. Since the radius of the condensate is
larger for a system with dipolar plus contact interactions
this means that, for the vortex state configuration at the
barrier maximum, the distance between the vortex core
and the z axis is larger than in the case of a pure dipolar
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FIG. 8: (Color online) Energy barrier for the nucleation of
a vortex in the rotating frame at Ω = Ωc as a function of
the vortex displacement from the center. The dashed line
corresponds to the pure contact interaction BEC (with a =
5aB), the solid line corresponds to a pure dipolar BEC, and
the dash-dotted line to a condensate with contact plus dipolar
interactions.

condensate, which turns out to be also larger than the
distance in a pure contact interaction BEC (see Table I).

For the sake of comparison we also give in Table I the
barrier parameters at the critical frequency calculated
in the TF approximation for a pure s-wave BEC. The
barrier height and the position of the maximum can be
obtained, respectively, from the expressions [35]

∆E(dmax,Ω) =
2

5
Ωc

(

3

5

Ωc

Ω

)3/2

(15)

and

dmax =
√

3R⊥

√

1 − 3

5

Ωc

Ω
, (16)

where we have used that the TF radius in the radial
direction and the corresponding root-mean-square value
are related by RTF =

√
3R⊥. The critical frequency can

be evaluated using [33]

Ωc =
5h̄

6mR2
⊥

ln

(

0.671
√

3R⊥

ξ

)

. (17)

Although the case we have considered does not really
correspond to the TF limit (Na/aho ≈ 8), we can see in
Table I that this approximation can be used to obtain
an estimate of the energy barrier, especially the location
of its maximum, which matches very well the numerical
result.

We plot in Fig. 9 the same curves as in Fig. 8 but
calculated at larger angular velocities Ω > Ωc, namely
Ω = 0.48 ω⊥ for the pure contact interaction BEC with
a = 5 aB (dashed line) and Ω = 0.28 ω⊥ for both the pure
dipolar BEC (solid line) and the condensate with the two
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TABLE I: Characteristics of the energy barriers shown in
Fig. 8.

Interaction R⊥(µm) Ωc(ω⊥) dmax(µm) dmax/R⊥ ∆E(h̄ω⊥)
a = 0 11.62 0.25 13.48 1.16 0.044
µ = 6µB

a = 5aB 12.44 0.25 14.55 1.17 0.040
µ = 6µB

a = 5aB 9.16 0.45 9.98 1.09 0.047
µ = 0
a = 5aB 10.84 0.38 11.87 1.09 0.071
(TF)
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FIG. 9: (Color online) Vortex formation energy as a function
of the vortex displacement from the center at angular veloci-
ties Ω > Ωc. The dashed line corresponds to the pure contact
interaction BEC (with a = 5aB), the solid line corresponds to
a pure dipolar BEC, and the dash-dotted line to a condensate
with contact plus dipolar interactions.

types of interactions acting simultaneously (dash-dotted
line).

As expected, for rotational frequencies larger than the
corresponding critical one, the state with a centered vor-
tex is preferable. However, the nucleation of the vor-
tex is inhibited by the barrier separating the vortex-free
state from the energetically favored vortex state which
corresponds to the minimum energy configuration, at
d/R⊥ = 0.

Finally, we have numerically checked that an off-center,
unpinned vortex line located at distances larger than the
position of the barrier maximum d > dmax converges to
the ground state. On the contrary, an off-center vortex
located at d < dmax converges to a centered vortex state.

VI. SUMMARY AND CONCLUDING

REMARKS

In this paper we have adressed singly quantized vortex
states in dipolar pancake shaped condensates. By fix-
ing the dipole-dipole interaction and scanning the s-wave

scattering length from a = 100 aB to zero, we have been
able to explore the vortex states in a dipolar condensate
in three different regimes: when the two-body interac-
tion is governed by the contact potential, when it is the
dipole-dipole interaction that controls the properties of
the gas and, finally, the region where both interactions
are comparable.

We have reviewed some properties of the ground state
of the dipolar condensate previously obtained in the bib-
liography. In particular, we have discussed its structure
and have numerically solved the GP equation to obtain
the new stable configurations which are not found in s-
wave condensates. We have also discussed that the effect
of the dipolar interaction on the effective size of the con-
densate depends strongly on the geometry of the confin-
ing potential. In a spherical trap, this anisotropic inter-
action tends to increase the size of the condensate in the
direction perpendicular to the magnetization axis while
reducing it in the parallel direction. However, we have
found that in a pancake trap the radius is increased in
both directions in such a way that the cloud aspect ratio
also increases.

We have calculated the singly quantized vortex states
of dipolar condensates in two different pancake configura-
tions. We have obtained an excellent agreement with the
results in Ref. [16] and have extended the study for scat-
tering lengths as small as possible. We have seen that the
effect of the dipolar interactions is to reduce the critical
frequency for the nucleation of a vortex as compared to
the s-wave case, and that a maximum in Ωc appears at
low scattering lengths (becoming more important near
collapse). We have also obtained the structure of the
vortex core and have shown that there exists a certain
value of scattering length below which the dipolar effects
become dominant.

Finally, we have characterized the energy barrier which
has to be overcome to nucleate a vortex, both at the criti-
cal frequency and above it. To the best of our knowledge,
this is the first study where energy barriers have been ad-
dressed in dipolar condensates. We have compared three
different cases: a pure s-wave condensate, one with only
dipolar interactions and a BEC with both types of in-
teractions. Expressed as a function of the dimensionless
vortex displacement, the barriers are of the same order
but slightly different: for condensates with dipolar inter-
actions, they are narrower and lower, indicating that it
is energetically less expensive to nucleate a vortex in a
dipolar BEC than in one with only contact interactions.
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Appendix A

In this appendix we obtain the virial theorem for a
dipolar BEC from the density functional Eq. (5), by using
the principle of scale invariance. The virial theorem re-
sults from the homogeneity properties of the kinetic and
potential components of the energy of the many-body
system with respect to a scaling transformation that pre-
serves the normalization.

Considering the following transformation r → νr, the
condensate wave function scales as Ψ(r) → Ψν(r) =
CΨ(νr), where C is a normalization constant. The prin-
ciple of scale invariance ensures that the norm of the wave
function is preserved, that is

∫

dr |Ψ(r)|2 =

∫

dr |Ψν(r)|2 = |C|2
∫

dr |Ψ(νr)|2 = N ,

(A1)
which gives C = ν3/2. Using this result, it has already
been shown (see, for instance, Ref. [36]) that the kinetic,
harmonic potential and contact interaction terms in the
energy functional (5) scale as

Ekin,ν = ν2Ekin , (A2)

Etrap,ν =
1

ν2
Etrap , (A3)

Eint,ν = ν3Eint . (A4)

For the contribution of the dipolar energy to the func-
tional, one can proceed in the same way and obtain its
scaling law

Edip,ν =
1

2

µ0µ
2

4π

∫

drdr′
|ψν(r)|2|ψν(r′)|2

|r − r
′|3 (1 − 3 cos2 θ)

=
1

2

µ0µ
2

4π

∫

drdr′
ν6|ψ(νr)|2|ψ(νr′)|2

|r − r
′|3 (1 − 3 cos2 θ)

=
1

2

µ0µ
2

4π
ν3

∫

d(νr)d(νr′)
|ψ(νr)|2|ψ(νr′)|2

|νr − νr′|3 (1 − 3 cos2 θ)

= ν3Edip . (A5)

Therefore the total energy of the system can be written
as

Eν = ν2Ekin +
1

ν2
Etrap + ν3Eint + ν3Edip . (A6)

Imposing the equilibrium condition

dEv

dν

∣

∣

∣

∣

ν=1

= 0 (A7)

one finds the virial theorem for a dipolar condensate,
Eq. (6). Note that the rotating energy term EL in Eq. (5)
does not depend on the scaling parameter, and thus it
does not contribute to the virial expression.
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[22] K. Góral, K. Rzażewski and T. Pfau, Phys. Rev. A 61,

051601(R) (2000).
[23] M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005).



10

[24] J.-P. Martikainen, M. Mackie, and K.-A. Suominen,
Phys. Rev. A 64, 037601 (2001).

[25] C. Menotti, M. Lewenstein, T. Lahaye, and T. Pfau, AIP
Conference Proceedings 970, 332 (2007).

[26] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys.
Rev. A 71, 033618 (2005).

[27] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau,
S. Giovanazzi, P. Pedri, and L. Santos, Phys. Rev. Lett.
95, 150406 (2005).

[28] If another definition for the radius is used (for instance,
the FWHM) the actual values of R⊥, Rz and κ are differ-
ent but we checked that they predict the same behavior
for the cloud aspect ratio.

[29] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,
Rev. Mod. Phys. 71, 463 (1999).

[30] A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens.

Matter 13, R135 (2001).
[31] N. R. Cooper, E. H. Rezayi, and S. H. Simon, Phys. Rev.

Lett. 95, 200402 (2005); J. Zhang and H. Zhai, Phys.
Rev. Lett. 95, 200403 (2005); S. Komineas and N. R.
Cooper, Phys. Rev. A 75, 023623 (2007).

[32] D. M. Jezek, P. Capuzzi, and H. M. Cataldo, J. Phys. :
At. Mol. Opt. Phys. 41, 045304 (2008).

[33] E. Lundh, C. J. Pethick, and H. Smith, Phys. Rev. A 55,
2126 (1997).

[34] A. L. Fetter, e-print arXiv:0801.2952
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