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Abstract

Objective: The aim of the present work was to study whether immunocytochemical parameters present
in the normal ovary were altered after tumor development under high gonadotropin levels.
Methods: Ovarian tumors (luteoma): castrated female rats had an ovary grafted into the spleen;
tumors were left to develop for 1, 2, 3 or 7 months. The presence of apoptotic cells (TUNEL
method) and the expression of proliferating cell nuclear antigen (PCNA), gap junction protein
(Cx43), steroidogenic acute regulatory protein (StAR), aromatase and synaptosome-associated pro-
tein of 25kDa (SNAP-25) were determined by immunocytochemistry. Some of these findings
were confirmed by RT-PCR (Cx43, StAR, SNAP-25). Inhibin subunit mRNAs were investigated by
Northern blot.

Results: PCNA staining of tumors was mainly found in granulosa cells of transforming follicles and
was absent from luteinized follicles. A nearly complete absence of apoptosis was observed. Cx43
was mainly found in follicles, while it was very weakly expressed or absent in luteinized follicles.
StAR protein expression, indicating active steroidogenesis, was demonstrated only in luteinized fol-
licles and in thecal cells, but was absent from granulosa cells. Aromatase immunoreactivity was
very intense in granulosa and also present in luteal cells. Membrane-associated and cytoplasmic
SNAP-25 immunostaining was determined in patches of endocrine cells in the follicles, as well as
in the luteinized follicles. The expression of mRNAs for Cx43, StAR and SNAP-25 (RT-PCR) and
inhibin subunits (Northern blots) were confirmed in 1-, 3- and 7-month-old tumors.

Conclusions: These results indicated that luteoma most likely develop from unruptured follicles by
hypertrophy and proliferation of follicular cells. Circulating gonadotropins seem to play a fundamen-
tal role in maintaining the expression of proteins typically expressed in normal ovary, while avoiding
apoptosis in this tissue.
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Introduction

An ovary implanted into the spleen of an ovari-
ectomized rat develops into a tumor, growing in
response to gonadotropins. Luteinizing hormone (LH)
and follicle-stimulating hormone (FSH) levels are high
in these animals as the steroids secreted by the tumor
are poured into the hepatic-portal vein and are conse-
quently metabolized by the liver before reaching the
general circulation (1, 2). In this way the negative feed-
back, which is normally exerted at the hypothalamic
and hypophyseal levels, is abolished. This tumor
grows and acquires approximately three times the
initial volume of the grafted estrous ovary after 2
months (3) and 20 times after 1 year of development
(4). We have demonstrated that this tumor depends
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on gonadotropins for its growth by treating tumor-
bearing rats with buserelin, a gonadotropin-releasing
hormone (GnRH) agonist that downregulates LH and
FSH secretion; this resulted in very significant tumor
regression (3). A direct action of GnRH analogs on
the tumor has also been demonstrated (5, 6). In
women, the risk of suffering ovarian cancer has been
related to gonadotropin levels. High levels of gonado-
tropins in the early postmenopause have been
suggested to play a role in the development of ovarian
neoplasms. This is supported by the dramatically
increased incidence of ovarian cancer in women
above the age of 45 years, when gonadotropins reach
high levels (7, 8). Therefore, the dependency on gon-
adotropins for growth in this experimental ovarian
tumor is similar to the one proposed for different
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ovarian pathologies such as certain ovarian carci-
nomas (9, 10), granulosa cell tumors after ovarian
stimulation in treatments of infertility (11) or in the
polycystic ovary syndrome (12), rendering this tumor
an interesting model for the study of tumor develop-
ment under hypergonadotropinemia.

This experimental ovarian tumor is highly luteinized
(luteoma) (4) and hormonally active since it secretes
estradiol, progesterone and inhibins (4, 5). Inhibins
have been proposed as markers of ovarian tumors
(13, 14).

The aim of the present study was to further charac-
terize this experimental ovarian tumor by determining
different immunocytochemical parameters described
in normal ovary (15-20), to evaluate if it was main-
tained or modified during tumor development under
high gonadotropin levels.

For this purpose, the expression of proliferating cell
nuclear antigen (PCNA) and the presence of apoptotic
cells by the TUNEL method were investigated. In
addition, parameters related to tumor secretion
capacity, such as the expression of steroidogenic acute
regulatory protein (StAR), a key protein involved in
steroid biosynthesis, aromatase, the enzyme which con-
verts androgens into estrogens, the synaptosome-
associated protein of 25kDa (SNAP-25), this last one
being involved in exocytotic processes, and connexin
43 (Cx43), which participates in ovarian cell inter-
action, were also determined. Where possible, these
findings (Cx43, StAR, SNAP-25) were confirmed by
RT-PCR in 1-, 3- and 7-month-old tumors. The
expression of inhibin subunit mRNAs was analyzed
by Northern blot in these tumors at the same stages
of development.

Materials and methods

Animals

Adult female virgin Sprague—Dawley rats (200—250 g)
from the Instituto de Biologia y Medicina Experimental
colony were housed in groups in an air-conditioned
room, with lights on from 0700 to 1900h. They
were given free access to laboratory chow and tap
water. At the end of experimental procedures, animals
were killed by decapitation according to protocols for
animal use approved by the institutional animal care
and use committee (IBYME-CONICET) which follows
NIH guidelines. Animals were cycled daily and, after
two regular cycles, they were operated on during the
morning of estrus. Surgical procedures were performed
as previously described (2). Briefly, animals were
anesthetized with ketamine (100 mg/kg body weight
i.p.), both ovaries were removed and one gonad was
cleared of the adherent fat and oviduct and was
inserted into the spleen. Tumors were left to develop
for 1, 2, 3 or 7 months. Thereafter, animals were
decapitated and the tumors were either embedded in
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paraffin for immunocytochemical analysis or com-
pletely cleared from adherent tissue and homogeneized
in TRIZOL (Gibco-BRL, Rockville, MD, USA) for RNA
extraction.

Immunocytochemistry

Tissue sections were deparaffinized and hydrated as
described by Fritz et al. (18). The cellular distribution
of PCNA, Cx43 and SNAP-25 in the tumors was deter-
mined by immunohistochemistry, using commercially
available monoclonal or polyclonal antisera: anti-
PCNA (1:100) (Calbiochem, Bad Soden, Germany),
anti SNAP-25 (1:500) (Sternberger monoclonals Inc.,
Baltimore, MD, USA) and anti rat-Cx43 (1:500)
(Sigma, Deisenhofen, Germany) (16). In addition, a
well-characterized StAR antibody (1:1000) (19) and
an aromatase antiserum (1:500-1:2000) (21) were
used. Immunohistochemical procedures using the
avidin—biotin method were employed as described pre-
viously (18). Immunoreactivity was visualized with
diaminobenzide. For control purposes, the first anti-
serum/antibody was omitted and incubations with
normal rabbit serum/mouse serum were carried out
instead. Sections were examined with a Zeiss Axiovert
microscope.

For detection of apoptotic cells, the In Situ Cell Death
Detection Kit (Boehringer Mannheim, Mannheim,
Germany) was employed and procedures were followed
as indicated in the manufacturer’s instructions.

The complete sets of immunocytochemical experi-
ments were performed on five different 1- or 2-
month-old tumors.

RT-PCR analyses and sequencing

Total RNA was prepared from 1-, 3- and 7-month-old
tumors by the Chomczynski & Sacchi method (22)
which utilizes the TRIZOL reagent. Normal 3-month-
old rat ovary and normal rat spleen were used as con-
trols. Total RNA (100-500ng) were used for reverse
transcription utilizing an 18-mer polydeoxythymidine
primer and Moloney’s murine leukemia virus reverse
transcriptase (Promega, Mannheim, Germany). Ampli-
fication of Cx43, StAR and SNAP-25 was performed as
described (16—19, 23). In order to be able to compare
RT-PCR reactions of different animals, only those RNA
samples were used which, after RT and PCR using
tubulin primers, yielded comparable bands. PCR ampli-
fication consisted of 30—-35 cycles of denaturing (94 °C,
15s), annealing (55°C, 1 min) and extension (72 °C,
2min). The PCR reaction products were separated
on 2% agarose gels and visualized with ethidium
bromide. They were verified by sequencing, as described
(16-19, 23).

Oligonucleotide primers used for amplification of rat
Cx43, a-tubulin, rat StAR and rat SNAP-25 were
synthesized according to the published GenBank
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sequences, namely Cx43 GenBank (accession
number X06656); sense: 5-GCGGCGGCTTCACTTTC-
ATTA-3" corresponding to nt 158-179; antisense
5-CAGACGTTTTCGCAGCCAGGTTG-3' complementary
to nt 371-395; tubulin (accession number K 00558);
sense: 5'-CACCCGTCTTCAGGGCTTCTTGGTTT-3' cor-
responding to nt 398-415; antisense: 5-CATTTCAC-
CATCTGGTTGGCTGGCTC-3' complementary to nt
779-796; StAR (accession number RNU76419);
sense: 5-TGGAGAGGCTCTATGAAGAGC-3' correspon-
ding to nt 987-1004; antisense: 5-GCCACGTAAGTT-
TGGTCTTAG-3' complementary to nt 1214-1233;
primer design in comparison with Ronen-Fuhrmann
et al. (24); SNAP-25 (accession number ABO03991);
sense: 5'-ATGGCCGAGGACGCAGACATGCGTAAT-3'
corresponding to nt 1-27; antisense: 5-AGCATCACT-
GGATTTAAG-3' complementary to nt 283-300.

Northern blot determination of inhibin
subunit mRNAs

Total RNA from 1-, 3- or 7-month-old tumors and
estrous ovaries (four to five samples per group) was
extracted, as described above. Northern blots were per-
formed as described by Woodruff et al. (25). Briefly,
20 g total RNA, previously verified for integrity, was
subjected to horizontal electrophoresis in denaturing
agarose—formaldehyde gels and transferred to nylon
membranes (Hybond-N; Amersham Life Science, Little
Chalfont, Bucks, UK). Membranes were exposed over-
night at 65 °C to heat-denaturalized probes for o, BA,
BB inhibin subunits (generously provided by Dr
Aaron Hsueh) or glyceraldehyde 3-phosphate dehydro-
genase (G3PDH) as an internal control, labeled with
32P (Random Primed DNA Labeling Kit; Boehringer
Mannheim). Membranes were then exposed to X-ray
films (Biomax MS; Eastman Kodak Company, Rochester,
NY, USA). Molecular sizes were estimated with RNA
molecular weight standards (Promega).
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Results

Tumor development

Cell proliferation, detected by an antibody recognizing
PCNA, was mainly found in transforming follicles and
was absent from luteinized follicles (Fig. 1). A major
difference from normal ovaries was the almost complete
absence of apopotic cells after 1-2 months of tumor
development, as determined by the TUNEL method
(Fig. 2).

A prominent feature indicating local interaction of
ovarian cells, namely the presence of gap junctions
consisting of Cx43, was also demonstrated in tumor
samples (Fig. 3). Interestingly, Cx43 was mainly
found in follicles (granulosa cells) but not in luteinized
follicles, which thus differs from active corpora lutea in
the normal ovary (15).

Tumor secretion capacity

A immunocytochemical analysis of hormone pro-
duction capacity of 1-month-old tumors was under-
taken by determining the presence of key enzymes
and factors involved in hormone synthesis or secretion.
Active steroidogenesis is indicated by high StAR protein
expression. StAR was demonstrated only in luteinized
follicles and in thecal cells, but was absent from granu-
losa cells of follicles, indicating that the latter do not
participate in de novo steroid production (Fig. 4).
Aromatase, the enzyme which coverts androgens
into estrogens, was very intense in granulosa cells
and also present in luteal cells (Fig. 5), in agreement
with high estradiol output by tumor cells (5).
SNAP-25, which is a marker for exocytotic processes,
was found in patches of endocrine cells in the follicles,
as well as in luteinized follicles (Fig. 6, left). In line with
previous observations (17), membrane-associated and
cytoplasmic staining was observed. Neither SNAP-25
nor tyrosine-hydroxylase (TH)-immunoreactive nerve
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Figure 1 PCNA immunoreactivity in 1-month-old luteoma samples. Anti-PCNA antibody was diluted 1:100. Immunostaining was
observed mainly in granulosa cells. Arrows indicate positive anti-PCNA staining. GC: granulosa cells and LC: luteal cells.
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Figure 2 Apoptotic cell staining by the TUNEL method in 1-month-old luteoma sections (left panel). Note the absence of staining in
luteoma cells when compared with a control ovary section (right panel, positive cells in large antral follicle indicated by arrows). GC:

granulosa cells and LC: luteal cells.

fibers were found in the transplants, but were present in
the spleen (TH staining not shown) (Fig. 6, right).

A summary of the expression of the ovarian markers
in the different cell types of the experimental ovarian
tumors is shown in Table 1.

RT-PCR and Northern blot analyses

RT-PCR analysis confirmed the presence of mRNA for
rat (r) Cx43, rStAR and rSNAP-25 in 1- and 3-month-
old luteoma, indicating that they are present in the
tumors at different stages of development and when
a high degree of luteinization has taken place
(Fig. 7). Furthermore, rCx43, rStAR and rSNAP-25
expression were also present in 7-month-old tumors
(not shown).

Expression of mRNA for inhibin subunits « (1.4 kb),
BA (5.8 and 3.2kb) and BB (3.5kb) was detected by
Northern blot in 1-, 3- and 7-month-old tumors. The

Table 1 Immunocytochemical expression of ovarian markers in
experimental ovarian tumors.

Ovarian marker Granulosa cells Luteal cells Thecal cells

PCNA ++ — —
Cx43 ++ - -
StAR - ++ +
Aromatase +++ + -
SNAP-25 + + -

G3PDH mRNA (1.2kb), expressed constitutively, was
used as an internal control (Fig. 8). Characteristic pat-
terns of expression were evident for each of the inhibin
subunits; while o expression remained fairly constant
during tumor development, BA and BB were highly
expressed at 1 month of development and decreased
to nearly undetectable levels at 3 months of
development.

Figure 3 Cx43 immunoreactivity is demonstrated in 1-month-old luteoma sections using a specific Cx43-antiserum (1:500). Note
positive staining mainly in granulosa cells (arrow). GC: granulosa cells, LC: luteal cells and TC: thecal cells.
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Figure 4 StAR protein immunostaining in 1-month-old tumor
sections (antibody 1:1000). Positive staining was demonstrated
only in luteinized follicles and in thecal cells, but was absent from
granulosa cells of follicles. GC: granulosa cells, LC: luteal cells
and TC: thecal cells.

Discussion

The aim of the present study was to further character-
ize this experimental intrasplenic ovarian tumor by
determining various immunocytochemical parameters
described in the normal ovary, in order to establish if
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these suffered any modification during tumor develop-
ment under constant gonadotropin hyperstimulation.
Effective growth of a certain tissue is the result of the
balance between proliferation and cell death. Both par-
ameters were examined in these intrasplenic ovarian
tumors. Cell proliferation (PCNA-positive cells) was
mainly found in the granulosa cells of transforming
follicles and was absent from luteinized follicles, in
agreement with data in the literature (26). These
data suggest that luteoma tumors most likely develop
from unruptured follicles by hypertrophy and prolifer-
ation of follicular cells, under the influence of high
gonadotropins present in luteoma-bearing animals, in
agreement with data in the literature for growing
follicles (27, 28), although the participation of other
proliferating agents (29-31) secreted by this tumor
(5, 32) cannot be discarded. The low index of proliferat-
ing cells in luteoma tissue is in agreement with the
benign characteristics of this tumor (4), as high
PCNA indexes in ovarian tumors have been related to
malignancy and poor prognosis (33). Apoptosis, on
the other hand, is a normal cellular process involved
in various events of cell turnover in the ovary, such
as follicle atresia or corpus luteum demise (34). In
the luteoma, a major difference with regard to
normal ovaries was the almost complete absence of
apopotic cells after 1-2 months of tumor development,
as determined by the TUNEL method. This observation
suggested the hindrance of corpora lutea regression or
of follicle atresia in this experimental luteoma, in which
both corpora lutea and follicles in different stages of
development and luteinization were observed. Both
gonadotropins have been described as rescuing ovarian
cells from apoptosis (34—36). Therefore, the high circu-
lating gonadotropins present in luteoma-bearing ani-
mals may be responsible for the low apoptotic index
observed. Together, these data on proliferation and

Figure 5 Aromatase immunoreactivity (antibody 1:500) in 1-month-old tumor sections was very intense in granulosa cells and also
present in luteal cells (left panel). Note the total absence of staining when tissue was incubated without primary antibody (right panel).
GC: granulosa cells and LC: luteal cells.
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Figure 6 SNAP-25 immunoreactivity (antibody 1:500) in 1-month-old luteoma sections (left panel) and spleen sections (right panel).
Membrane-associated and cytoplasmic staining was found in patches of endocrine cells in luteinized follicles (arrow heads), as well as
in developing follicles (not shown). SNAP-25 immunoreactive nerve fibers were present in the spleen but absent from transplants

(arrows). LC: luteal cells.

apoptosis suggest that the luteoma represents a highly
differentiated non-metastatic tumor model, which most
likely develops from unruptured follicles by hypertrophy
and proliferation of granulosa cells and persistence of
corpora lutea. In addition, our results do not support
the idea that ovarian cancer can be solely attributed
to high circulating gonadotropin levels, as has been
suggested. Although gonadotropins may mediate ovar-
ian hyperplasia and hypertrophia in the luteoma
model, this input does not appear to induce malignant
transformation of ovarian cells, at least in the period
assessed in this study. This conclusion is supported by
the work of Kumar et al. (37, 38) in transgenic
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400 bp - rStAR
= 246 bp
400 b - rENAP-22
- 3 bp

Figure 7 Expression of rCx43, rStAR and rSNAP-25 in luteoma
cells by RT-PCR using specific primers synthesized according to
the published GenBank sequences. (1) 100 bp DNA ladder, (2)
1-month old luteoma, (3) 3-month-old luteoma, (4) normal 3-
month-old rat ovary, (5) normal rat spleen and (6) control PCR
reaction, omission of template. Note the absence of rCx43 and
rStAR expression in the spleen and the presence of SNAP-25 in
agreement with immunocytochemistry results showing immuno-
reactive nerve fibers in the spleen.
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models, where they propose that gonadotropins are
modifier factors for gonadal tumor development in
inhibin-deficient mice.

A characteristic marker of ovarian cells is the
expression of the protein Cx43 present in gap junctions.
Gap junctions show a particular distribution pattern
during follicle development and subsequent corpus
luteum formation and demise (15, 39-41). It has
been demonstrated that FSH increases levels of
Cx43 mRNA and its phosphorylation, changes which
are associated with reduced proliferation and enhanced
differentiation (16, 42). On the other hand, LH
induced, as an immediate response, the phosphorylation
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Figure 8 Expression of inhibin subunit mRNAs in 1-, 3- and
7-month-old luteoma by Northern blot (L1, L3 and L7 and L1/, L&
and L7 respectively; two independent luteomas in each case).
Estrous ovaries were used as controls (Estrus). o (1.4kb), BA
(large: 5.8 kb and small: 3.2 kb) and BB (3.5 kb) subunits were
detected. The G3PDH mRNA (1.2kb), expressed constitutively,
was used as an internal control. Arrows on the left indicate the
migration of 18S and 28S rRNAs.
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of Cx43 and, as a later response, the reduction of Cx43
protein concentration, because of attenuation of its
gene expression (43). Interestingly, loss or dysfunction
of gap junctions appears to be important in allowing
cancer cells to escape growth regulation, as has been
shown by the loss of Cx43 expression in human ovar-
ian carcinoma cells (44). In consequence, Cx43 is an
interesting factor to analyze in luteoma sections. In
these tumors, Cx43 was mainly found in follicles (gran-
ulosa cells) but was very weakly expressed in or absent
from luteinized follicles; this therefore differs from
active corpora lutea in the normal ovary. The presence
of Cx43 was confirmed by RT-PCR in 1-, 3- and 7-
month-old luteoma, indicating that this gene is still
expressed after prolonged tumor development. The
loss of Cx43 expression in luteinized follicles may be
due to persistently high LH, as this hormone has
been shown to downregulate the expression of Cx43
(42, 43) and luteinized tissue is more responsive to
LH than to FSH. Therefore, although corpora lutea
do not degenerate in this tumor (see above), they
seem to lose some of the traits of active luteal tissue.
In this regard, we have previously shown that luteoma
cells secrete less progesterone and more estradiol than
other highly luteinized cells (5).

StAR protein is the hormone-stimulated factor
responsible for transfer of cholesterol from cellular
stores to the inner mitochondrial membrane and is
thus the true rate-limiting step in steroidogenesis; its
activation by gonadotropins is critical for progesterone
production by the corpus luteum (19, 45). In rats bear-
ing intrasplenic ovarian autotransplants, peripheral
steroid levels are not elevated, due to shunt of blood
flow to the liver, where they are metabolized (3). How-
ever, active steroidogenesis is indicated by high StAR
protein expression, in agreement with progesterone
and estradiol secretion into the splenic vein, which col-
lects tumor output (3). StAR was demonstrated only in
luteinized follicles and in thecal cells, but was absent
from granulosa cells of follicles, indicating that the
latter do not participate in de novo steroid production,
in agreement with previous data (24, 46). The presence
of StAR mRNA was confirmed by RT-PCR in luteoma of
1, 3 and 7 months of development, suggesting active
steroidogenesis even in late stages of tumor develop-
ment and that the expression of this protein is probably
maintained by high persistent gonadotropin levels pre-
sent in these animals.

The key enzyme catalyzing the last step of estradiol
biosynthesis in the ovary is P45, aromatase. Its
expression and regulation in rat granulosa cells has
been found to be associated with follicular development
and luteinization (47, 48) and this enzyme is also fre-
quently present in benign and malignant ovarian
tumors (49). In luteoma, aromatase expression was
very intense in granulosa cells and was also present
in luteal cells, in agreement with high estradiol
output by tumor cells (5). As with other factors
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described above, we suggest that high gonadotropins
maintain aromatase expression in luteoma cells, in
agreement with that which has been described in the
normal ovary (50, 51).

The synaptosome-associated 25kDa protein was
initially described in the nervous system (52) and it
was demonstrated to be involved in regulated exo-
cytosis (53). Grosse et al. (17) recently demonstrated
its expression in non-neuronal, non-neuroendocrine
compartments of the ovary, specifically in steroid-
producing cells such as follicular and luteal cells, as
well as in oocytes. Ovarian cells, in addition to steroids,
also synthesize many other products, including pep-
tides, growth factors and hormones, which are secreted
by regulated exocytosis, and this process may involve
SNAP-25. In luteoma sections, we determined mem-
brane-associated and cytoplasmic SNAP-25 immuno-
staining in patches of endocrine cells in follicles, as
well as in luteinized follicles, in agreement with our
previous observations (17). It is noteworthy that
neither SNAP-25 nor TH-immunoreactive nerve fibers
were found in the transplants (but were present in
the spleen), indicating that, after transplantation into
the spleen, the ovaries do not became readily re-inner-
vated. Elevated FSH in luteoma-bearing animals may
be involved in the regulation of SNAP-25 expression
in luteoma cells, as was demonstrated in the GFSHR-
17 granulosa cell line (17). In addition, the presence
of SNAP-25 mRNA was confirmed by RT-PCR during
tumor development.

Inhibin has been postulated as a marker of ovarian
tumors (13, 14) and the synthesis of inhibin subunits
was demonstrated in these tumors from early to late
stages of development, coinciding with SNAP-25
expression, suggesting that these may be related
events, although the co-expression of both proteins in
the same cells remains to be demonstrated.

In conclusion, various immunocytochemical par-
ameters, described in the normal ovary, were detected
in the intrasplenic ovarian tumor. Gonadotropins prob-
ably play a fundamental role inducing tumor growth
and in maintaining the expression of characteristic pro-
teins, even after 7 months of development, while avoid-
ing apoptosis at the same time. The results obtained
indicate that luteomas most likely develop from
unruptured follicles by hypertrophy and proliferation
of follicular cells and that they represent a highly
differentiated non-metastatic tumor model, in which
many traits normally observed in the ovary are
conserved.
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