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Symmetry for the duration of entropy-consuming intervals
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We introduce the violation fraction υ as the cumulative fraction of time that a mesoscopic system spends
consuming entropy at a single trajectory in phase space. We show that the fluctuations of this quantity are described
in terms of a symmetry relation reminiscent of fluctuation theorems, which involve a function �, which can be
interpreted as an entropy associated with the fluctuations of the violation fraction. The function �, when evaluated
for arbitrary stochastic realizations of the violation fraction, is odd upon the symmetry transformations that are
relevant for the associated stochastic entropy production. This fact leads to a detailed fluctuation theorem for the
probability density function of �. We study the steady-state limit of this symmetry in the paradigmatic case of a
colloidal particle dragged by optical tweezers through an aqueous solution. Finally, we briefly discuss possible
applications of our results for the estimation of free-energy differences from single-molecule experiments.
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I. INTRODUCTION

Stochastic thermodynamics is currently a very active
field given its great relevance for physics, chemistry, and
biology [1]. As a consequence of fluctuations, which are
extremely important in mesoscopic systems, the energy
change, work, heat, and entropy production associated with
any process exhibit a stochastic nature, i.e., their values are
random quantities that depend on the particular trajectory
the system follows in phase space. The fluctuations of some
thermodynamic observables are constrained to satisfy general
relations, which are known as fluctuation theorems [2–8], that
arise as a consequence of two main properties: ergodicity and
microreversibility. These relations can be generally written as

ln
P (S)

P T (−S)
= S, (1)

where P (S) is the probability density function of the stochastic
observable S representing a given form of trajectory-dependent
entropy production, while T represents a transformation,
usually time reversal, the transformation to a dual dynamics,
or the composition of these two operations (see [9–11] for
a simple definition of the dual dynamics). The quantity S

exhibits the symmetry ST = −S.
In the past few years, the applicability of these relations

has also been extended to systems exhibiting stochastic non-
Markovian dynamics [12–18], as well as being widely tested in
experiments [19–24]. Fluctuation theorems are consistent: The
second law of thermodynamics, the Green-Kubo formula, and
the Onsager reciprocity relations, for example, can be deduced
from them.

The stochastic nature of thermodynamic observables may
lead to a negative value of the entropy production for particular
realizations of a given process. In fact, the occurrence of
such rare realizations is exponentially less probable than
the occurrence of trajectories compatible with the second
law of thermodynamics (i.e., realizations where the entropy
production is positive), as can be immediately interpreted from
Eq. (1). It is important to remark, however, that the stochastic
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entropy production is not restricted to being positive, i.e.,
the occurrence of negative values of S at a single trajectory
in phase space does not represent a violation of the second
law of thermodynamics, which states that the average 〈S〉 is
non-negative.

In other matters, if we focus on a single trajectory of
the system in phase space, one finds that for certain time
intervals the entropy production is negative. The statistics
of the cumulative duration of these time intervals has been
recently studied [25]. There, this duration (relative to the
total duration of the process) was denominated the violation
fraction and the occurrence of negative values of the entropy
production was referred to as local violations of the second law
of thermodynamics, following the terminology of Ref. [19]
(the term local meaning at a single trajectory and stating that
not true violations of the second law occur). The study made
in Ref. [25] is, however, incomplete. First, instead of the full
probability density function of the violation fraction, only its
first moment was studied. Second, some particular conditions
were assumed, e.g., the system was assumed to be prepared in
a steady state and to be connected to a single reservoir.

The aim of the present paper is to fill these gaps. To this
aim, we derive in this work a general symmetry relation for
the probability density function of the violation fraction. This
relation is valid under very general conditions: The system may
be prepared in an arbitrary initial state and connected to one
or several thermal baths. No special assumptions are needed
for the results derived in this paper to hold, only ergodicity
and microreversibility.1 Our results are rather general and also
hold for arbitrary external protocols.

This symmetry relation is reminiscent of fluctuation theo-
rems and involves a function � that reflects the asymmetry
between forward and transformed processes in phase space
as regards the violation fraction. This function satisfies,
by construction, respective integral and detailed fluctuation
theorems and is also odd upon some relevant transformations,

1This statement is valid if we consider Markovian dynamics.
When considering non-Markovian dynamics, ergodicity and mi-
croreversibility would not be enough. At least stability should be
additionally demanded, as discussed in Ref. [18].
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similar to the entropy production. Thus, it may in principle be
interpreted as an entropy. On the other hand, the average of
� represents a lower bound for the average of the entropy
production, i.e., the inequality 〈S〉 � 〈�〉 � 0 holds quite
generally.

At this point we would like to clarify a subtle but important
issue. In Ref. [25] the violation fraction (denoted therein by
ν) was defined in terms of the entropy produced from the
beginning of the process S, i.e., the cumulative fraction of time;
the entropy production from the beginning of the process was
negative. This definition is not invariant upon time translations,
i.e., measuring the entropy production with respect to different
time instants leads to different sets of violation intervals. Here
we consider the stochastic entropy production rate σ = dS/dt

instead of the stochastic entropy production in order to define
the local violations of the second law. Then, within the present
framework, a violation sector is defined as a time interval
where σ < 0.

The rest of the paper is organized as follows. In the next
section we derive a symmetry relation for the probability
density function of the violation fraction in both the transient
and stationary regimes. We also discuss the main properties
and deepen the physical interpretation of the function �

involved in the referred symmetry. In Sec. III we study the
steady-state limit of the referred symmetry for a paradigmatic
model system. We determine the large-deviation function
associated with the violation fraction in that limit, providing
both particular analytical and general numerical results. In
Sec. IV we discuss the relevance of our study and possible
applications in the estimation of free energies from single-
molecule experiments. We provide a summary and concluding
remarks in Sec. V.

II. SYMMETRY FOR THE PROBABILITY DENSITY
FUNCTION OF THE VIOLATION FRACTION

A. Transient symmetry

We start by anticipating the main result of the present
section. If we introduce the probability density function for
the violation fraction υ(τ ) [see Eq. (9)] to be in the vicinity of
the value υ at time τ for the forward ρ(υ,τ ) and transformed
ρT (υ,τ ) processes (see details below), we obtain the symmetry
relation

ln
ρ(υ,τ )

ρT (1 − υ,τ )
= �(υ,τ ). (2)

The function � is odd upon the corresponding transformation
T . Moreover, making a parallel with classical thermodynam-
ics, � can be seen as an entropy associated with the local
violations of the second law, a sort of superentropy, as we
discuss below. Already at this point we note from Eq. (2) that
the integral fluctuation theorem

〈e−�(υ,τ )〉 =
∫ 1

0
dυ ρ(υ,τ )e−�(υ,τ ) = 1 (3)

holds at all times τ . From this and Jensen’s inequality − ln x �
1 − x for x > 0, we see that a law similar to the second law of
thermodynamics holds for �, 〈�(υ,τ )〉 � 0, a result that can
also be seen by identifying the average of � with the positively
defined Kullback-Leibler distance between the distributions ρ

and ρT , 〈�(υ,τ )〉 = DKL(ρ||ρT ), where

DKL(ρ||ρT ) =
∫ 1

0
dυ ρ(υ,τ ) ln

ρ(υ,τ )

ρT (1 − υ,τ )
. (4)

This quasi–second law of thermodynamics for � imposes
strong restrictions on the stochastic process υ(τ ). We remark
that some minimal requirements are needed for the entropy
production associated with a given process to satisfy the second
law of thermodynamics, ergodicity being one of them. It is thus
intriguing that the fraction of time a process spends consuming
entropy also exhibits those requirements.

We focus on systems relaxing to well-defined steady states
for constant parameters. It is worth noting the distinction
between two different types of systems: those where detailed
balance holds and the steady-state probability density function
corresponds to the Boltzmann-Gibbs distribution and those
relaxing to a nonequilibrium steady state (NESS) driven by
nonconservative forces and/or special boundary conditions. It
is known [26] that for the latter family of systems the total
entropy production Stot splits into an adiabatic contribution
Sa accounting for the energy dissipated in maintaining a
NESS and a nonadiabatic contribution Sna that accounts
for the relaxation to the steady state and for the effect of
an external driving. Each of these three forms of entropy
production satisfies a fluctuation theorem in terms of the
corresponding symmetry operation [time reversal (R) for Stot,
dual transformation (†) for Sa, and their composition († ◦ R)
for Sna], leading to three different faces of the second law of
thermodynamics [27]. Given that our results are valid for each
of these forms of entropy production, we generically write υ, S,
and σ without further specification, understanding the notation
T as the corresponding symmetry transformation associated
with each case.

Let us consider an ergodic and microreversible system
driven by a set of external parameters, which we denote by λt .
The state of the system in phase space is denoted by the symbol
m, which may be a discrete state or a continuous variable,
vector, or field. A trajectory in phase space from t = 0 to the
final time t = τ is denoted by a bold symbol m = {m(t)}τt=0,
while the full time dependence of the protocol is denoted
by λτ = {λt }τt=0. Additionally, we introduce the time-reversed
trajectory mR = {m(τ − t)}τt=0 and protocol λR

τ = {λτ−t }τt=0.
As the evolution is stochastic, one can define the probability
weights for trajectories Pτ [m; λτ ]. A key aspect of ergodic
and microreversible systems is that the trajectory-dependent
entropy production may be written as the log-ratio of path
probability weights

Stot[m,λτ ] = ln
Pτ [m; λτ ]

PR
τ

[
mR; λR

τ

] , (5)

Sna[m,λτ ] = ln
Pτ [m; λτ ]

P†◦R
τ

[
mR; λR

τ

] , (6)

Sa[m,λτ ] = ln
Pτ [m; λτ ]

P†
τ [m; λτ ]

, (7)

leading to the fluctuation theorems for arbitrary protocols,
initial conditions, and number of reservoirs [26]. On the other
hand, given an arbitrary observable O[m; λτ ], the following
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equivalences hold [11]:

〈O[m; λτ ]〉 = 〈
O[mR; λτ ]e−SR

tot[m,λR
τ g]

〉R
= 〈

O[mR; λτ ]e−S
†◦R
na [m,λR

τ ]
〉†◦R

= 〈
O[m; λτ ]e−S

†
a [m,λτ ]〉†, (8)

where 〈· · · 〉T denotes the average with the transformed
probability weight PT

τ , for T = R, † ◦ R, and †, respectively.
Let us now formally introduce the violation fraction for a given
trajectory

υ(τ )
def= 1

τ

∫ τ

0
	( − σ (t))dt, (9)

where 	(· · · ) is the Heaviside step function and we have
suppressed, for simplicity of notation, the full dependence on
the particular trajectory in phase space and the protocol. A key
point for our derivations is that the violation fraction satisfies
the symmetry

υT (τ ) = 1 − υ(τ ), (10)

which can be seen as a direct consequence of microreversibility
and ergodicity, similar to the symmetries that the different
forms of entropy production exhibit upon the corresponding
operations.2

Let us now introduce the joint probability density function
for the violation fraction to exhibit a value in the interval
[υ,υ + dυ] having observed a value of the entropy production
in the interval [S,S + dS] at time τ , P (υ,S,τ ), and the corre-
sponding transformed probability density function P T (υ,S,τ )
given, respectively, by the expressions

P (υ,S,τ ) = 〈δ(υ − υ(τ ))δ(S − S(τ ))〉, (11)

P T (υ,S,τ ) = 〈δ(υ − υT (τ ))δ(S − ST (τ ))〉T . (12)

Using the previous definitions (8) and (10) and recalling that
S is odd upon the operation T , we can write

P (υ,S,τ ) = P T (1 − υ, − S,τ )eS. (13)

Our main result (2) follows by identifying the probability
density function for the violation fraction to be in the vicinity
of the value υ at time τ , as ρ(υ,τ ) = ∫

dS P (υ,S,τ ), while
the transformed probability density function is given by

ρT (1 − υ,τ )=
∫

dS P T (1 − υ,S,τ ) =
∫

dS P (υ,S,τ )e−S,

(14)

where we have used a change of variables S → −S and the
symmetry (13). Introducing now the conditional probability

2For the adiabatic entropy production rate, Eq. (10) holds since
S(τ ) = −S†(τ ) and S(τ ) = ∫ τ

0 dtσ (t), implying that σ (t) = −σ †(t).
In the remaining cases, where a time-reversal operation is involved,
Eq. (10) follows from recalling that the entropy production rate is, for
Markovian dynamics, a local function of coordinates and protocols
σ (t) = σ (m(t),ṁ(t); λ(t)), which changes sign when evaluated for
time-reversed arguments.

density function for the entropy production to be in the
vicinity of S at time τ given that the observed value of the
violation fraction was υ, P (S,τ |υ) = P (υ,S,τ )/ρ(υ,τ ), we
obtain Eq. (2), with the identification

�(υ,τ ) = − ln〈e−S(τ )|υ〉 = − ln
∫

dS P (S,τ |υ)e−S. (15)

Before closing this section we would like to mention
some important issues. First, we note that the existing
fluctuation theorems are exact relations for the probability
density function of stochastic observables O exhibiting the
symmetry relation OT = −O. The observable considered
here, the violation fraction, exhibits, in contrast, a symmetry of
the form OT = 1 − O. If instead of considering the violation
fraction (9) we study the related magnetization [28] ψ(τ )
given by

ψ(τ )
def= 1

τ

∫ τ

0
sgn(σ (t))dt, (16)

where sgn(· · · ) is the sign function, we recover an observable
that is odd upon the generic transformation T . In this case, we
can easily obtain a symmetry relation for ψ using our main
result (2) and the trivial identity ψ = 1 − 2υ.

We note, however, that the referred symmetry could also
be derived from first principles by following the same lines
of reasoning leading to (2). It is important to note that the
violation fraction and the magnetization are time-averaged
quantities, thus the symmetry for the probability density
function of ψ is a stochastic version of the functional
Crooks theorem derived in Ref. [29] for time averages of
arbitrary phase-space functions in the case of deterministic
dynamics starting at equilibrium. In our case the observable is
stochastic, as is the evolution of the system in phase space,
and we consider arbitrary initial conditions and symmetry
transformations.

B. Steady-state symmetry

When the system asymptotically relaxes to a NESS such
that the mean value of the entropy production rate tends to
a constant value, one can derive a steady-state symmetry for
the probability density function of the violation fraction in
the same way that a steady-state fluctuation theorem holds for
the entropy production. This is relevant, for example, when
considering small Brownian motors operating under steady-
state conditions or systems relaxing to a NESS after a fast
quench. Another interesting case that falls into this category
is that of a system driven at a constant rate, for which the
nonadiabatic entropy production rate approaches a constant
value at large times. The necessary condition is that the limit

lim
τ→∞ P (σ,τ ) = P∞(σ ) (17)

exists unambiguously, where, as usual, σ could be any
particular form of entropy production rate.

Let us introduce the quantity R(τ ) = Prob[σ (τ ) < 0]. From
Eq. (9) we have

〈υ(τ )〉 = 1

τ

∫ τ

0
R(t)dt. (18)
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Assuming that there is a finite characteristic relaxation time τr

to reach the NESS, one can see that one has

〈υ(τ � τr )〉 = 1

τ

∫ τr

0
R(t)dt + 1

τ

∫ τ

τr

R(t)dt

≈ 1

τ

∫ τr

0
R(t)dt + R∞

(
1 − τr

τ

)

= υ∞ + A∞
τ

, (19)

to the first nonvanishing order, where υ∞ = R∞, A∞ =∫ τr

0 R(t)dt − R∞τr , and

R∞ = lim
τ→∞ R(τ ) =

∫ 0

−∞
P∞(σ )dσ. (20)

We note here the finite value of 〈υ(∞)〉 = υ∞, in contrast to
the case studied in Ref. [25] in terms of the entropy production
S instead of the entropy production rate. In that case, it was
shown that the average violation fraction vanishes for τ → ∞.
However, it is worth noting that to leading order both quantities
relax as τ−1 for large τ , except, for instance, in the vicinity
of a critical point where the large fluctuations may lead to a
different asymptotic behavior [25]. Additionally, we remark
that for τ → ∞ the violation fraction converges in density to
its mean, since the system is ergodic:

lim
τ→∞ υ(τ ) = lim

τ→∞
1

τ

∫ τ

0
	( − σ (t))dt

= 〈	(−σ (t))〉ss ≡ υ∞, (21)

where 〈· · · 〉ss represents the average in the steady state.
We note that if the system is asymptotically stationary, one

expects that the long-time behavior of the probability density
function of the violation fraction may be well described in
terms of a large deviation function ζ (υ):

ρ(υ,τ ) ∼ e−ζ (υ)τ . (22)

The same behavior is expected for �, which means that we
can write �(υ,τ ) → φ(υ)τ for τ → ∞, with

φ(υ) = − lim
τ→∞

1

τ
ln〈e−S(τ )|υ〉. (23)

From the previous reasoning, given that in the stationary limit
the operation T is meaningless, we obtain the steady-state
symmetry

ζ (1 − υ) − ζ (υ) = φ(υ). (24)

C. Physical properties of the function �

Let us study in more detail the main physical properties
of the function � for arbitrary systems submitted to arbitrary
protocols. The interpretation of this function is by no means
exclusive. This means that, if we consider any other functional
of trajectories in phase space instead of the violation fraction,
the corresponding asymmetry function will share the same
general properties of �. However, given that the violation
fraction measures how likely the consumption of entropy is,
this characterization is relevant.

We start by noting that, from the definition given by
Eq. (15), the function � is related to the average of e−S

restricted to those trajectories with a fixed value of the
violation fraction υ. Then we can establish a link with classical
thermodynamics that clarifies the physical meaning of this
function. Note that, identifying υ as an energy and S as a
coordinate, the conditional probability P (S,τ |υ) can be seen
as a microcanonical distribution (where energy is fixed) and the
conditional average 〈e−S |υ〉 as a sort of inverse phase-space
volume at fixed energy. Then �(υ,τ ) is the microcanonical
entropy linked to the energy υ. In this case, the equal a
priori probability postulate needs the weight e−S , which serves
as a balance, since those microstates with negative values
of S (i.e., those trajectories producing negative entropy) are
exponentially less probable.

We now continue by proving that the average of �

represents a lower bound for the entropy production. First,
note that the definition given by Eq. (15) can be rewritten as

〈e−(S−�(υ,τ ))|υ〉 = 1. (25)

From the previous expression, the following conditional
inequality holds:

〈S(τ )|υ〉 � �(υ,τ ). (26)

Multiplying both terms of Eq. (26) by ρ(υ,τ ) and integrating
υ out, we obtain

〈S(τ )〉 � 〈�(υ,τ )〉. (27)

It is straightforward to see that � is odd upon the corre-
sponding operation T . Indeed, introducing the transformed
potential �T (υ,τ ) = − ln〈e−S |υ〉T , we have

�T (1 − υ,τ ) = − ln
∫

dS P T (S,τ |1 − υ)e−S

= − ln
∫

dS
P T (1 − υ,S,τ )

ρT (1 − υ,τ )
e−S

= − ln
∫

dS
P T (1 − υ, − S,τ )

ρ(υ,τ )
eSe�(υ,τ )

= −�(υ,τ ) − ln
∫

dS P (S,τ |υ)

≡ −�(υ,τ ), (28)

where we have used Eqs. (2) and (13), a change of variables
S → −S, and the definition of the conditional probability
and its normalization condition

∫
dS P (S,τ |υ) = 1. Let us

introduce the probability density function for the values of �,
P (�,τ ), and its transformed counterpart P T (�,τ ) as follows:

P (�,τ ) =
∫ 1

0
dυ δ(� − �(υ,τ ))ρ(υ,τ ), (29)

P T (�,τ ) =
∫ 1

0
dυ δ(� − �T (υ,τ ))ρT (υ,τ ). (30)

Then, using the previous definitions complemented by Eqs. (2)
and (28), we obtain that a detailed fluctuation theorem also
holds for �:

ln
P (�,τ )

P T (−�,τ )
= �. (31)

052121-4



SYMMETRY FOR THE DURATION OF ENTROPY- . . . PHYSICAL REVIEW E 89, 052121 (2014)

All these properties strongly support the interpretation of �

as an entropy associated with the fluctuations of the violation
fraction.

Having defined the function � by Eq. (15), we now derive
an alternative formula to determine this quantity that provides
more insight into its physical meaning. If we divide both terms
of Eq. (13) by ρ(υ,τ ) and use Eq. (2), we obtain

P (S,τ |υ) = P T (−S,τ |1 − υ)eS−�(υ,τ ), (32)

from which we immediately get

�(υ,τ ) = S − ln
P (S,τ |υ)

P T (−S,τ |1 − υ)
. (33)

This expression is valid for any value of S, but it turns into a
very meaningful formula when we consider the case of S = 0:

�(υ,τ ) = − ln
P (0,τ |υ)

P T (0,τ |1 − υ)
. (34)

This alternative definition with a focus on trajectories that
do not produce entropy provides a clear interpretation of �

and allows us to show that �(1/2,τ ) ≡ 0 irrespective of the
particular protocols and of the value of τ , as we discuss below.

Let us denote the full space of possible trajectories in phase
space by � and let us introduce the set Vλ = {m ∈ �|υ(τ ) =
1/2} for a given protocol λτ , which can be arbitrarily chosen.
Let us also introduce the twin set VλT , corresponding to the
transformed protocol λT

τ and the transformed dynamics. It is
worth noting that, by virtue of Eq. (10), the set Vλ maps onto
VλT under the transformation T . Indeed, given that υ = 1/2 if
and only if υ = υT , we see that for any trajectory m ∈ Vλ, we
have that mT ∈ VλT also. On the other hand, if m /∈ Vλ, then
mT /∈ VλT either.

This, however, does not hold for arbitrary subsets of
Vλ. In particular, let us introduce the parametrized family
of subsets Sλ(S) of Vλ as Sλ(S) = {m ∈ Vλ|S(τ ) = S} and
the corresponding family under the transformed dynamics
SλT (S) = {m ∈ VλT |S(τ ) = S}. Then, given that the entropy
production satisfies the symmetry ST = −S, we have that for
any S, Sλ(S) maps onto SλT (−S) under T :

Sλ(S)
T�−→ SλT (−S). (35)

A special case is one for which S = 0, because from Eq. (35)

we see that Sλ(0)
T�−→ SλT (0). In particular, if m ∈ Sλ(0) and

its probability weight is P[m; λ], it is easy to see that mT ∈
SλT (0) also and that the probability weight of mT is also
P[m; λ] (i.e., P[m; λ] = PT [mT ; λT ]) because S = 0. Then
we may write

P (0,τ |1/2) = P T (0,τ |1/2). (36)

Evaluating Eq. (34) for υ = 1/2 and using Eq. (36), we
immediately obtain �(1/2,τ ) = 0.

We finish this section by noting that, by virtue of the second
law of thermodynamics, the small values of the violation
fraction are more likely than the large values of this quantity.
For small values of υ, � is positive, while for large values
of υ, � is negative. We conjecture that �(υ,τ ) must quite
generally be a decreasing function of υ for υ ∈ [0,1], which
means that υ = 1/2 is the only zero of � and that �(υ,τ )
admits an inverse function.

III. LARGE-DEVIATION FUNCTION FOR THE
VIOLATION FRACTION: A CASE STUDY

A. Posing of the problem

In this section we study and determine the large-deviation
function of the violation fraction in the paradigmatic case of
an overdamped colloidal particle dragged through a viscous
fluid by an optical tweezers with a harmonic potential

V (x; λ) = 1
2 (x − λ)2, (37)

where the focus of the optical tweezers is moved at a constant
rate b, λ(t) = bt . Although being widely studied, this example
is still instructive. On the other hand, even in this simple case
the derivation of a closed analytical solution is not possible.
The system evolves under the Langevin dynamics

ẋ(t) = −[x(t) − bt] +
√

2T ξ (t), (38)

where the white noise ξ (t) has zero mean and variance
〈ξ (t)ξ (t ′)〉 = δ(t − t ′). If the system is initially prepared in the
steady state associated with λ(0) = 0, the stochastic entropy
production corresponds in this case to the Jarzynski work [6]:3

S(t) =
∫ t

0
λ̇(t ′)∂λV (x(t ′); λ(t ′))dt ′, (39)

from where the stochastic entropy production rate can be
identified as

σ (t) = b

T
[bt − x(t)]. (40)

Let us introduce a new stochastic process η(t) as

η(t) = 1√
2T

[bt − x(t)] − ηm, (41)

with ηm = b/
√

2T . Then the equation of motion for this
process reads

η̇(t) = −η(t) + ξ (t). (42)

Note that one has that σ (t) < 0 if and only if η + ηm < 0,
which means that the violation fraction for our problem can
be written in terms of the auxiliary process η(t) as

υ(τ ) = 1

τ

∫ τ

0
	( − η(t) − ηm)dt. (43)

The statistics of the occupation times associated with the
Ornstein-Uhlenbeck process given by Eq. (42) have been
widely studied in the literature (see, for instance, Ref. [30]).
Furthermore, there is a well-established method to compute
the large-deviation function associated with any nonlinear
functional of η [31,32]. We briefly review the method below,
as presented in Ref. [31].

3An additional term involving the change in free energy �F (t)
is generally present, however, in this case the free energy does not
depend on λ and one only needs to consider the thermodynamic work.
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B. Large-deviation function for arbitrary time-averaged
quantities

The probability distribution of the process η(t) for 0 � t �
τ is given by

P[η] = N exp

{
−1

2

∫ τ

0
[η̇(t) + η(t)]2dt

}
, (44)

where N is a normalization constant. We are interested in the
probability density function of the time-averaged quantity

r(τ ) = 1

τ

∫ τ

0
U0(η(t))dt, (45)

where U0(η) is an arbitrary function of the stochastic variable
η. In practice it is convenient to look at the distribution Pu(u)
of the quantity u = rτ . Its Laplace transform reads

P̂u(s) = 〈exp(−rsτ )〉 = Z(s)/Z(0), (46)

with

Z(s) =
∫
D[η]exp

{
−1

2

∫ τ

0
[η̇2 + 2ηη̇ + η2 + 2sU0(η)]dt

}
.

(47)

We are interested in the limit τ → ∞. It is convenient to
impose periodic boundary conditions η(τ ) = η(0) since this
restriction will not change the results in the large-τ limit. With
this we can drop the term 2ηη̇, which is a perfect derivative.
Then Z(s) is the imaginary-time Feynman path integral that
gives the partition function of a quantum particle with Hamil-
tonian H = p2/2 + η2/2 + sU0(η) at inverse temperature τ ,
p being the canonical momentum conjugate to X. For τ → ∞
the ground state dominates:

〈exp(−rsτ )〉 = exp{−τ [Eg(s) − Eg(0)]}, (48)

where Eg(s) is the ground-state energy for the Schrödinger
equation

− 1

2

d2ψ(η)

dη2
+ U (η,s)ψ(η) = E(s)ψ(η), (49)

with

U (η,s) = η2

2
+ sU0(η). (50)

For s = 0 the problem reduces to a simple harmonic oscillator
and Eg(0) = 1/2. We now note that, from Eq. (48), the
large-time behavior of P (r,τ ) is given by the inverse Laplace
transform

P (r,τ ) ∝
∫ i∞

−i∞
ds exp[τg(s)], (51)

where g(s) = rs + Eg(0) − Eg(s). Using the steepest-descent
method, one sees that we have P (r,τ ) ≈ exp[−ζ (r)τ ], with

ζ (r) = max
s

[Eg(s) − Eg(0) − rs]. (52)

We now use this method to compute the large-deviation
function of the violation fraction associated with the process
given by Eq. (38).

-1

 0

 1

 2

 3

 4

 5

 6

-3 -2 -1  0  1  2  3

U
(η

,s
)

η/ηm

s=-1.5
s=-0.5

s=0
s=0.5
s=1.5

FIG. 1. (Color online) Effective potential for equivalent quantum
problem associated with the large-deviation function of the violation
fraction, for different values of s. At η = −ηm, the parabolic potential
exhibits a jump of magnitude U (−η+

m,s) − U (−η−
m,s) = −s.

C. Large-deviation function for the violation fraction

From Eq. (43) we see that for the violation fraction the
effective potential reads

U (η,s) = η2

2
+ s	(−η − ηm). (53)

In Fig. 1 we plot this potential for different values of s to
explicitly show its shape. At η = −ηm, the parabolic potential
exhibits a jump of magnitude −s.

We note that in our problem the Schrödinger equation
acquires the following particular form:

ψ ′′
+ − η2ψ+ + 2E(s)ψ+ = 0, (54)

ψ ′′
− − η2ψ− − 2sψ− + 2E(s)ψ− = 0, (55)

where ψ+(η) = ψ(η > −ηm), ψ−(η) = ψ(η < −ηm), and
ψ ′′ = d2ψ/dη2. As in Ref. [31], the solutions of Eqs. (54)
and (55) can be expressed in terms of parabolic cylinder
functions Dp(z) using the standard solutions of the parabolic
cylinder equation y ′′ − (z2/4 + a)y = 0. Selecting the solu-
tions that satisfy the physical boundary condition ψ(±∞) = 0
gives

ψ+(η) = ADp+ (
√

2η), (56)

ψ−(η) = BDp− (−
√

2η), (57)

where A and B are normalization constants, while p+ and p−
are given by

p+ = E(s) − 1
2 , (58)

p− = E(s) − 1
2 − s. (59)

Imposing the continuity of ψ and ψ ′ at η = −ηm, we obtain
the following eigenvalue equation for E(s):

D′
p+(−√

2ηm)

Dp+(−√
2ηm)

= −D′
p− (

√
2ηm)

Dp− (
√

2ηm)
, (60)

from which the ground-state energy Eg(s) and all the excited
states can be obtained. In general, this problem cannot be
solved analytically for generic values of s and ηm, so a
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numerical solution of the eigenvalue problem (60) is manda-
tory. Nevertheless, certain interesting limits can be studied
analytically, as we discuss below.

1. The limit υ → 0

In the limit υ → 0 the violation sector η < −ηm is almost
inaccessible, which means, appealing to the reader’s physical
intuition, that this scenario is compatible with an infinite wall
at η = −ηm. The present limit corresponds then to the case
s → +∞.

It has recently been shown that in the case of an infinite
wall displaced to the left of the center of a parabolic potential,
the ground-state energy ε0(ηm) decreases monotonically as
a function of the center-wall distance [33]. Thus, for a
hard wall at η = −ηm, we have Eg(+∞) = ε0(ηm), with
1/2 < ε0(ηm) � 3/2 and dε0(ηm)/dηm < 0. The ground-state
energy ε0(ηm) has to be determined numerically for arbitrary
ηm [33,34].

We need the first correction to this result for large s.
Although it can be derived formally, we will continue by
using physical arguments to render calculations easier and
to enlighten the discussion.

First, note that for s → ∞ the details of the quadratic
potential are not important in Eq. (55) and we can see the
problem as an equivalent problem with a high potential barrier
(of magnitude s) for η < −ηm. In this case the ground-state
wave function penetrates the barrier by a typical depth δ+

g (s) =
{2[s − Eg(s)]}−1/2 ≈ (2s)−1/2, where it drops to zero. The
problem is then equivalent, in physical terms, to a problem
with an infinite hard wall but placed at −ηδ = −ηm − δ+

g (s).
Note that in the equivalent model the wave function identically
vanishes at η = −ηδ . We can then write, to leading order in
δ+
g (s),

Eg(s) = ε0(ηm) − |ε′
0(ηm)|(2s)−1/2. (61)

This equation coincides [without dropping the term Eg(s) ≈
Eg(∞) from the square root] with the formal result obtained
in Ref. [34] by means of perturbation theory. The formal
equivalence can be easily seen by using the virial theorem
given by Eq. (15) of Ref. [33]. Using now Eq. (61) and the
general method given by Eq. (52), we obtain in the limit υ → 0

ζ (υ) = ζ0 − a0υ
1/3, (62)

with ζ0 = ε0(ηm) − 1/2 and a0 = 3
2 |ε′

0(ηm)|2/3. In the limit of
slow driving ηm � 1, we can write a closed expression for
ζ (υ) to first order in ηm. Using ε0(0) = 3/2 and |ε′

0(0)| =
2/

√
π [34], we have

ζ (υ) = − 2√
π

ηm + ζqs(υ), (63)

where the quasistatic large-deviation function ζqs(υ) is
given by

ζqs(υ) = 1 − 3

2

(
4

π
υ

)1/3

, (64)

which is the expected result for ηm = 0. The last statement can
be seen by considering the magnetization ψ . Substituting in
Eq. (64) the identity υ = (1 − ψ)/2 and noting that for υ → 0
we have that ψ → 1, we obtain exactly Eq. (60) of Ref. [31].

2. The limit υ → 1

We now study the limit of large values of the violation
fraction. In this limit, trajectories spend most of the time in
the violation sector η < −ηm. Then the right branch of the
parabolic potential is almost inaccessible, a situation that is
compatible with the limit s → −∞. In this case, the potential
has a deep minimum at η = −ηm, with energy η2

m/2 + s, thus it
is convenient to redefine E(s) = s + ε(s). With this, Eqs. (54)
and (55) read

ψ ′′
+ − η2ψ+ + 2sψ + 2ε(s)ψ+ = 0, (65)

ψ ′′
− − η2ψ− + 2ε(s)ψ− = 0. (66)

We now note that, for s → −∞, the details of the quadratic
potential are not important in Eq. (65). Then, just as we did
in the limit υ → 0, we can neglect the effect of the parabolic
potential in (65) and consider a high potential barrier of height
−s. With this, the ground-state wave function penetrates the
region η > −ηm by a small depth δ−

g (s) ≈ (−2s)−1/2 and we
can approximate our problem with an equivalent one with a
hard wall at η = −ηm + δ−

g (s). For η < −ηm, the solution of
Eq. (66) is still given by a parabolic cylinder function

ψ−(η) = ADp(−
√

2η), (67)

where A is a normalization constant and p = ε(s) − 1/2. The
hard-wall condition gives the eigenvalue equation for ε(s):

Dp(
√

2[ηm − δ−
g (s)]) = 0. (68)

Equation (68) still has to be solved numerically, however, the
limit of slow driving ηm � 1 can be treated analytically. For
any small η, we can write Dp(−√

2η) ≈ Dp(0) − √
2D′

p(0)η.
With this, we can rewrite our eigenvalue equation as

Dp(0)

D′
p(0)

=
√

2ηm − (−s)−1/2. (69)

Given that the right-hand side of Eq. (69) is a small quantity,
we can expand ε(s) = 3/2 − ε for the ground state, with ε �
1. Using standard identities relating the parabolic cylinder
functions to � functions [35], we have

�
( − p

2

)
�

( 1−p

2

) =
√

2(−s)−1/2 − 2ηm. (70)

Note that p = 1 − ε. Expanding the � functions above for
small ε, we have �((ε − 1)/2)/�(ε/2) ≈ −√

πε, thus we
obtain

ε = 2√
π

ηm −
√

− 2

πs
. (71)

We then have for the ground-state energy

Eg(s) = s + 3

2
− 2√

π
ηm +

√
− 2

πs
, (72)
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FIG. 2. (Color online) Large-deviation function for the violation
fraction for ηm = 0.01, 0.1, 0.3, 0.5, and 0.8. For ηm = 0.01 the
large-deviation function is very symmetric with respect to υ = 1/2.
The position of the minimum of this function decreases very rapidly
as ηm increases.

from which we obtain for the large-deviation function, in the
limit υ → 1,

ζ (υ) = − 2√
π

ηm + ζqs(1 − υ), (73)

with ζqs again given by Eq. (64). We point out that, again,
for ηm = 0 and using 1 − υ = (1 + ψ)/2 in terms of the
magnetization ψ , we obtain Eq. (59) of Ref. [31].

We would like to remark that the behavior of ζ (υ) is, from
Eqs. (63) and (73), similar for υ → 0 and υ → 1. On the other
hand, one expects these behaviors to be different for nonzero
ηm since the second law of thermodynamics favors small values
of the violation fraction and penalizes large values of this
quantity. Our analytical results show that the difference in the
behavior around υ → 0 with respect to the behavior around
υ → 1 is at least of second order of perturbation theory in ηm,
around ηm = 0. Thus, for small, still finite values of ηm, one
expects ζ (υ) to be very symmetric around υ = 1/2, exactly as
for ηm = 0.

3. General results

We now turn to the numerical solution of Eq. (60). In Fig. 2
we plot the large-deviation function obtained numerically. It
can be seen that for ηm = 0.01 the large-deviation function
is very symmetric, a fact that is in concordance with our
analytical results (63) and (73). As ηm increases, the position
of the minimum of the large-deviation function decreases very
rapidly while this function becomes very asymmetric, even
for ηm < 1. This fact can be understood as follows. From the
dynamics given by Eq. (38) and the definition of the entropy
production rate (40) we obtain that in the stationary limit the
probability density function of σ reads

P∞(σ ) = 1

2
√

πηm

exp

[
− 1

4η2
m

(
σ − 2η2

m

)2
]
. (74)

From this result, we get that the mean value of the violation
fraction in this limit is given by

〈υ(τ )〉 =
∫ 0

−∞
P∞(σ )dσ = 1

2
erfc(ηm), (75)

 0.05
 0.1
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 0.2
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 0.3

 0.35
 0.4

 0.45
 0.5

 0  0.2  0.4  0.6  0.8  1
ηm

min[ζ(υ)]
Analytical result

FIG. 3. Comparison between the numerically obtained position
of the minimum of ζ (υ), for different values of ηm, and the exact
result given by Eq. (75). Both results coincide within the numerical
errors.

where erfc(· · ·) is the complementary error function. Recalling
that the position of the minimum of the large-deviation
function corresponds to 〈υ〉, which explains why this point
shifts so rapidly to the left when we increase ηm. In Fig. 3 we
plot the numerically obtained position of the minimum of the
large-deviation function and the exact result given by Eq. (75),
obtaining very good agreement between both results within
the numerical errors.

The asymmetry function φ(υ) can be obtained directly from
Eq. (24). We plot this function in Fig. 4. For ηm = 0.01
this function is almost flat, since in this case the thermal
fluctuations are large and/or the driving velocity is small (recall
the definition of ηm), which means that the local violations
of the second law are more probable in this limit. As the
driving velocity increases (and/or the temperature decreases),
the asymmetry between small and large values of the violation
fraction increases very rapidly.

This is easy to understand. Note that, from the exact
result given by Eq. (74), we see that 〈σ 〉 = 2η2

m, while√
2〈δσ 2〉 = 2ηm, with δσ (t) = σ (t) − 〈σ (t)〉. Then, as long

as the amplitude of the fluctuations is greater than 〈σ 〉, the
local violations are likely to occur, but if

√
2〈δσ 2〉 < 〈σ 〉,

i.e., if ηm > 1, the local violations are extremely rare and the
asymmetry function develops a very steep slope. This physical
analysis explains why solving Eq. (60) numerically for ηm � 1
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FIG. 4. (Color online) Asymmetry function φ(υ) for ηm = 0.01,
0.1, 0.3, 0.5, and 0.8. As ηm approaches the value ηm = 1, the slope
of the asymmetry function rapidly becomes very steep.
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and arbitrary values of s is so difficult. In that region, the
numerical scheme implemented by us becomes unstable.

IV. DISCUSSION

We have studied the statistics of the occurrence of entropy-
consuming time intervals for single realizations of stochastic
processes in phase space. The conditions for the validity of
the main results derived here are very general, however, we
would like to briefly discuss an important point regarding
the definition of the violation fraction itself, which is the
central concept in our theory. The average entropy production
rate is quite generally well defined, however, its stochastic
counterpart may be sometimes ill defined. Note that in certain
cases, similar to the velocity of a Brownian walker, the
stochastic entropy production rate is well defined only under an
integration sign, i.e., in the sense of generalized functions. The
stochastic entropy production S, on the other hand, is always
well defined. However, one can introduce a coarse-grained
entropy production rate by considering an arbitrarily small,
but still finite, time window τw. Generalizing the definition
given by Eq. (9) to this case, we may write

υ(τ,τw) = 1

τ − τw

∫ τ−τw

0
	

(
S(t) − S(t + τw)

τw

)
dt. (76)

The limit τw → 0+, if it exists, corresponds to the definition
given by Eq. (9). It turns out that, using υ(τ,τw) as defined by
Eq. (76) instead of our original definition, one can easily prove
that all the results we have derived in this paper continue to be
valid.

Our analysis is different from the kind of study currently
considered in the literature. Instead of focusing on the
statistical properties of the final value of the stochastic entropy
production at the end of a given protocol, we have considered
the whole evolution of the stochastic entropy production
rate within the time interval. Even when both approaches
are clearly different, they are closely related. Consider, for
instance, a system with many degrees of freedom or in an
asymptotic steady regime. In both cases the probability density
functions of both the violation fraction and the stochastic
entropy production S are concentrated around their respective
means. In these scenarios, a large-deviation function exists for
both quantities. We then have in those cases

〈S(τ )〉 =
∫ 1

0
〈S(τ )|υ〉ρ(υ,τ )dυ ≈ 〈S(τ )|〈υ(τ )〉〉, (77)

〈υ(τ )〉 =
∫ ∞

−∞
〈υ(τ )|S〉P (S,τ )dS ≈ 〈υ(τ )|〈S(τ )〉〉, (78)

where the second relations in Eqs. (77) and (78) follow from the
saddle-point evaluation of the corresponding integrals. Thus,
there is a one-to-one correspondence between the mean value
of the entropy production and the violation fraction, i.e., by
controlling one of these quantities it is possible to control the
other.

We discuss now a possible application of our results for free-
energy recovery in single-molecule experiments. Note that, for
a system initially prepared in a given equilibrium steady state

and using the definition of � [Eq. (15)], we can write

�(υ,τ ) = �(υ,τ ) − β�F (τ ), (79)

where

�(υ,τ ) = − ln〈e−βW (τ )|υ〉, (80)

�F is the change of the free energy during the protocol, and
β corresponds to the inverse temperature. Then, for example,
from Eq. (3) we can write

β�F (τ ) = − ln〈e−�(υ,τ )〉. (81)

An even more precise method is to consider Eq. (79). Using
the fact that �(1/2,τ ) = 0, we have

β�F (τ ) = �(1/2,τ ). (82)

The conceptual problem is that one needs to unmask the
behavior of the function � (and correspondingly �), but the
advantage comes from the experimental (or computational)
side. Note that υ only depends on the instantaneous sign of the
entropy production rate, i.e., one does not need its value and
it is sufficient to measure the relative orientation of a velocity
with respect to a probability current (this determines, quite
generally, the sign of σ ). Although one still needs to measure
W at the end of the interval in order to have an independent
measure of � [see Eq. (80)], adding the violation fraction in
the analysis could help reduce the error in the estimation of
free energies from single-molecule experiments. We believe
that the discussion above is interesting enough as to motivate
the study of the statistics of the violation fraction in more
detail.

Although the analytical treatment of these problems may
prove difficult, there is a great deal of accumulated knowledge
we can borrow from the study of the zero-crossing properties of
generic stochastic processes. This kind of study could create
an opportunity for new and fruitful collaborations between
different fields of statistical mechanics.

V. CONCLUSION

We have studied the statistics of the occurrence of entropy-
consuming events for single trajectories of processes in phase
space. We were able to obtain a symmetry relation for the
duration of these events, which is reminiscent of fluctuation
theorems and involves an asymmetry function that has been
studied and characterized within this work. We have studied
analytically the steady-state limit of this symmetry for a
paradigmatic model system, showing that even in the simplest
cases it is difficult to determine much analytically. However,
we believe, as discussed above, that our study could be of
experimental (and computational) relevance, for instance, for
the free-energy recovery in single-molecule experiments.

ACKNOWLEDGMENTS

This work was supported by CNEA, CONICET (Grant No.
PIP11220090100051), and ANPCYT (Grant No. PICT2011-
1537). R.G.G. thanks V. Lecomte for valuable comments dur-
ing the early stages of preparation of the present manuscript,
G. Schehr and A. Rosso for providing Refs. [30–32], and Y.
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