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Stationary transport in mesoscopic hybrid structures with contacts to

superconducting and normal wires. A Green’s function approach for multiterminal

setups.
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We generalize the representation of the real time Green’s functions introduced by Langreth and
Nordlander [Phys. Rev. B 43 2541 (1991)] and Meir and Wingreen [Phys. Rev. Lett. 68 2512
(1992)] in stationary quantum transport in order to study problems with hybrid structures containing
normal (N) and superconducting (S) pieces. We illustrate the treatment in a S-N junction under
a stationary bias and investigate in detail the behavior of the equilibrium currents in a normal
ring threaded by a magnetic flux with attached superconducting wires at equilibrium. We analyze
the flux sensitivity of the Andreev states and we show that their response is equivalent to the one
corresponding to the Cooper pairs with momentum q = 0 in an isolated superconducting ring.

PACS numbers: 72.10.Bg,74.45.+c,73.23.Ra

I. INTRODUCTION.

The superconductivity and its implications is among
the most interesting phenomena in the realm of con-
densed matter physics. While the microscopic mech-
anism leading to the pairing instability in the high-Tc

materials remains not yet fully understood, the general
framework provided by the BCS theory1 consistently ac-
counts for superconductivity in normal metals. Remark-
ably, this seems to be even true in the context of low
dimensional systems of mesoscopic scale.2,3

BCS theory provided the basis of the seminal paper by
Blonder, Tinkham and Klapwijk (BTK)4. In that work,
the stationary transport properties of a superconductor-
normal metal (S-N) junction and the subtle mechanism
of the Andreev reflection leading to the effective Cooper
pair tunneling through the junction was first analyzed.
A similar description was followed in the study of S-N-S
structures,5,6,7,8,9 and later formulated in terms of multi-
channel scattering matrix theory in Ref 10. BCS theory
has been also the basis for the study of stationary trans-
port in unbiased S-N-S junctions due to the Josephson
effect1,11,12,13,14 as well as the AC Josephson effect un-
der bias1,14,15,16,17.

The non-equilibrium Green’s function formalism18 is
a powerful technique to study quantum transport in co-
herent regimes. In the context of microscopic models for
mesoscopic structures it was first introduced by Caroli et

al,19 and later elaborated by other authors.20,21,22,23,24,25

That approach was also represented in the Nambu
formalism to treat S-N and S-N-S junctions.11,15,16,17

The formal equivalence between non-equilibrium Green’s
function and the scattering matrix formalism to the
quantum transport has been analyzed for the case of
normal systems without many-body interactions under
stationary20 and time-periodic driving.25

The representation of the non-equilibrium Green’s

functions introduced by Langreth and Nordlander21

is particularly useful to derive compact equations for
the currents along the different pieces of a mesoscopic
structure.23,24 In the present work, we employ that rep-
resentation in the case of hybrid multiterminal structures
containing superconducting elements that are modeled
by BCS Hamiltonians.

Instead of working in Nambu’s space, we derive a cou-
pled set of Dyson’s equations for the normal ĜR,<

σ (ω) and

Gorkov’s F̂R,<
σ (ω) retarded (R) and lesser (<) Green’s

functions. As in Refs.22,23,24, we “integrate- out” the de-
grees of freedom of the external wires (reservoirs) and,

by introducing auxiliary hole propagators ĝ
R,<

(ω), we
reduce the problem to solving the Dyson’s equation for
the usual normal Green’s function with an effective self-
energy. As in Refs.22,23,24, the latter describes the scat-
tering events due to the escape to the leads, but in the
present case, it contains a component related to the mul-
tiscattering processes involved in the Andreev reflection.
The final expressions for the currents have a compact
structure that formally resemble those of Ref. 23 for
normal systems.

Sections II and III are devoted to explain the theoret-
ical treatment. We derive expressions for the currents
and we show that the transmission function of a biased
system contains a normal plus an Andreev contribution.
In Section IV we illustrate the approach in the simple
well known case of a two terminal setup with a linear
system in contact to one normal and one superconduct-
ing wires under bias and we show its equivalence with
BTK description. In Section V we employ the formalism
to the study of the behavior of the equilibrium currents
of a normal metallic ring threaded by a static magnetic
field with several attached normal and/or superconduct-
ing wires. We address several interesting physical ques-
tions like the minimal conditions for the development of
Andreev states within the superconducting gap, the flux
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FIG. 1: (Color online) Sketch of the setup. The central grid
represents the central finite system. The area enclosed by
this system is threaded by a static magnetic flux Φ. The
N- and S wires are, respectively, indicated with open and
filled lines. The arrows represent the contacts between the
different systems. In each case, the parameters of the ensuing
Hamiltonians are indicated.

sensitivity of these states and the possibility of anoma-
lous flux quantization induced as a consequence of the
proximity effect. Section VI is devoted to summary and
discussion. Some technical details are presented in the
appendices.

II. THEORETICAL TREATMENT.

A. Model

We introduce microscopic models for the different
pieces of the setup, which consists in a finite normal sys-
tem of non-interacting electrons in contact to M infinite
superconducting (S) or normal (N) metallic wires (see
Fig. 1). The full system is described by the following
Hamiltonian:

H = Hcen +

M
∑

α=1

(Hα + Hcα), (1)

where Hα denote the Hamiltonians of the wires, while
Hcα the corresponding contacts establishing the connec-
tions between these systems and the central one. Al-
though long-range superconducting order does not take
place in strictly one-dimension (1D), for simplicity, we
consider 1D tight-binding BCS Hamiltonians with local
s-wave pairing for the wires. This is a rather standard
assumption (see Refs. 4,5,6,7,8,11,13,15,16,17) and the
general treatment can be easily extended to multichannel
wires and more general symmetries of the superconduct-
ing gap. Concretely:

Hα = −wα

Lα
∑

jα=1,σ

(c†jα,σcjα+1,σ + H.c.) − (2)

µα

Lα
∑

jα=1,σ

c†jα,σcjα,σ +

Nα
∑

jα=1

(∆αc†jα,↑c
†
jα,↓ + H.c.),

with σ =↑, ↓, and being ∆α = 0 for the N-wires. The size
of the wires approaches the thermodynamic limit (Lα →
∞), i.e., the wires act as macroscopic reservoirs, with well
defined chemical potential and temperature. We model
the central system by a tight-binding Hamiltonian in a
finite lattice of L sites with nearest-neighbor hopping.
We consider the possibility of a static magnetic flux Φ
threading this system, which introduces a dependence
on Φ in the hopping matrix elements:

Hcen = −
∑

〈ll′〉,σ

[wl,l′(Φ)c†l,σcl′,σ + H.c.]

+
L

∑

l=1,σ

ε0
l c

†
l,σcl,σ, (3)

where 〈ll′〉 denotes nearest-neighbor sites. The Hamilto-
nians for the contacts read:

Hcα = −wcα

∑

σ

(c†jcα,σclcα,σ + H.c.), (4)

which describe hopping processes between the sites jcα of
the wires and the sites lcα of the central system at which
the wires are attached.

B. Currents.

The electronic current, in units of e/~, flowing through
a given bond 〈l, l′〉 of the central system is:

Jl,l′ = −2
∑

σ

∫ ∞

−∞

dω

2π
Re[wl′,l(Φ)G<

l,l′,σ(ω)], (5)

while the current flowing through a given contact is

Jα = −2
∑

σ

∫ ∞

−∞

dω

2π
Re[wcαG<

jcα,lcα,σ(ω)], (6)

being

G<
l,l′,σ(t, t′) = i〈c†lσ(t)cl′σ(t′)〉, (7)

and G<
l,l′,σ(ω) the corresponding Fourier transform in t−

t′.

C. Evaluation of the Green’s functions.

In previous literature, the evaluation of the Green’s
functions for hybrid structures described in terms of
tight-binding and BCS Hamiltonians has been carried
out in the framework of the Nambu formalism11,15,16,17.
We briefly present bellow an alternative and equivalent
representation, which will allow us to analyze from a dif-
ferent perspective the physical processes involved in the
phenomena of Andreev reflection and the development of
Andreev states within the superconducting gap.
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We define retarded normal and Gor’kov Green’s func-
tions:

GR
j,j′,σ(t, t′) = −iΘ(t− t′)〈{cj,σ(t), c†j′,σ(t′)}〉,

FR
j,j′,σ(t, t′) = −iΘ(t− t′)〈{c†j,σ(t), c†j′,σ(t′)}〉,

where {., .} denotes the anticommutator of the corre-
sponding operators and ↑ =↓, ↓ =↑.

It can be verified that the equations of motion for these
functions are coupled and read:

ωGR
j,j′,σ(ω) −

∑

j′′

εj,j′′G
R
j′′,j′,σ(ω) − ∆jF

R
j,j′,σ(ω) = δj,j′

ωFR
j,j′,σ(ω) +

∑

j′′

εj,j′′F
R
j′′,j′,σ(ω) − ∆∗

jG
R
j,j′,σ(ω) = 0.

The spacial indexes extend over the coordinates of
the whole system. For coordinates on the wires
εj,j′ =

∑

α δj,jα
(δj,j′µα − δj±1,j′wα), ∆j =

∑

α ∆αδj,jα
.

For coordinates on the central system: εj,j′ =
−

∑

〈l,l′〉 δj,lδj′,l′wl,l′(Φ), for 〈l, l′〉, being nearest neigh-

bors within the L-site lattice, εj,j′ =
∑L

l=1 ε0δl,jδj,j′

and ∆j = 0. For coordinates on the contacts: εj,j′ =
−wcα(δj,lcα

δj′,jcα
+ δj,jcα

δj′,lcα
) and ∆l = 0.

As usual, it is convenient to eliminate the degrees
of freedom of the wires. Such a procedure defines
self-energies for the Green’s functions with coordinates
belonging to what we have defined as the central
system.23,24 We summarize it in Appendix A for the
present problem. The result is that the retarded Green’s
functions with coordinates on the central system can be
expressed as elements of L×L matrices and the ensuing
Dyson’s equations read:

[ĝR(ω)]−1ĜR
σ (ω) + Σ̂gf,R(ω)F̂R

σ (ω) = 1̂,

[ĝ
R
(ω)]−1F̂R

σ (ω) + Σ̂fg,R(ω)ĜR
σ (ω) = 0̂, (8)

where Σνν′,R
l,l′ (ω) = δl,l′

∑

α δl,lcα
Σνν′,R

α (ω), with ν, ν′ =
g, f . The explicit evaluation of these functions is summa-
rized in Appendix B. The have introduced the retarded

Green’s functions ĝR(ω) and ĝ
R
(ω), whose corresponding

inverses are:

[ĝR(ω)]−1 = ω1̂ − ε̂(Φ) − Σ̂gg,R(ω),

[ĝ
R
(ω)]−1 = ω1̂ + ε̂(−Φ) − Σ̂ff,R(ω), (9)

where ε̂(Φ) contains the matrix elements of the Hamil-
tonian Hcen. In the case that all the wires are nor-
mal (∆α = 0, ∀α), the function ĝR(ω) is the exact re-
tarded normal Green’s function of the coupled central

system, while Σff,R(ω) = −[Σgg,R(−ω)]∗, thus ĝ
R
(ω) =

[ĝR(−ω)]∗, which indicates that ĝ
R
(ω) is a propagator

related to the dynamics of the holes.
The second equation (8) can be casted:

F̂R
σ (ω) = −ĝ

R
(ω)Σ̂fg,R(ω)ĜR

σ (ω). (10)

Substituting (10) in the first equation (8) the formal so-
lution for the normal Green’s is obtained:

[ĜR
σ (ω)]−1 = ω1̂ − ε̂ − Σ̂R

eff (ω), (11)

where we have defined an effective normal self-energy:

Σ̂R
eff (ω) = Σ̂gg,R(ω) + Σ̂gf,R(ω)ĝ

R
(ω)Σ̂fg,R(ω). (12)

The lesser counterpart of (11) is, thus, written as:

Ĝ<
σ (ω) = ĜR

σ (ω)Σ̂<
eff (ω)ĜA

σ (ω), (13)

being the advanced Green’s function ĜA
σ (ω) = [ĜR

σ (ω)]†

Using Langreth rules21: (BC)< = BRC< +B<CA in the
definition of (12), it can be shown that

Σ̂<
eff (ω) = Σ̂gg,<(ω) +

Σ̂gf,<(ω)ĝ
A
(ω)Σ̂fg,A(ω) + Σ̂gf,R(ω)

×[ĝ
<

(ω)Σ̂fg,A(ω) + ĝ
R
(ω)Σ̂fg,<(ω)]. (14)

Using the lesser counterpart of (9):

ĝ
<

(ω) = ĝ
R
(ω)Σ̂ff,<(ω)ĝ

A
(ω), (15)

the lesser effective self-energy Σ̂<
eff (ω) can be fully

expressed in terms of the bare ones, Σνν′,<
α (ω) =

ifα(ω)Γ̂ν,ν′

α (ω), with ν, ν′ = g, f , which depend on the
temperature Tα of the reservoirs through the Fermi func-
tion fα(ω):

Σ<
eff,α,β(ω) = δα,βΣgg,<

α (ω) +

ΛR
α,β(ω)Σfg,<

β (ω) + Σgf,<
α (ω)ΛA

α,β(ω)

+
∑

α′

ΛR
α,α′(ω)Σff,<

α′ (ω)ΛA
α′,β(ω), (16)

with ΛR
α,β(ω) = Σgf,R

α (ω)gR
lcα,lcβ

(ω) and ΛA
β,α(ω) =

[ΛR
α,β(ω)]∗. Alternatively, the above expressions can be

also directly obtained after some algebra from the lesser
counterpart of (8), as indicated in Appendix C.

At equilibrium, it is satisfied:

Σ<
eff,α,β = if(ω)Γeff,α,β(ω), (17)

being

Γeff,α,β(ω) = i[ΣR
eff,α,β(ω) − ΣA

eff,α,β(ω)] =

δα,βΓgg
α (ω) + ΛR

α,β(ω)Γfg
β (ω) +

Γgf
α (ω)ΛA

α,β(ω) +

M
∑

α′=1

ΛR
α,α′(ω)Γff

α′ (ω)ΛA
α′,β(ω), (18)

which implies:

G<
l,l′,σ(ω) = f(ω)[GA

l,l′,σ(ω) − GR
l,l′,σ(ω)]. (19)
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Before closing this section, let us emphasize the formal
equivalence between Eqs. (11) and (13) and the represen-
tation of Ref. 21,23,24. In the present case, the effective
self-energies (12) and (16), however, have a more com-
plicated structure when the leads are superconducting.
In particular, they contain the normal terms Σ̂gg,R,<(ω)
that represent the normal “escape to the leads” of sin-
gle electrons, as well as terms involving multiple scatter-

ing processes, mediated by the hole propagators ĝ
R,<

(ω).
The latter act not only locally, but also extend along the
different positions of the sample that are in contact to
superconducting wires.

III. STATIONARY CURRENTS AND

TRANSMISSION FUNCTIONS.

Being able to evaluate the lesser Green’s functions, we
are now in the position to evaluate the currents (5) and
(6). We recall that a biased setup with several super-
conducting wires defines, in general, a time-dependent
problem.15,26 In this work we are interested in the sta-
tionary transport. Thus, in what follows we shall derive
expressions for the currents in two situations: (i) A bi-
ased setup with a voltage difference between the S- and
the N- wires, being all the S wires at the same chemical
potential. In this case, currents flow through the con-
tacts as well as along the central system. (ii) The second
situation corresponds to all the wires at the same chemi-
cal potential, in which case, there are no currents flowing
through the contacts and there exists only the possibility
of equilibrium currents along the central structure when
it is threaded by a finite magnetic flux. We present below
general exact expressions for the currents and we shall
address separately the two different cases in the next two
sections.

Using Dyson’s equation for the lesser Green’s function,
the expressions (5) and (6) cast:

Jl,l′ = −2

M
∑

σ,α,β=1

∫ +∞

−∞

dω

2π
Re[wl′,l(Φ) ×

GR
l,lcα,σ(ω)Σ<

eff,αβ(ω)GA
lcβ ,l′,σ(ω)], (20)

for the current along a given bond 〈l, l′〉 and

Jα = −2

M
∑

σ,α=1

∫ +∞

−∞

dω

2π
Re[Σ<

eff,αβ(ω)GA
lcβ ,lcα,σ(ω)

+ΣR
eff,αβ(ω)G<

lcβ ,lcα,σ(ω)], (21)

for the current along the contact to the wire α. Details
for the derivation of the latter equation from (6) follow
the same lines as in Refs. 23,24 (see e.g. Eq. (5) of Ref.
23), using the normal Green’s functions (11) and (13).

A. Equilibrium currents.

When the central system is attached to wires at
the same chemical potential µ, there is no charge flow
through the contacts to the reservoirs. Nevertheless, if
the central system is threaded by a finite magnetic flux,
equilibrium currents can flow within this system. For a
given bond 〈l, l′〉, the equilibrium current reads:

Jeq
l,l′ =

∫ +∞

−∞

dω

2π
f(ω)T eq

l,l′(ω),

T eq
l,l′(ω) = −2Re{wl′,l(Φ)[GA

l,l′,σ(ω) − GR
l,l′,σ(ω)]}

= 2Im[

M
∑

σ,α,β=1

Γeff,αβ(ω)wl′,l(Φ)

×GR
l,lcα,σ(ω)GA

lcβ ,l′,σ(ω)], (22)

where we have used the equilibrium identities (17) and
(19), while Γeff,αβ(ω) is defined in Eq. (18). For Φ = 0,
the result T eq

l,l′(ω)|Φ=0 = 0 is obtained by noticing that

the function within [. . .] of the above expression is just
the real function −2Im[wl′,l(0)GR

l,l′ (ω)|Φ=0].

B. Non-equilibrium currents.

We consider MS S-wires at µα ≡ µ and MN = M−MS

N-wires with a voltage difference V with respect to
the superconducting ones. Following Ref. 15 we take
µα ≡ µ in the Hamiltonians Hα for the N-wires and en-
close the bias V in the corresponding Fermi functions.
We also consider that all the wires are at the same
temperature. Therefore, for the N-wires: Σgg,<

α (ω) =
if(ω − V )Γα(ω) and Σff,<

α (ω) = if(ω + V )Γα(ω), where
Γα(ω) ≡ Γgg

α (ω)|∆α=0, while for the superconducting

ones: Σνν′,<
α (ω) = if(ω)Γνν′

α (ω), with ν, ν′ = g, f . In
order to derive the expressions for the currents it is use-
ful to express the effective lesser self-energy as follows:

Σ<
eff,α,β(ω) = if(ω)Γeff,α,β(ω) + (23)

i[f(ω − V ) − f(ω)]δα,β

∑

α′∈N

δα,α′Γgg
α′ (ω) +

i[f(ω + V ) − f(ω)]
∑

α′∈N

ΛR
α,α′Γ

ff
α′ (ω)ΛA

α′,β,

where Γeff,α,β(ω) has been defined in Eq. (18).
The final expression for the non-equilibrium current

along a given bond of nearest neighbors 〈l, l′〉 is:

Jl,l′ =

∫ +∞

−∞

dω

2π
[f(ω − V ) − f(ω)]T (ω). (24)

In the case that, in addition to the bias V , the central
system is threaded by a magnetic flux, we should add
to the previous expression the equilibrium contribution
Jeq

l,l′ defined in the previous subsection. Jeq
l,l′ is due to the
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internal currents of the single-electron orbits of the finite
system that are twisted by the static flux. Instead, the
origin of the non-equilibrium contribution is a net parti-
cle flow between reservoirs through the central structure.
For this reason, the non-equilibrium component depends
only on the spectral properties within the energy window
[µ, µ+V ], while the equilibrium one formally depends on
the spectral weight of all the quantum states bellow µ.

The transmission function contains two contributions:

Tl,l′(ω) = T n
l,l′(ω) − T a

l,l′(−ω). (25)

The first one is the normal transmission function:

T n
l,l′(ω) = 2

MN
∑

σ,α∈N=1

Γgg
α (ω) ×

Im[wl′,l(Φ)GR
l,lcα,σ(ω)GA

lcα,l′,σ(ω)], (26)

and the second one is the Andreev transmission function,

T a
l,l′(ω) = −2

MN
∑

σ,α∈N=1

Γff
α (ω) ×

Im[wl′,l(Φ)Λ
R

l,α,σ(ω)Λ
A

α,l′,σ(ω)], (27)

where the α ∈ N denotes summation over the nor-

mal wires, while Λ
R

l,α,σ(ω) =
∑

β GR
l,lcβ ,σΛR

β,α(ω) and

Λ
A

α,l′(ω) = [Λ
R

l′,α(ω)]∗. While the normal transmission
function depends on the rate at which electrons can be
emitted at the normal reservoirs Γgg

α (ω), the Andreev
transmission function depends on the rate of emission of
holes (we recall that Γff

α (ω) = Γgg
α (−ω)). The Andreev

component depends on the multiple scattering propaga-

tors Λ
R

l,α,σ(ω). Instead, the normal component depends

on the usual ones GR
l,lcα,σ(ω). For a vanishing supercon-

ducting gap, T a
l,l′(ω) = 0, and only the normal compo-

nent survives.
Analogously, the currents through the contacts can be

written as:

Jα =

∫ +∞

−∞

dω

2π
[f(ω − V ) − f(ω)]Tα(ω), (28)

with the transmission function also containing two com-
ponents:

Tα(ω) = T n
α (ω) − T a

α(−ω). (29)

The normal transmission function reads:

T n
α (ω) = 2

M
∑

σ,β=1

{δα,βΓgg
α (ω)Im[GA

lcαlcα,σ(ω)] +

MN
∑

α′∈N=1

Γgg
α′ (ω)Im[ΣR

αβ(ω)

×GR
lcβlcα′ ,σ(ω)GA

lcα′ lcα,σ(ω)]}, (30)

while the Andreev transmission function is:

T a
α(ω) = −2

M
∑

σ,β=1

MN
∑

α′∈N=1

Γff
α′ (ω)

×Im[ΛR
α,α′,σ(ω)ΛA

α′,β,σ(ω)GA
lcβlcα,σ(ω) +

ΣR
eff,αβ(ω)Λ

R

lcβ ,α′,σ(ω)Λ
A

α′,lcα,σ(ω)]. (31)

IV. A LINEAR BIASED SETUP WITH A

SINGLE SUPERCONDUCTING WIRE AND A

SINGLE NORMAL WIRE.

In this section, we shall explicitly write down the pre-
vious expressions for the case of a setup with two wires:
one superconducting and the other one normal, which we
denote, respectively, α = N and α = S. This will allow
us to show that we are able to recover BTK’s description4

for the transmission functions of a simple tunneling junc-
tion.

In this case: ΣR
eff,αβ(ω) = δα,β[δα,NΣgg,R

N (ω) +

δα,SΣgf,R
S (ω)gR

lS ,lS (ω)Σfg,R
S (ω). The total transmission

function evaluated at the contact with the N -wire is
TN(ω) = T n

N(ω) − T a
N(−ω). The normal component is

given by Eq. (30), which in this simple case reduces to:

T n
N (ω) =

∑

σ

Γgg
N (ω)|GR

lN ,lS ,σ(ω)|2Γgg
eff,S(ω). (32)

Notice that we recover the well known structure for the
normal transmission function in terms of Green’s func-
tions originally pointed out by Fisher and Lee20. In
the present case, the function Γgg

eff,S(ω) = Γgg
S (ω) −

2Im[Σgf,R
S (ω)gR

lS ,lS
(ω)Σfg,R

S (ω)] contains the usual term

Γgg
S (ω), which depends on the normal density of states of

the superconducting lead, as well as a multiple-scattering
term that depends on the hole propagator gR

lS,lS
(ω) and

the anomalous self-energy of the wire Σgf,R
S (ω). The An-

dreev transmission function reads:

T a
N(ω) = −

∑

σ

Γff
N (ω)|Λ

R

N,N,σ(ω)|2Γgg
N (ω), (33)

which actually has the formal structure of a reflection
process represented in terms of Green’s functions. Fur-
thermore, it depends on the emission rate for holes in the

normal wire Γff
N (ω) = Γgg

N (−ω) and it contains a multiple
scattering kernel:

Λ
R

N,N,σ(ω) = GR
lN ,lS ,σ(ω)ΛR

S,N(ω),

ΛR
S,N(ω) = Σgf,R

S (ω)gR
lS ,lN (ω). (34)

After some algebra, it can be verified that: T a
N (ω) =

−T a
S (ω) ≡ T a(ω) and T n

N(ω) = −T n
S (ω) = T n(ω), in

consistency with the continuity of the current.
In order to benchmark the above representation, we

present results for the central system being a linear one-
dimensional junction with a barrier of height E0 as in
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FIG. 2: (Color online) Benchmark against BTK theory.
Transmission functions T n(ω) (dashed black lines) and T a(ω)
(red solid lines) in the lower panels and the total transmis-
sion T (ω) = T n(ω)−T a(ω) in the upper panels for a junction
described by the Hamiltonian (35). Left and right panels
correspond to E0 = 0, 1, respectively. Other parameters are
wN = wS = w = 1, µ = 0 and ∆S = 0.2.

BTK’s paper4 (see also Ref. 8):

Hcen = −w

0
∑

l=−1

∑

σ

[c†l,σcl+1,σ + H.c]

+

1
∑

l=−1

ε0
l nl, (35)

with nl =
∑

σ c†l,σcl,σ and ε0
l = −µ + δl,0E0. For such

a system, it is easy to verify that the expressions for
the transmission functions corresponding to a given bond
〈l, l + 1〉 are:

T n
l,l+1(ω) = 2w

∑

σ

Im[GR
l,lN ,σ(ω)GA

lN ,l+1,σ(ω)]Γgg
N (ω),

T a
l,l+1(ω) = −2w

∑

σ

Im[GR
l,lS ,σ(ω)GA

lS ,l+1,σ(ω)]

×|ΛS,N,σ(ω)|2Γff
N (ω). (36)

It can be proved that this functions also satisfy
T n

l,l+1(ω) = T n(ω) and T a
l,l+1(ω) = T n(ω), in agreement

with the conservation of the current.
Numerical results for the functions T n(ω) and T a(ω)

are shown in the lower panels of Fig. 2. The correspond-
ing total transmission T (ω) is also shown in the upper
panels for E0 = 0 and E0 = 1. The picture presented in
BTK’s paper4 is identified through T n(ω) → 1 − B(E)
and T a(ω) → −A(E), with A(E), B(E) defined in Ref.
4. The lower panels of Fig. 2 should be compared with
Fig.5 of Ref. 4. It is worth noticing, in particular, the
fact that T a(ω) is sizable within the gap, while in the ab-
sence of a barrier (E0 = 0), T a(ω) → −1. Thus T (ω) ∼ 2
for |ω| ≤ ∆, (see upper panels of Fig. 2 and compare with
Fig.7 of Ref.4).

Φ

µ µ

µ

∆α
w∆α w

cα w
cα

w
cα

∆α

µ
w

cα

FIG. 3: (Color online) Sketch of the setup. The central system
is a ring threaded by a magnetic flux in contact to supercon-
ducting and normal reservoirs at the same chemical potential
µ. The only non-vanishing current is the equilibrium current
along the circumference of the ring.

V. FLUX SENSITIVITY OF THE

EQUILIBRIUM CURRENTS IN A RING.

We now turn to the setup without bias voltage (V = 0).
We consider the simple case sketched in Fig. 3, where
the central system corresponds to a one-dimensional ring
threaded by a magnetic flux Φ, i.e. Hcen ≡ Hring, being:

Hring = −w
L

∑

l=1,σ

(e−iΦ/Lc†l,σcl+1,σ + H.c.)

+

L
∑

l=1,σ

ε0
l c

†
l,σcl,σ, (37)

where Φ is expressed in units of 2πΦ0, being Φ0 = e/h
the elementary quantum. We take the lattice constant
a = 1 and we impose the periodic boundary condition
L + 1 ≡ 1.

An isolated normal ring under a magnetic flux, sup-
ports a persistent current with a periodicity equal to Φ0,
as a consequence of the sensitivity of its energy levels
with the threading flux. When normal metallic wires are
attached to the ring, inelastic scattering effects are intro-
duced which decrease the magnitude of this equilibrium
current. However, its qualitative behavior, in particular,
the periodicity with the flux is expected to be the same
as in the case of the isolated ring, provided that the in-
elastic scattering length ξin introduced by the coupling to
the external wires satisfies ξin > La. For ξin < La, this
current is, instead, expected to vanish. This is because,
for a short enough ring such that ξin > La, the effect of
the coupling to the wires is essentially the introduce tion
of a finite lifetime in the energy levels, without affecting
their flux sensitivity.
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In the case of an isolated superconducting ring with s-
wave pairing, Byers and Yang28 have shown that the pe-
riodicity of the flux-induced persistent currents is Φ0/2.
This is again a consequence of the sensitivity of the en-
ergy levels, this time combined with the fact that the
structure of the wave function corresponds to an ensem-
ble of Cooper pairs, instead of one of single electrons. Hy-
brid isolated S-N piecewise rings have been also studied
and the conclusion is that the periodicity of the persis-
tent currents experiences a crossover between Φ0/2 and
Φ0, as the length of the superconducting piece becomes
shorter than the superconducting coherence length ξc

5,6.
On the other hand, a conductor between two supercon-

ductors forming a S-N-S structure is known to support
Andreev states within the superconducting gap. In par-
ticular, such states are expected to develop for a ring
with attached superconducting wires and it is interesting
to study the flux sensitivity of these states, which should
define the behavior of the equilibrium currents. It is also
interesting to investigate which is the minimum number
of S-wires needed to develop Andreev states. Further-
more, recent studies suggest that the vortex excitations
of a superconducting state can exist within a normal con-
ductor sandwiched between two superconductors29 due
to the proximity effect. It is, therefore interesting to in-
vestigate whether it is possible that proximity effect in-
duces also a flux periodicity of Φ0/2 in a normal ring due
to the attachment to S-wires.

In order to address these issues we analyze the behavior
of the function T eq(ω). Because of the continuity of the
charge, this function is independent of the bond l, l + 1
along the ring chosen for the evaluation of Eq. (22).
Thus, the latter expression can also be written as follows:

T eq(ω) = −
2w

L

L
∑

l=1

∑

σ,α,β

Re{e−iΦ/L

×[GR
l,l+1,σ(ω) − [GR

l+1,l,σ(ω)]∗]}. (38)

In what follows, we analyze different configurations of
wires.

A. Each site of the ring in contact with a wire.

Let us first consider the simple case of a ring in con-
tact to wires in a configuration that does not break the
periodic translational invariance along the circumference
of the ring. Such a configuration corresponds to L iden-
tical wires (N or S), each one in contact to a single site
of the ring. The retarded Green’s function can be easily
evaluated in this case. The result is:

GR
l,l′,σ(ω) =

1

L

L−1
∑

m=0

eikm(l−l′)GR
m,σ(ω),

GR
m,σ(ω) =

1

ω − εm(Φ) − Σeff,R
m (ω)

(39)

with km = −π +2mπ/L, m = 0, . . . , L− 1, and εm(Φ) =
−2w cos(km +Φ/L), where, for simplicity, we have taken
µ = 0. The effective self-energy is:

Σeff,R
m (ω) = Σgg,R(ω) − Σgf,R(ω)gR

m(ω)Σfg,R(ω), (40)

where the second term vanishes for N-wires. The hole
propagator of this term is:

gR
m(ω) =

1

ω + εm(−Φ) − Σff,R(ω)
. (41)

Transforming the right hand side of (38) to the reciprocal
space, it reduces to:

T eq(ω) =
2

L

L−1
∑

m=0

vm(Φ){−2Im[GR
m(ω)]}, (42)

with vm(Φ) = 2w sin(km − Φ/L) = ∂εm(Φ)/∂km being
the velocity corresponding to the m-th energy level.

In the limit where the coupling to the wires vanishes,
the above expression reduces to the transmission function
of an isolated ring:

T eq(ω)
wcα→0
−→

4π

L

L−1
∑

m=0

vm(Φ)δ(ω − εm(Φ)). (43)

For N-wires or for S-wires and energies such that |ω| >
∆, a similar expression is obtained:

T eq(ω) =
4Θ(|ω| − ∆)

L

L−1
∑

m=0

vm(Φ)Im[Σeff,R
m (ω)]

|ω − εm(Φ) − Σeff,R
m (ω)|2

,

(44)
where the Θ-function applies only for the case of a S-
wire. The above expression corresponds to a sequence
of Lorenzian functions centered at energies ∼ εm(Φ) +
Re[Σeff,R

m (εm(Φ))] with width ∼ Im[Σeff,R
m (εm(Φ))].

The latter parameter defines the lifetime of the levels
of the ring due to the coupling to the reservoirs.

The periodicity of these currents as functions of the
flux is Φ0, which corresponds to a shift Φ/L = 2π/L, that
is equivalent to a relabeling of the reciprocal points km.
For S-wires and |ω| < ∆, the functions Γν,ν′

(ω) = 0, thus
Im[Σeff,R

m (ω)] = 0, and the only spectral contribution to
T eq(ω) is due to the eventual development of Andreev
states. The energies of these states is determined from
the poles of the function GR

m,σ(ω), which implies finding
the roots of the function:

λ(ω) = ω − εm(Φ) − Re[Σgg,R(ω)]

−Re[Σgf,R(ω)Σfg,R(ω)]Re[gR
m(ω)], (45)

where

gR
m(ω) = Θ(∆ − |ω|)

1

ω + ε−m(Φ) + iη
, (46)

with εm(Φ) ∼ εm(Φ) + Re[Σgg(εm(Φ))].
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Approximating Re[Σν,ν′

(ω)] ∼ Re[Σν,ν′

(ε±m(Φ))], the
solution casts the following roots:

E±
m(Φ) ∼ e−m(Φ) ±

√

[e+
m(Φ)]2 + Re[Σgf (εm(Φ))Σfg(εm(Φ))], (47)

with

e±m(Φ) =
εm(Φ) ± ε−m(Φ)

2
(48)

while the corresponding quasiparticle weights are:

Z±
m =

−π

|∂λ(ω)/∂ω|E±
m

∼
−π

2|E±
m|

. (49)

Replacing in (42), the final result for the transmission
function within the superconducting gap is:

T eq(ω) =
2πΘ(∆ − |ω|)

L

L−1
∑

s=±,m=0

vm(Φ)

|E±
m(Φ)|

δ(ω − Es
m(Φ)).

(50)
For |ω| < ∆:

Re[Σgg(ω)] = ωγ(ω),

Re[Σgf (ω)] = ∆γ(ω), (51)

being

γ(ω) =
|wc|2

2w2
α

[1 −

√

1 +
4w2

α

∆2 − ω2
]. (52)

Therefore:

E±
m(Φ) ∼ β[εm(Φ) − ε−m(Φ)] ±

√

β2[εm(Φ) + ε−m(Φ)]2 + γ2∆2, (53)

being β = (1 + γ(εm(Φ)))/2, and γ ∼ γ(εm(Φ)).
Remarkably, the expression (50) with the energy given

by (53) coincides with the expression for the persistent
currents of an isolated 1D BCS tight-binding ring with
hopping 2βw, gap 2γ∆ and pairs with total momentum
q = 0 (see Ref. 30). In other words, the flux sensitiv-
ity of the Andreev states in our problem is exactly the
same as that observed in an isolated BCS 1D ring with
pairs of momentum q = 0. The fact that only pairs with
momentum q = 0 contribute implies that the periodic-
ity of these currents is just the normal periodicity of a
flux quantum Φ0. These currents do not show the Φ0/2
periodicity, typical of a true superconducting ring, since
the origin of that behavior is a change in 2π/L of the
total momentum q of the Cooper pairs. The renormal-
ization factor β for the hopping parameter within the
ring, which determines the velocity vm and, thus, the
amplitude of the currents, depends on the superconduct-
ing coherence length of the wires, ξc ∼ ∆/2w, as well as
on the tunneling ratio through the contacts, controlled
by the parameter wc. Its magnitude is large for energies
close to the edge of the gap |εm(φ)| ∼ ∆.

B. A single S-wire attached to the ring.

Let us now consider a single superconducting wire at-
tached to the ring.

As before, we must consider separately the contribu-
tion from states with energies within and away from the
superconducting gap. To analyze the spectrum for en-
ergies |ω| > ∆, it is convenient to write the retarded
Green’s function as follows:

GR
l,lcα,σ(ω) =

g0
l,lcα

(ω)

1 − ΣR
eff,α(ω)g0

lcα,lcα
(ω)

, (54)

being

g0
l,l′(ω) =

1

L

L−1
∑

m=0

e−ikm(l−l′)g0
km

(ω),

g0
km

(ω) =
1

ω − εm(Φ) + iη
, (55)

and ΣR
eff,α(ω) = Σgg

α (ω)+Σgf
α (ω)g0

lcα,lcα
(ω)Σfg

α (ω), with:

g0
l,l′(ω) =

1

L

L−1
∑

m=0

e−ikm(l−l′)g0
km

(ω),

g0
km

(ω) =
1

ω + εm(−Φ) + iη
. (56)

Substituting in (38), the transmission function reads:

T eq(ω) =
2Θ(|ω| − ∆)

L

L−1
∑

m=0

vm(Φ)Am(ω), (57)

being

Am(ω) =
Γeff,α,α(ω)|g0

km
(ω)|2

|1 − ΣR
eff,α(ω)gR

lcα,lcα
(ω)|2

, (58)

which results in a Lorentzian-type profile as in the case
of Eq. (44).

As in the case considered in the previous subsection,
for |ω| < ∆, Im[Σνν′,R

α (ω)] = 0, and Andreev states can
develop within the gap. In order to determine the en-
ergies of these levels, it is convenient to consider the re-
tarded Green’s functions gR

l,l′(ω) and gR
l,l′(ω), defined in

Eqs. (9), which in the present case are the solutions of
the following Dyson’s equations:

gR
l,l′(ω) = g0

l,l′(ω) + gR
l,lcα

(ω)Σgg,R
α (ω)g0

lcα,l′(ω),

gR
l,l′(ω) = g0

l,l′(ω) + gR
l,lcα

(ω)Σff,R
α (ω)g0

lcα,l′(ω).(59)

Within the gap, these functions have, respectively, quasi-
particle and quasihole states, behaving as follows:

gR
l,l′(ω) ∼

Θ(|ω| − ∆)

L

L−1
∑

m=0

e−ikm(l−l′)Zn

ω−
∼
εm (Φ) + iη

,

gR
l,l′(ω) ∼

Θ(|ω| − ∆)

L

L−1
∑

m=0

e−ikm(l−l′)Z−n

ω+
∼
ε−m (Φ) + iη

, (60)
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being
∼
εm (Φ) ∼ εm(Φ)+CRe[Σgg

α (εm(Φ))]/L, where C =
2 for Φ = Kπ with K integer while C = 1 otherwise, and
Zm = −π{|1−C∂Re[Σgg,R

α (ω)]/∂ω|∼
εm(Φ)

/L}−1. In what

follows, we shall approximate Zm ∼ −π, which becomes
exact in the limit L → ∞.

The full retarded Green’s function is, in turn, deter-
mined from:

GR
l,l′,σ(ω) = gR

l,l′(ω) + GR
l,lcα,σ(ω)Σgf,R

α (ω)

×gR
lcα,lcα

(ω)Σfg,R
α (ω)gR

lcα,l′(ω). (61)

As in the previous section, the ensuing solution has a
quasiparticle BCS-like structure:

GR
l,l′(ω) ∼

Θ(|ω| − ∆)

L

L−1
∑

s=±,m=0

e−ikm(l−l′)Zs
m

ω − Es
m(Φ) + iη

,(62)

with E±
m(Φ) given in (53), with γ ∝ 1/L and Z±

m given
in Eq. (49).

Therefore, for a single superconducting wire connected
to a large enough ring, Andreev levels tend to coin-
cide with free particle and hole energies: εm(Φ) and
−ε−m(Φ), respectively, provided that |εm(Φ)| < ∆,
|ε−m(Φ)| < ∆. The corresponding transmission function
is formally given by Eq. (50).

In conclusion, a single superconducting wire attached
to the ring generates the same qualitative behavior as L
superconducting wires attached in a translational sym-
metrical way, but the effect is O(1/L) and tends to be
negligible as L → ∞.

VI. SUMMARY AND CONCLUSIONS.

We have presented a representation of Keldysh Green’s
functions for stationary transport problems in systems
with superconducting and normal components. As most
of the relevant observables, like the currents, depend on
normal propagators, we have worked with Dyson’s equa-
tions in order to eliminate the anomalous ones. This
procedure has been carried out by defining auxiliary hole
propagators and effective self-energies that contain mul-
tiscattering terms. In the resulting representation, the
Green’s functions exhibit the same structure as in nor-
mal systems. This allows for the derivation of simple and
compact expressions for the currents and the transmis-
sion functions, that are similar to the ones presented in
Refs. 23,24 for normal systems.

We have presented general expressions for the currents
in stationary conditions, distinguishing two situations:
biased systems where transport is induced by a voltage
difference and equilibrium currents induced by a static
magnetic flux. In the case of biased systems, we have de-
fined normal and Andreev transmission functions and we
have compared them with results obtained in the frame-
work of previous formalisms, in particular, the one pre-
sented by Blonder, Tinkham and Klapwijk.

We have, finally focused in the study of the behav-
ior of the equilibrium currents in a tight-binding normal
ring with attached superconducting wires. These cur-
rents result as superpositions of the currents of all the
states of the ring with energies εm(Φ) bellow the chem-
ical potential of the wires, in which electrons circulate
with velocities vm = ∂εm(Φ)/∂km.

Our main conclusions on the qualitative behavior of
these currents are the following: (i) The states with en-
ergies lying away from the energy window defined by the
superconducting gap present an identical qualitative be-
havior as those of rings attached to N wires. In partic-
ular, they have a periodicity of Φ0 as functions of the
external flux. The spectral profile related to these cur-
rents is a collection of Lorentzian functions which implies
a decrease in the amplitude of the current due to inelastic
scattering effects via the escape to the leads.

(ii) The states with energies within the superconduct-
ing gap of the wires, behave as isolated in the sense that
the spectral weight related to them consists in a collec-
tion of delta functions, indicating the lack of inelastic
scattering effects. The positions of the energy levels is,
however, affected by the proximity effect and they are
organized in a structure that replicates the quasiparticle
spectrum of a BCS tight-binding superconducting ring
with Cooper pairs of momentum q = 0. The effective
BCS tight-binding parameters are the hopping, which is
the bare hopping of the ring renormalized by a factor β
and a gap, which is the gap of the superconducting wires
renormalized by a factor γ. The renormalizing factors
depend on the superconducting coherence length of the
wires and the degree of coupling between the wires and
the ring. The latter effect is controlled by the strength
of the coupling between these systems as well as on the
number of attached wires. For a single attached wire,
it is O(1/L) and, thus, not significant for large enough
rings.

(iii) Although the proximity effect induces Andreev
levels that replicate the structure of quasiparticle states
of a superconducting ring within the energy window de-
fined by the superconducting gap of the wires, these
states correspond only to the subspace with winding
number q = 0. Since the periodicity in Φ0/2 of the per-
sistent currents in superconducting rings is explained by
a shift in the winding number q commensurate with the
reciprocal lattice of the ring,28,30 the restriction of the
subspace with q = 0 does not allow for such a mecha-
nism. The consequence of this rigidity is that Andreev
states have the same periodicity Φ0 as the states of the
normal ring. Let us, however, mention that the rigidity
of the winding number could be due to the rigid BCS
mean field approximation considered to model the exter-
nal wires. There exists the possibility that a more flexible
model allowing for spacial fluctuations of the parameter
∆ within a region of the external wires that is close to
the contacts could also permit fluctuations in the winding
number q of the induced Andreev sates within the ring.
A possibility to explore this mechanism is by recourse to
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a self-consistent approximation similar to that of Refs.
11 and 12.
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iat and G. Lozano for useful comments and references.
Support from CONICET and UBACYT Argentina, and
from the “RyC” program from MCEyC of Spain is ac-
knowledged.

APPENDIX A: ELIMINATING THE DEGREES

OF FREEDOM OF THE RESERVOIRS.

We summarize the procedure introduced in Ref. 22,
23,24 to eliminate the degrees of freedom of the external
wires in the Dyson’s equation for the central system.

It is convenient to change the basis in Hα as follows:

cjα,σ =

√

2

Nα + 1

Nα
∑

n=0

sin(kn,αjα)ckn,ασ, (A1)

with kn,α = nπ/(Nα + 1), n = 0, . . . , Nα, which leads to:

Hα =

Nα
∑

n=0

∑

σ

[εkn,α
c†kn,α,σckn,α,σ

+

Nα
∑

n=0

∆αc†kn,α,↑c
†
kn,α,↓ + H.c], (A2)

being εkn,α
= −2wα cos kn,α − µα, and

Hc,α =

Nα
∑

n=0

∑

σ

wα,k(c†kn,α,σclcα,σ + H.c), (A3)

being wα,k = −
√

2
Nα+1 sinkn,αwcα.

Let us focus in the Dyson’s equation with coordinates
lcα, l′, belonging to the central system:

ωGR
lc,α,l′,σ(ω) −

∑

n

wα,kGR
kn,α,l′,σ(ω)

−
∑

l′′

εlc,α,l′′G
R
l′′,l′,σ(ω) = δlc,α,l′ ,

ωFR
lc,α,l′,σ(ω) +

∑

n

wα,kFR
kn,α,l′,σ(ω)

+
∑

l′′

εlc,α,l′′F
R
l′′,l′,σ(ω) = 0, (A4)

where l′′ runs over all the spacial indexes of the cen-
tral system while kn,α labels degrees of freedom of the
reservoir represented by Hα. The Green’s functions with
mixed coordinates kn,α, l′, in turn, satisfies the following

equation:

ωGR
kn,α,l′,σ(ω) − εkn,α

GR
kn,α,l′,σ(ω)

−wα,kGR
lc,α,l′,σ(ω) − ∆αFR

kn,α,l′,σ(ω) = 0,

ωFR
kn,α,l′,σ(ω) + εkn,α

FR
kn,α,l′,σ(ω)

+wα,kFR
lc,α,l′,σ(ω) − ∆∗

αGR
kn,α,l′,σ(ω) = 0. (A5)

After some algebra, the above equations can be casted as
follows:

FR
kn,α,l′,σ(ω) = gR,0

kn,α
(ω)[∆∗

αGR
kn,α,l′,σ(ω)

−wα,kFR
lc,α,l′,σ(ω)], (A6)

GR
kn,α,l′,σ(ω) = wα,k[GR,0

kn,α
(ω)GR

lc,α,l′,σ(ω)

+FR,0
kn,α

(ω)FR
lc,α,l′,σ(ω)], (A7)

with:

gR,0
kn,α

((ω) =
1

ω + εkn,α
+ iη

,

GR,0
kn,α

((ω) =
(ω + εkn,α)

(ω + iη)2 − E2(εkn,α
)
,

FR,0
kn,α

((ω) =
∆α

(ω + iη)2 − E2(εkn,α
)
, (A8)

with η = 0+ and E2(εkn,α
) = ε2

kn,α
+ ∆2

α.

Substituting (A6) into (A4), the latter equations can
be expressed in the following way:

[ω − Σgg,R
α (ω)]GR

lc,α,l′,σ(ω) + Σgf,R
α (ω)FR

lc,α,l′,σ(ω)

−
∑

l′′

εlc,α,l′′G
R
l′′,l′,σ(ω) = δlc,α,l′ ,

[ω − Σff,R
α (ω)]FR

lc,α,l′,σ(ω) + Σfg,R
α (ω)GR

lc,α,l′,σ(ω)

+
∑

l′′

εlc,α,l′′F
R
l′′,l′,σ(ω) = 0. (A9)

Notice that all the spacial indexes of the above equations
run over coordinates of the central system, while the in-
dexes corresponding to the reservoirs have been elimi-
nated by defining the ‘self-energies’:

Σνν′,R
α (ω) =

∑

n

|wα,k|
2 λν,ν′

(ω, εkn,α
)

ω2 − E(εkn,α
)2

, (A10)

being λν,ν′

(ω, εkn,α
) = δν,ν′(ω ± εkn,α

) for ν = g, f , re-

spectively and λg,f (ω, εkn,α
) = [λf,g(ω, εkn,α

)]∗ = ∆α.
These steps can be repeated with each contact, which

allows for the one by one elimination of the degrees of
freedom of all the wires. The limit to the size of the
wires going to infinite is summarized in Appendix B.

APPENDIX B: RETARDED SELF-ENERGIES

ASSOCIATED A 1D S-WIRE.

We now evaluate the spectral functions Γν,ν′

α (ω) =

−2Im[Σνν′,R
α (ω)] corresponding to the self-energies de-

fined in the previous appendix in the thermodynamic
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limit, Nα → ∞. This corresponds to replacing
∑

n →
(Nα/π)

∫ π

0 dk in the expressions (A10):

Γνν′

α (ω) =
|wcα|2

2w2
α

∫ 2wα−µ

−2wα−µ

duλν,ν′

(ω, u)

×

√

(2wα)2 − (u + µ)2

E(u)

×{δ(ω − E(u)) − δ(ω + E(u))}. (B1)

The final result is:

Γgg
α (ω) = Γff

α (−ω) = sg(ω)
|wc,α|2

2w2
α

1

r(ω)

×{[ω + r(ω)]s+(ω) + [ω − r(ω)]s−(ω)}

Γgf
α (ω) = [Γfg

α (ω)]∗ = sg(ω)
|wc,α|2

2w2
α

∆α

r(ω)

×[s+(ω) + s−(ω)], (B2)

with r(ω) = Θ(|ω| − |∆α|)
√

ω2 − ∆2
α and s±(ω) =

Θ(|2wα|− |r(ω)±µ|)
√

4w2
α − (r(ω) ± µ)2. It can be ver-

ified that, for µ = 0, Γgg
α (ω) reduces to the Im of the

diagonal component of the self-energy defined by an infi-

nite tight-binding wire with local pairing reported in Ref.
13.

The final expressions for the retarded self-energies in
the thermodynamic limit can be obtained by recourse to
the Kramers-Kronig relation:

Σνν′,R(ω) =

∫ +∞

−∞

dω′

2π

Γν,ν′

(ω′)

ω − ω′ + iη
(B3)

.

APPENDIX C: DYSON’S EQUATION FOR Ĝ<
σ

AND F̂ <
σ .

The lesser counterpart of (8) is:

[1̂ω − Σ̂gg,R(ω) − ε̂]Ĝ<
σ (ω) + Σ̂gf,R(ω)F̂<

σ (ω)

= Σ̂gg,<(ω)ĜA
σ (ω) − Σ̂gf,<(ω)F̂A

σ (ω),

[1̂ω − Σ̂ff,R(ω) + ε̂]F̂<
σ (ω) + Σ̂fg,R(ω)Ĝ<

σ (ω)

= Σ̂ff,<(ω)F̂A
σ (ω) − Σ̂fg,<(ω)ĜA

σ (ω). (C1)
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Phys. Rev. Lett. 72, 554 (1994).
12 J. Ferrer and F. Sols, Phys. Rev. B 49, 15913 (1994).
13 E. Vecino, A. Mart́ın-Rodero and A. Levy Yeyati, Phys.

Rev. B. 64, 184502 (2001).
14 G. Mahan, “Many particle Physics”, Plenum, NY (1999).
15 J. C. Cuevas; A. Mart́ın-Rodero; A. Levy Yeyati, Phys.

Rev. B, 72, 7366 (1996).
16 Z. Y. Zeng; B. Li and F. Claro, Phys. Rev. B, 68, 115319

(2003).
17 R. Melin and D. Feinberg, Phys. Rev. B 70, 174509 (2004).
18 L.P. Kadanoff and G. Baym, “Quantum Statistical Me-

chanics” (Benjamin, New York, 1962) ; L.V. Keldysh,
Zh. Eksp. Teor. Fiz. 47, 1515 (1964); Sov. Phys. JETP
20, 1018 (1965); J. Schwinger, J. Math. Phys. 2, 407
(1961); P.C. Martin and J. Schwinger, Phys. Rev. 115,
1342 (1959); J. Rammer and H. Smith, Rev. Mod. Phys.
58, 323 (1986).

19 C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James,
J. Phys. C 4, 916 (1971); and, 2598 (1971).

20 D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).
21 D.C. Langreth and P. Nordlander, Phys. Rev. B 43, 2541

(1991).
22 H.M. Pastawski, Phys. Rev. B 46, 4053 (1992).
23 Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
24 N.S. Wingreen, A.P. Jauho, and Y. Meir, Phys. Rev. B

48, 8487 (1993) ; Antti-Pekka Jauho, Ned S. Wingreen,
and Yigal Meir, Phys. Rev. B 50, 5528 (1994).

25 L. Arrachea, Phys. Rev. B 72, 125349 (2005); L. Arrachea
and M. Moskalets, Phys. Rev. B 74, 245322 (2006).

26 D. Rogovin and D. J. Scalapino, Ann. Phys. 86, 1 (1974).
27 Y. Aharanov and D. Bohm, Phys. Rev. 115, 485 (1959).
28 N. Byers and C. N. Yang, Phys. Rev. Lett, 7, 46 (1961).
29 J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99,

217002 (2007).
30 F. Loder, A. P. Kampf, T. Kopp, J. Mannhart, C. W.

Schneider, and Y. S. Barash, cond-mat/0709.4111.


