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There are several unmet needs in modern immunology. Among them, vaccines against

parasitic diseases and chronic infections lead. Trypanosoma cruzi, the causative agent

of Chagas disease, is an excellent example of a silent parasitic invasion that affects

millions of people worldwide due to its progression into the symptomatic chronic phase of

infection. In search for novel vaccine candidates, we have previously introduced Traspain,

an engineered trivalent immunogen that was designed to address some of the known

mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different

DNA prime/protein boost protocols and characterized the systemic immune response

associated with diverse levels of protection. Formulations that include a STING agonist,

like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response.

Moreover, comparison between them showed that vaccines that were able to prime

polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced

protection levels in the murine model. These findings contribute to a better knowledge

of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a

vaccine correlate of protection against the infection.

Keywords: neglected tropical disease, Chagas disease, Anti-Trypanosoma cruzi vaccine, prime-boost vaccine,

Traspain, cyclic-di-AMP, T cell polyfunctionality, cell-mediated immunity

INTRODUCTION

Chagas disease is a potentially life-threatening disease caused by the protozoan parasite
Trypanosoma cruzi. It is recognized by WHO as a neglected tropical disease in Latin America,
where more than 70 million people are at risk of contracting the infection (1).

According to lastWHO estimates, about 6–7million people worldwide are infected withT. cruzi.
Vectorial transmission occurs when a triatomine bug feeds onmammalian blood and defecates over
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the skin. The feces of the vector contain the parasite and can
be introduced through scratching or by mucosa. Prevention
measures have historically been focused on domiciliary vectorial
control, blood transfusion, and more recently, congenital
screening programs (2). The trypanocidal drugs available are
highly effective during the acute phase, but treatment of the
chronic phase remains an unsolved roadblock (3). About 30% of
chronically infected people develop cardiac alterations and up to
10% develop digestive, neurological, or mixed forms, which are
responsible for disability and death during the chronic phase (4).

Even though there is no approved vaccine against Chagas
disease, several experimental strategies have been exploited for
the development of one, including but not limited to live
attenuated parasites (5), subunit vaccines (6–8) (proteins or
DNA), and recombinant viral vaccines (9). We have previously
introduced Traspain, a novel chimeric antigen rationally
designed to display B- and T-cell epitopes of key parasitic
protein targets: cruzipain (Cz), amastigote surface protein 2
(ASP2), and a selected region of trans-sialidase (Figure 1AI).
This immunogen proved to be both immunogenic and protective
against T. cruzi murine infection in a protein-subunit vaccine
model (10).

Considering the complexity of anti-T. cruzi immunity,
prime-boost protocols have been carried out in order to
increase protection (11, 12). These strategies imply vaccination
approaches where the administration of one type of vaccine
is followed by a second kind, with the aim of triggering
a complementary immune response. Our lab has extensive
experience with prime-boost protocols employing DNA priming
by orally delivering it with a live attenuated microorganism
(Salmonella enterica serovar Typhimurium aroA) plus a protein
boost. Thus, a 4-dose-based regimen was previously tested to
improve protection (8, 13). This strategy appears to be an
interesting approach considering that multiple boosting in the
same site of immunization can cause T-cell sequestration, a fact
that has been described as leading to T-cell exhaustion and
deletion (14). Boosting with a protein subunit-based vaccine
implicates the use of adjuvants to increase immunogenicity.
Newly approved adjuvants for humans are focused on TLR
ligands like MPLA (TLR4) in the HPV vaccine and ODN-CpG
(TLR9) in the new HBV vaccine (15). Between them, the efficacy
of CpG has been extensively studied in anti-T. cruzi vaccines
appearing as an acceptable candidate (8, 13, 16, 17).

T-cell responses are essential for eliminating T. cruzi-
infected cells (18). However, priming cell-mediated immunity
(CMI) through the employment of subunit vaccines models is
challenging (19). We have recently reported the efficacy of the
STING agonist, 3′5′-c-di-AMP (CDA) for priming pathogen-
specific immune responses where Th1/Th17 balanced immunity
proved to be protective against this protozoan parasite (10, 20).

IL-17 is a highly versatile pro-inflammatory cytokine that was
initially associated with immunopathology and autoimmunity.
It has not only a key role acting against extracellular
bacteria and fungi but also contributes to the control of
intracellular pathogens like Listeria monocytogenes, Chlamydia
muridarum, and the apicomplexan parasites Toxoplasma gondii
and Eimeria falciformis (21). In the context of vaccine-induced

immunity, IL-17 has been shown to contribute to protection
against other intracellular pathogens such as Mycobacterium
tuberculosis (22, 23).

Its role in Chagas disease is still under debate. However,
there is plenty of data showing the beneficial effect of IL-17
immunity in T. cruzi infection in humans and mice. High
levels of this cytokine were detected in patients with better
cardiac function in the indeterminate form of the disease
(24, 25) or after benznidazole treatment (26). Besides, many
experimental studies in mice have found a protective effect of
IL-17 by inhibiting an otherwise exaggerated proinflammatory
response (27), controlling myocarditis (28), promoting CD8 T-
cell priming (29), and even showing more protection than Th1
cells (30). These reports sustain the development of strategies able
to prime this type of vaccine-mediated immunity as an effort to
improve protection.

Similar to other infections (31), for Chagas disease correlates
of vaccine-induced protection remain elusive. Here, we employed
Traspain or its components for vaccine formulation in prime-
boost protocols and analyzed in detail the systemic immune
response triggered by vaccination conferring diverse protection
levels in order to better understand the immune response
associated with protection.

MATERIALS AND METHODS

Mice and Parasites
Female C3H/HeN (H-2k) mice 6 to 8-weeks-old (Harlan,
Rossdorf, Germany) were kept at the animal facility of
the Helmholtz Center for Infection Research under specific
pathogen-free (SPF) conditions. For challenge studies, mice
(Instituto de Microbiología y Parasitología Médica, IMPaM,
UBA-CONICET) were kept in the animal facilities of IMPaM.
Animal experiments were approved by an ethical board and
conducted in accordance to the regulations of Lower Saxony
No. 09.42502 04 105/07, Germany, and by the Review Board of
Ethics of the School of Medicine, UBA, Argentina (Resol. C.D. #
3721/2014) following the guidelines established by the National
Research Council (32). Animal sample size was estimated by a
power-based method (33).

For lethal assays, the highly virulent pantropic/reticulotropic
RA strain of T. cruzi was employed. For the chronic phase
analysis, a low virulence myotropic clone was employed (K-98)
(34). T. cruzi bloodstream trypomastigotes of the RA strain from
a discrete typing unit (DTU), VI or K-98 clone (DTU I), were
isolated from infected mice and used for challenge studies.

Immunizations and Challenge
Male or female mice were vaccinated with 4 doses of the
prime-boost protocol consisting of oral DNA-prime followed
by intranasal protein-boost every 10 days (Figure 1AII), as
follows: Se/PBS: 2 doses of 109 CFU of Salmonella enterica
serovar Typhimurium aroA 7207 (SaroA) carrying empty
plasmid pcDNA3.1 orally delivered plus 2 doses of PBS. St/CpG:
2 doses of SaroA carrying pcDNA3.1-traspain (St), plus 2
boosts of Traspain + CpG. St/CDA: 2 doses of St plus 2
boosts of Traspain+CDA. Sc/CDA: 2 doses combining SaroA
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FIGURE 1 | Profile of the immune response triggered by different prime-boost vaccination protocols. (A) I—Traspain cartoon showing main domains of the molecule

and selected murine MHC-I epitopes that have been shown immunogenic. II—Immunization schedule and vaccine formulation received by each group. Secreted
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FIGURE 1 | cytokines were determined by ELISPOT assay. Pooled-splenocytes were restimulated with RPMI or Traspain, and mean number of spot-forming units

were determined for the indicated cytokine: (B) IFN-γ (C) I—IL-17, II—IL-17 spot size and representative image showing the response of spleen cell from mice that

received Traspain plus CpG or CDA as an adjuvant. (D) IL-2 and (F) IL-4. *p < 0.05, **p < 0.01, ***p < 0.001 against control group (Se/PBS). ##p < 0.01, ###p <

0.001 between the indicated groups, one-way ANOVA + Tukey’s multiple comparisons test. (E) Dose-response curve of antigen-specific proliferation assay. Two-way

ANOVA + Dunnett’s multiple comparisons test. **p < 0.01, ***p < 0.001 against the corresponding category from control group (Se/PBS). Results are expressed as

Mean ± SEM, n = 18 from 6 female C3H mice per group. (G) Radial graph showing average fold of change level of each response variable (cytokines, proliferation,

and total response as a sum vs. Se/PBS control group) obtained by each vaccine formulation. Logarithmic scale base 2. All results are representative of two

independent experiments.

carrying pcDNA3.1-cruzipain and SaroA carrying pcDNA3.1-
asp-2, followed by 2 doses of Nt-Cz + ASP2 + CDA. For the
protein boost, groups received 10 µg of each vaccine component,
except for Sc/CDA group that received equal molar amounts
of each antigen. For lethal challenge assays, 15–30 days after
the last dose, mice were infected with 103 T. cruzi RA strain
blood trypomastigotes by the intraperitoneal route. For sub-
lethal assays, 3.105 K98 blood trypomastigotes were administered
by the same route.

ELISPOT Assays
Spleen cells (4 × 105/2 × 105 cells/well) were incubated for
24 h (IFN-γ) or 48 h (IL-2, IL-17, and IL-4) at 37◦C with
5% CO2, in the absence or presence of 10µg/ml of Traspain.
After incubation, cells were removed, and plates were processed
according to the manufacturer’s instructions. Colored spots were
counted with an ELISPOT reader (CTL S5 Micro Analyzer) and
analyzed using ImmunoSpot image analyzer software v3.2 (CTL
Europe GmbH, Germany).

Proliferation Assays
Spleen cells (5 × 105 cells/well) from vaccinated animals were
incubated in quadruplicates for 96 h in the presence of different
concentrations of Traspain (1, 5, 10, and 20µg/ml) or the
indicated stimulus and proceeded as reported (35). Results were
expressed as a proliferation index (PI), calculated as the ratio of
mean values from stimulated and RPMI samples.

Intracellular Cytokine Staining
Splenocytes were isolated and stimulated overnight with
10µg/ml of Traspain or 10µM of TEWETGQI peptide in the
presence of anti-CD154 PE and anti-CD107 PE-Cy7. Brefeldin
A plus monensin were added to cultures during the last 12 h
of incubation. Dead cells were stained with LIVE/DEADTM

Fixable Blue Dead Cell Stain Kit (Life Technologies). Surface
staining was performed with anti-CD3e V500, anti-CD4-APC-
H7 (BD), and anti-CD8α-Brilliant Violet 650 (BioLegend). Cells
were fixed at RT with PFA 2%, permeabilized in 0.5% saponin
and stained using anti-IFN-γ Brilliant Violet 711 (BioLegend)
and anti-TNF-α eFluor450 (eBioscience) in accordance with the
manufacturer’s instructions.

Analysis of Polyfunctional Cells
Polyfunctional cells are defined as cells with the ability to
produce more than one function at the same time (cytokines and
upregulation of activation or degranulation makers, CD154 and
CD107a, respectively). Frequencies of each defined subset were
determined after automatic Boolean combination gates were

employed using FlowJo software. Integrated mean fluorescence
intensity (iMFI) was determined by multiplying the MFI of the
corresponding channel by the frequency of each subpopulation.

MHC Class I Multimer Staining
To detect antigen-specific T cells, spleen or blood cells were first
labeled with the H2Kk-TEWETGQI dextramer-APC (Immudex)
and then with anti-CD3e V500, anti-CD4-APC-H7 (BD), and
anti-CD8α-Brilliant Violet V650 (BioLegend) according to the
manufacturer’s instructions.

In vivo Cytotoxicity Assay
Splenocytes collected from naïve C3H/HeNmice were incubated
with 5µM of the CD8 peptide TEWETGQI or RPMI for 30min
at 37◦C and 30min at 4◦C, washed, and then labeled with
10 and 0.5µM of CFSE (CellTraceTM CFSE Cell Proliferation
Kit), respectively. Cells were washed, equally combined, and
transferred (4 × 107 total cells) intravenously to syngeneic
naïve, immunized, and T. cruzi-RA-infected mice at 45
days post-infection (dpi). Spleens were harvested 16 h after
transfer, and different CFSE-stained populations were detected
by flow-cytometry.

Assessment of Vaccine Efficacy
Parasitemia and weight loss were monitored every 2 days
as previously described by counting peripheral parasites (13).
Survival was recorded daily.

Muscle injury was evaluated through the determination
of a panel of myopathy-linked enzyme markers at 240 dpi.
The assays were performed as previously described (36). The
histological features of heart and skeletal (quadriceps) muscles
from vaccinated and infectedmice were also investigated. A blind
histological test was performed as previously described (37).
Briefly, fixed material was embedded in paraffin, then sectioned
and stained with hematoxylin and eosin. Inflammation was
qualitatively evaluated according to the number and spreading
of inflammatory foci. Samples were classified with the following
score: (1) isolated foci; (2) multiple non-confluent foci; (3)
multiple confluent foci; and (4) multiple diffuse foci (38, 39).

Electrocardiograms (ECG)
Mice were anesthetized (100mg ketamine and 16mg xylazine/kg
mouse) at 120 dpi and heart electrical activity was recorded with
a Temis TM-300-V electrocardiograph as previously reported
(6). Corrected QT interval was calculated by the Bazett formula
adapted for mouse (40).
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Quantitative PCR (qPCR)
Parasite burden in skeletal and heart muscle at 240 dpi was
determined by a qPCR adapted from Cummings et al. (41)
as previously described (6). Parasite burden was expressed as
parasite equivalent/50 ng of total DNA.

Statistical Analysis
Statistical analysis was carried out with GraphPad Prism 6.0
software (San Diego, CA, USA) using one-way or two-way
ANOVA. The number of animals, specified in figure legends, was
estimated by a power analysis comparing the size of the difference
in the variable of interest between immunized and control groups
based on either previous or pilot experiments. p < 0.05 were
considered significant. Homoscedasticity was tested employing
Levene’s test in all ANOVA. Normality was checked using the
Shapiro-Wilk test and/or quantile-quantile plot, QQPLOT using
R software (42).

RESULTS

Profiles of the Immune Response Obtained
Upon Different Prime-Boost Strategies
In order to evaluate the influence of the adjuvant and antigen
in prime-boost vaccines, we analyzed the frequency of antigen-
specific cytokine secreting cells in splenocytes by an ELISPOT
assay (Figure 1). The frequency of IFN-γ secreting cells was
higher in vaccinated groups compared to Se/PBS control group
(Figure 1B). The highest frequency of these cells was detected
in St/CDA group, which presented nearly a two-fold increment
compared to other immunized groups. Interestingly, a marked
difference was detected in the numbers of vaccine-specific IL-
17 secreting cells, where only groups that received the CDA
boost in the formulation were able to increase its frequency
compared to control animals (Figure 1CI). Moreover, not only
was the frequency different but also a significant contrast in
the size and intensity of each spot-forming unit (SFU) was
detected (Figure 1CII). This points out to the fact that CDA
vaccinated mice have a higher ability to secrete this cytokine.
On the contrary, no difference was observed in the levels of IL-
2 secreting cells between CpG and CDA groups (Figure 1D).
Notwithstanding, the group that received Sc/CDA showed a
lower frequency of SFU in the majority of cytokines analyzed. A
similar trend was observed in the proliferative ability of spleen
cells upon antigen re-encounter where Sc/CDA group showed the
worst performance (Figure 1E). All immunized mice displayed
low levels of IL-4 secreting cells, being the ratio IFN-γ/IL-4 ≈

46, 40, 27 for St/CpG, St/CDA, and Sc/CDA, respectively. These
results highlight the bias toward a Th1 profile in the adjuvants
employed. A fold of change analysis of each variable reflected
the increase in vaccine potency observed in St-groups as opposed
to antigen combination. Remarkably, CDA as a boost adjuvant
displayed a more balanced cytokine profile with higher presence
of IL-17 and IL-4 than CpG (Figure 1G). This broader Th profile
might help to avoid pathology and contribute to a better control
of T. cruzi infection.

Vaccine Efficacy During the Acute Phase of
T. cruzi Infection
In order to analyze the protection conferred by each formulation,
immunized female C3H mice were challenged with a lethal dose
of the highly virulent RA strain of T. cruzi. This model of
infection is well-established in our lab (6, 16, 36, 43). The number
of blood trypomastigotes, weight loss, and the survival rate were
employed as endpoints for assessing vaccine performance. Due
to the higher sensibility in the analyzed readouts, this infection
model is ideal to determine protection in the acute phase of
infection. All vaccinated groups showed lower parasitemia than
control animals (Figure 2A). However, mice immunized with
St/CDA showed nearly a five-fold reduction in the number of
circulating parasites along the acute phase compared to control
animals (Figure 2B); area under the curve values: AUCSe/PBS =

237 vs. AUCSt/CDA = 49.8 (p= 0.0038).
Weight loss, though detected in all mice, was ameliorated in

vaccinated groups compared with control animals (Figure 2C).
Thus, at 17 dpi, control mice showed the highest loss (nearly
30% of their initial mass), this difference being significant
compared to Traspain-vaccinated animals. This result denotes
the improvement on disease severity when animals received
Traspain as vaccine. In that way, the reduced parasitemia
and weight loss of St/CDA group were associated with an
increase in survival rate among immunized animals (Figure 2D).
Conversely, Sc/CDA group showed the worst outcome in terms
of parasitemia (AUCSc/CDA: 160, p= 0.32 vs. Se/PBS), weight loss
(p= 0.19 at 17 dpi), and survival (p= 0.45 vs. Se/PBS) compatible
with a scenario of higher disease severity upon infection.

Heterotypic Protection Against a
Sub-Lethal T. cruzi Challenge
To analyze the protective capacity of each prime-boost strategy
against a T. cruzi strain with a different outcome, a non-lethal
model of experimental infection was established combining T.
cruzi K-98 clone (DTU I) with male C3H mice based on their
higher susceptibility to infection (44, 45) and on previous reports
of similar infection models (31, 46). Mice were vaccinated and
subsequently infected with K-98 blood trypomastigotes.

As Figures 3A,B shows, vaccinated animals were able
to significantly control parasitemia during the acute phase
compared to Se/PBS control mice. In that way, all of them
were able to efficiently reduce the highest peak of parasites at
42 dpi. Albeit, St/CpG and Sc/CDA groups presented higher
peaks earlier, around 30–40 dpi. Again, St/CDA immunization
was the strategy with the best performance showing the lowest
parasitemia with a six-fold reduction of AUC compared with
control (Figure 3B).

Considering the non-lethality of this model, weight loss was
detected mainly in the chronic phase of infection (>100 dpi).
While control mice lost about 30% of their body weight at the
endpoint, vaccinated mice were able to maintain or even increase
their weight during the course of infection (Figure 3C).

As T. cruzi infection progresses, tissue-associated damage
might be presented in target organs. To characterize the
protection levels achieved during the chronic phase, we
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FIGURE 2 | Improved efficacy in St/CDA vaccinated mice upon a lethal challenge with T. cruzi RA strain. Female C3H mice were vaccinated and 15–30 days after last

dose were intraperitoneally infected with 1,000 blood trypomastigotes of T. cruzi RA strain (A) Parasitemia. (B) Area under the curve (AUC) of parasitemia up to 14 dpi.

RU, relative units **p < 0.01, *p < 0.05 differences were calculated with respect to Se/PBS control group, one-way ANOVA + Bonferroni post-hoc test. (C) Weight

loss. Results are expressed as percentage with respect to pre-infection **p < 0.01, *p < 0.05 at 17 dpi between the indicated groups, one-way ANOVA + Dunnett

post-test. (D) Survival rate. Asterisks indicate significant difference with respect to Se/PBS control group. **p < 0.01, *p < 0.05 Log-rank test. n = 5–7 mice per

group. Results are representative of three independent experiments.

analyzed multiple endpoints post-infection. At 120 dpi, electrical
activity of heart was assessed by an electrocardiogram (ECG)
determination. Age and sex-matched non-infected mice were
incorporated in the analysis. Although not significant, except
for St/CDA, all vaccinated and infected animals displayed
a tendency to increase the PR interval in their ECG data,
compared with non-infected mice (Figure 3D). A significant
prolongation of the cQT interval was detected only in T.
cruzi-infected Se/PBS groups compared to non-infected mice.
Despite the fact that we did not detect differences between
the immunized groups and infected controls, it should be
noted that values recorded for all vaccinated animals were
not significantly different from non-infected mice (Figure 3D).
At 240 dpi, the activity levels of enzymes associated with
tissue damage were determined in serum (Figures 3E,F). In
agreement with ECG data, only T. cruzi-infected Se/PBS group
presented higher levels of the cardiac isoform of creatine kinase
(CK-MB) compared to non-infected animals. St-vaccinated
mice showed a significant reduction of specific activity of
CK-MB compared to Se/PBS (Figure 3E). Altogether, these
results highlight the ability of St vaccination to ameliorate

alterations of cardiac physiology during the chronic phase of
T. cruzi infection.

As T. cruzi can also persist in skeletal muscle, serum CK
activity was measured as a surrogate marker of tissue damage.
All vaccinated mice displayed a clear reduction in CK levels,
though higher levels of serum activity were detected in animals
that received Sc/CDA formulation (Figure 3F).

To further characterize this scenario, parasitic load was
analyzed by qPCR in target tissues, cardiac and skeletal muscle
(Figure 3G). Preference of skeletal muscle persistence was
detected in all animals, T. cruzi-DNA ratio skeletalmuscle/heart
= 4 (95% confidence interval: 2-6). St-immunized mice with
CpG or CDA were able to reduce parasitic load in both target
organs compared to the Se/PBS control group. In accordance
with previous readouts, mice that received the Sc/CDA vaccine,
in accordance with previous readouts, presented higher levels
of parasite persistence, demonstrating a suboptimal control of
the infection.

Histology data indicated the presence of mononuclear cell
infiltrates in both cardiac and skeletal muscle (Figure 4A). In
correlation with parasite persistence, higher levels of chronic
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FIGURE 3 | Assessment of vaccine efficacy during parasitic chronic infection with a vaccine unrelated strain. Male C3H mice were vaccinated and 30 days after last

dose were infected with blood trypomastigotes of T. cruzi K-98 strain. (A) Parasitemia. (B) Area under the curve (AUC) of parasitemia. RU, relative units **p < 0.01,

*p < 0.05 differences were calculated with respect to the Se/PBS control group, one-way ANOVA + Bonferroni post-hoc test. (C) Weight loss. Results are expressed
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from immunized infected mice. NI, non-infected. *p < 0.05, **p < 0.01 compared to Se/PBS group, bars indicate significant differences, p < 0.05, between the

indicated groups, one-way ANOVA + Dunnett’s post-test. (G) Parasite load by qPCR in target tissues, *p < 0.05, **p < 0.01 compared to Se/PBS group, two-way

ANOVA + Dunnett’s post-test. n = 3–7 mice per group. All results are representative of at least two independent experiments.

inflammation were observed in the latter (Figures 4A,B). Tissue
sections from Se/PBS control mice presented signs of necrosis
and chronic inflammation with multiple confluent inflammatory
foci. On the other hand, St-immunized animals showed a
decrease in the levels of mononuclear cell infiltrates while
Sc/CDA presented the worst performance between immunized
animals, with levels of inflammatory foci similar to control mice.
These results highlight the inferiority of Sc/CDA vaccination in
terms of parasite persistence, level of mononuclear cell infiltrate,

and tissue damage compared to formulations bearing Traspain as
anti-T. cruzi prophylactic vaccine.

Antigen-Specific CD4+ T-Cell Response
Differs in Functionality in St/CDA and
Sc/CDA Groups
Considering the differences between groups that received
Traspain or the combination of single antigens (Sc/CDA),
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we performed a FACS analysis of spleen cells to further
analyze the quantity and quality of the cellular immune
response triggered by each of these two formulations.
To that end, mice were vaccinated, and flow cytometry

was performed to assess all combinations of IFN-γ,
TNF-α, CD154, and CD107α markers for the CD4+

T-cells subset by Boolean gating strategy upon antigen
re-stimulation (Figure 5A).
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FIGURE 5 | carried out in order to assess simultaneous production of IFN-γ, TNF-α, CD154, and CD107α. (A) Representative Zebra plots showing the individual

gates included in the Boolean combination strategy for the CD4 compartment. Frequency of positive events upon antigen re-stimulation or RPMI are shown in black

and gray respectively. (B) Bar chart showing the frequency of cytokine producing subsets within CD4T lymphocytes. Values were background subtracted.

***p < 0.001, **p < 0.01 comparing with Se/PBS, ##p < 0.01, between indicated groups, n = 3 mice per group, two-way ANOVA + Tukey’s multiple comparisons

test. (C) Pie chart showing fraction of the antigen-specific response for all positive subsets. Concentric lines are drawn to show the composition of each subset.

Hierarchy of (D) IFN-γ and (E) TNF-α expression within functionally defined subsets of cytokine-producing cells. Both mean fluorescent intensity, MFI (I) and integrated

MFI (II) are shown. ****p < 0.0001 ***p < 0.001, **p < 0.01 comparing between groups, two-way ANOVA + Sidak’s multiple comparisons test. All results are

representative of two independent experiments.

A significant increase in the magnitude of multifunctional (4+

and 3+ functions) Traspain-specific population was detected in
St/CDA group which showed a four-fold increase in the % 4+

cells compared to Sc/CDA (% of 4+ range from 1.6 to 0.8 and
0.4–0.2, respectively) (Figure 5B).

Boolean analysis revealed that while ∼25% of Traspain-
specific CD4T cells expressed all four markers in St/CDA
group, they only represent ∼12% when mice received the
Sc/CDA formulation (Figure 5C). On the contrary, single
positive producers were highly represented in this group,
where almost 40% of the antigen-specific response detected
was monofunctional.

Higher IFN-γ MFI was detected in multifunctional cells
in both groups. However, CD4T cells from St/CDA group
presented the highest levels in all subsets (Figure 5DI).
Regarding TNF-α production, this scenario was not observed
(Figure 5EI). Still, upon calculation of the integrated MFI
(iMFI), a metric that encompass the magnitude (frequency)
and the quality (fluorescence intensity) of this cytokine, the
same trend was detected (Figure 5EII). Similarly, a marked
contrast was observed in the iMFI of IFN-γ production between
both groups, a fact that highlights the better sensibility of
this measurement for comparing functionality among different
formulations (Figures 5DII, EII). Altogether, these results point
to a higher quality of helper T lymphocytes primed by
the St/CDA formulation that might contribute to efficacy
differences observed.

CD8+ T-Cell Functionality Is Improved in
St/CDA Group
As CD8+ T cells play a pivotal role in controlling T. cruzi
infection, we analyzed the priming of pathogen-specific cells by
surface staining, employing an MHC-I dextramer loaded with
the peptide TEWETGQI, an immunodominant peptide from the
ASP2 region of Traspain (Figure 1A). We observed an expansion
of antigen-specific CD8+ T cells in both vaccinated groups.
However, mean values were significantly higher only in St/CDA
group compared to controls (Figure 6A). A two-fold increase
in its peptide-specific CTL frequency was observed when we
compared individuals from both treated groups revealing a more
robust CTL response in this group. A similar trend between
groups was observed when production of IFN-γ, TNF-α, and
CD107α was analyzed (Figures 6CI–III).

Employing Boolean strategy, we assessed all combinations of
these three markers. St/CDA showed an increase in the frequency
ofmarker combinations compared to Sc/CDA, specifically a four-
fold increment was observed in the magnitude of 3+ CD8T cells

(Figure 6D). Taking into account the total antigen-specific CD8
response detected, this multifunctional CTL subset represents
32% in St/CDA group vs. 22% in Sc/CDA (Figure 7A).

Differences in the production levels of cytokines between
groups were observed in TNFα but not in IFNγ-producing
subsets as MFI analysis revealed (Figures 7B,CI). However,
considering the frequency of each subpopulation, mice
vaccinated with St/CDA displayed a clear difference in both
cytokine subsets (Figures 7B,CII). Consequently, a significant
four-fold increase in the IFNγ-iMFI of 3+ polyfunctional subset
was detected when we compared both formulations.

In order to confirm the cytotoxic potential of CD8+ T
lymphocytes generated by St/CDA formulation, we performed
an in vivo cytotoxicity assay where we transferred splenocytes
loaded with TEWETGQI peptide from a syngeneic donor to
naïve, immunized, or immunized and infected mice (Figure 7D).
Hence, St/CDA vaccinated animals presented around 30% lysis
of TEWETGQI+ cells. Nearly half of this value was observed in
Sc/CDA. The ability of the clone to re-expand was confirmed
by its increased cytotoxic activity upon T. cruzi infection,
reaching values of about 60% lysis in immunized mice at 45
dpi and further demonstrating that the functionality of this
subset is still preserved after parasite infection (Figures 7D,F).
In a similar fashion, higher proliferation potential was detected
in spleen cells from St/CDA at 100 dpi upon antigen-specific
re-stimulation (Figure 7E). As T-cell response plays a key
role for the elimination of infected cells in T. cruzi target
tissues, its functionality represents an essential feature for the
immune mediated control of T. cruzi infection induced by
prophylactic vaccination.

DISCUSSION

The definition of a correlate of protection for anti-T. cruzi
vaccines is still missing. This fact is related with the complexity of
the immune response required to control parasite invasion and
intracellular replication.

We have recently introduced Traspain, a unique chimeric
antigen based on key T. cruzi antigens that proved to be effective
for the control of experimental infection in a subunit vaccine
model employing CDA as an adjuvant. The results shown here
indicate that novel heterologous prime-boost strategies should
be focused on obtaining robust polyfunctional T-cell responses
in order to be an effective regimen to trigger anti-parasitic cell-
mediated immunity.

The profile of the immune response triggered was influenced
not only by the adjuvant employed in boost doses but also
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FIGURE 6 | Enhancement of CD8+ T-cell-mediated immune responses in Traspain-vaccinated female C3H mice. (A) Priming of pathogen-specific CD8+ T cells by

vaccination at 30 dpi. (B) Representative dot-plots for the indicated groups. Spleen cells were restimulated ex vivo with TEWETGQI peptide. After cell staining,

Boolean gate strategy was performed in order to assess simultaneous production of CD107-α, IFN-γ, and TNF-α (C) total frequency of CD8T cells producing each

marker. Values were background-corrected, *p < 0.05 against control group (Se/PBS), one-way ANOVA Kruskal-Wallis test + Dunn’s multiple comparisons test.

(D) Frequency of cells expressing each of the seven possible combinations of cytokines. ****p < 0.0001, **p < 0.01 comparing with Se/PBS, ###p < 0.001

between the indicated groups, two-way ANOVA + Tukey’s multiple comparisons test. Results are representative of two independent experiments.

by the antigen in each regimen. In agreement with previous
results (10), mice that received CDA in boost doses displayed a
Th1/Th17 bias with a balanced cytokine profile. In contrast, a
prime-boost regimen designed to trigger TLR9 employing CpG
as boost adjuvant showed an immune response consistent with a
Th1 polarized profile (Figure 1F). The robustness of the immune
response obtained with these two adjuvants was different in terms
of IL-17, IFN-γ, and IL-4 secretion. In addition to the differences
in the signaling pathway, this fact might be related to several
variables that we cannot rule out like dissimilarities in TLR9
and STING distribution in mice nasal mucosa, differences in the
stability of these two small molecules, and the state of the immune
system after oral DNA priming by live-attenuated bacteria. All
these might contribute to a more efficient boost potency of CDA
over CpG.

Interestingly, the single antigens combined in the Sc/CDA
group, failed to achieve similar levels of vaccine potency despite
receiving CDA. This fact clearly emphasizes the importance
of the immunogen, as we have previously observed a similar
scenario in the subunit vaccine model where Traspain showed an
improved priming efficiency compared to the formulation and
administration of the main two domains alone (10). Even though

the difference between CMI can be attributed to the presence
of iTS linker in the Traspain formulation, the likelihood of this
scenario seems to be on the low side considering the short length
of the sequence (only 25 amino acids) and the lack of known
immunodominant epitopes in that region of the molecule. We
have previously determined that the linker region from iTS can
be targeted by antibodies and CTL response in Traspain/CDA
vaccinated mice.

The more balanced and robust immune response triggered
by a CDA boost within the same immunogen highlights its
advantageous use for mucosal prime-boost strategies over other
adjuvants or its inclusion in the design of novel adjuvant systems,
an strategy that has been proved to have a positive effect on
immunogenicity and efficacy against intracellular pathogens (47).

In terms of vaccine efficacy, we demonstrated that there
was a clear correlation with immunogenicity, since St/CDA
immunized mice showed an enhanced immune response that
was then associated with a reduction of circulating parasites and
an increase in survival rates upon a lethal T. cruzi challenge
(Figure 2).

Considering that vaccine efficacy can be higher against
vaccine-like strains compared to others from a different genetic
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FIGURE 7 | expression within functionally defined subsets of responding cells. Both mean fluorescent intensity MFI (I) and integrated MFI (II) are shown. *p < 0.05

**p < 0.01 comparing between groups, two-way ANOVA + Sidak’s multiple comparisons test. (D) in vivo CTL assay. Spleen cells from female C3H donor mice were

loaded with TEWETGQI peptide or unloaded. Cells were stained with CFSE, and intravenously injected to syngeneic naïve, vaccinated (St/CDA, Sc/CDA) or

St/CDA-vaccinated and T. cruzi RA infected mice at 45 dpi. *p < 0.05 ***p < 0.001 against Sc/CDA group. #p < 0.05, between the indicated groups, one-way

ANOVA + Tukey’s multiple comparisons test. Results are expressed as mean ± SEM, and represent at least three independent experiments, n = 3 per group.

(E) 3H-Thymidine incorporation assay. Spleen cells from T. cruzi-RA-infected female mice were removed at 100 dpi and recalled with 20µg/ml of F105 T. cruzi lysate.

Results are expressed as proliferation index (PI). ##p < 0.01 between indicated groups. **p < 0.01 comparing with Se/PBS. one-way ANOVA + Tukey’s multiple

comparisons test, n = 6 per group. (F) Representative density-plot of in vivo CTL assay showing percentage of CFSE populations in the indicated groups. All results

are representative of two to three independent experiments.

background, infection with a parasite from DTU I, clone K-98
was tested. This T. cruzi clone has several useful characteristics.
It has a low virulence in the murine model, a slow replication
rate, and, given its DTU I background, is likely to have a more
discrete antigenic repertoire compared to DTU VI strains like
RA, employed here for lethal assays (48). Importantly, given
its non-lethality, this infection model allows us to evaluate
vaccine performance throughout a longer infection time without
reducing the initial load of parasite inoculum.

Regarding vaccine efficacy, we found a similar profile in both
acute and chronic infection models, St/CDA immunization being
the one that produced the strongest reduction of blood parasites
and an important reduction of body weight loss compared with
the non-vaccinated control.

As cardiac muscle is one of T. cruzi’s target tissues,
murine ECG was employed as a tool for assessing cardiac
physiology. Its data revealed an improved outcome on vaccinated
animals, which suffered fewer alterations (QTc and PR interval
prolongation), compared to Se/PBS infected mice. Similar
alterations were previously observed in other T. cruzi-infected
mice (6, 49). Interestingly, between vaccinated groups, Sc/CDA
presented the worst performance. This group, like infected
controls, showed higher alterations of ECG at 120 dpi, a fact
that was then associated with increased CK-MB serum activity,
parasite persistence, and mononuclear cell infiltrate at endpoint
at both the cardiac and skeletal muscle level. These readouts
indicate a suboptimal control of the disease progression in these
animals. Even though cardiac damage was detected by CK-
MB activity in sera at endpoint, parasite persistence determined
by qPCR, was higher in skeletal muscle, representing one
shortcoming of the infection model.

Beneficial effect of IL-17 might be related with the
improvement in the outcome of St/CDA vaccinated group
compared to St/CpG. Presence of IL-17 secreting cells might
contribute to an improved priming of CTL responses (30)
and to the control of an otherwise extreme pro-inflammatory
immune response (50). The latter is a common scenario of
lethal acute T. cruzi infections and may explain differences
in protection observed upon RA challenge, a similar situation
was observed with hypervirulent strains of M. tuberculosis (23).
However, in chronic infection models like the K-98 clone-male,
C3H mice we were not able to detect clear-cut differences
between each formulation, at least in the analyzed readouts.
Considering that Th17 cells play a role in autoimmune diseases
that are associated with chronic inflammation, the lack of an
overwhelming inflammatory response in vaccinated animals
suggests that the Th17 cells primed did not undergo a maturation

process that would have led them to acquire a pathogenicity state
upon T. cruzi infection.

Given that St/CDA and Sc/CDA groups performed so
distinctly and considering the differences previously observed
in the subunit vaccine model (10), we speculate that priming
of CD4 and CD8T cells might be compromised in the latter.
To test this hypothesis, we further analyzed the quantity
and quality of the cell-mediated immunity triggered by
these two formulations by flow cytometry. Indeed, Boolean
gating strategy revealed key functional differences between
each other in both antigen-specific CD4 and CD8 T-cell
compartments (Figures 5–7).

Higher levels of poly-functional T-cell subsets has been
directly related with an improved efficacy in other vaccinemodels
against intracellular pathogens (51, 52). In agreement with this
observation, an improved outcome was detected in the St/CDA
group, which showed an increase in the frequency of poly-
functional CD4 and CD8 T-cell subsets.

Interestingly, bigger differences were observed at the
CD4 compartment, where more than 70% of the antigen-
specific response produced 3+ and 4+ functions. This fact
might be influenced by the stimulation protocol since the
CD4 compartment was stimulated by whole recombinant
Traspain, while the CD8 compartment was stimulated only with
TEWETGQI peptide. Employing a peptide pool for recalling
T cells can solve this issue in upcoming studies. On the other
hand, increasing the sample size would let us detect differences
among groups that might be underestimated in this study.

Another observation that might contribute to the improved
control of T. cruzi progression in St/CDA groups might be
associated with the higher quality of multifunctional subsets as
was demonstrated by its higher ability to produce more of each
cytokine compared to less functional ones as well as higher
in vivo CTL activity. This scenario was also observed with other
vaccines against parasitic disease such as leishmaniasis (51) and
malaria (53).

We believe that multifunctional T-cell priming would be a
desirable attribute for a T-cell-based vaccine against T. cruzi
considering that it involves not only a higher effector function
but also a greater long-term memory potential, as single positive
cells are associated with terminal effector T lymphocytes (54).
Interestingly, monofunctional responses have been observed
in T. cruzi chronically infected patients (55) and a higher
functionality has been observed in patients with less severe
forms of chronic Chagas cardiomyopathy (24, 56), as well as in
T. cruzi-infected children (55), a stage of life where parasitic cure
by drug treatment is possible.
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In the murine model, the functionality of CTL responses
during the chronic phase is essential for controlling parasite
burden (57), and improving it through active immunotherapy
or drug combination therapy, though challenging, seems an
attractive area of research. Even though heterologous prime-
boost immunization represents an interesting strategy to
optimize T-cell responses, we showed that fine-tuning is also
possible not only by varying the nature of the adjuvant employed
in the subunit vaccine type but also by changing the nature of
the antigen. Therefore, constructing new molecules in order to
improve immunogenicity should be further studied. The results
presented here reinforce the notion that measurement of T-cell
polyfunctionality is a key factor that needs to be considered in
the definition of a correlate of protection for the design of novel
anti-parasitic vaccines and that the analysis of T-cell responses
against protective parasitic antigens for the rational design of
novel anti-T cruzi vaccines should be further extended.
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