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1. Homogeneous cotype

Cotype, introduced in the 1970s by Maurey and Pisier, is one of the cornerstones 
of modern Banach space theory. We recall that a complex Banach space X has cotype 
q ≥ 2 (see e.g. [10, Chapter 11]) if there exists a constant C > 0 such that for every 
finite choice of elements x1, . . . , xN ∈ X,

( N∑
k=1

‖xk‖q
)1/q

≤ C

( 1∫
0

∥∥∥ N∑
k=1

rk(t)xk

∥∥∥2
dt

)1/2

, (1)

where rk is the k-th Rademacher function.
It is a well known fact (see e.g. [19, Chapter 4]) that cotype can be reformulated in 

terms of Steinhaus variables, i.e., variables that are uniformly distributed in the torus 
T :=

{
z ∈ C : |z| = 1

}
. Then a Banach space X has cotype q ≥ 2 if and only if there is 

a constant C > 0 such that for any choice of finitely many vectors x1, . . . , xN ∈ X we 
have

( N∑
k=1

∥∥xk

∥∥q)1/q
≤ C

( ∫
TN

∥∥∥ N∑
k=1

xkzk

∥∥∥2
dz

)1/2
. (2)

Here TN is the N -dimensional torus, which is the N -fold product of T endowed with the 
N -fold product of the normalized Lebesgue measure on T. We will later use the same 
notation for N = ∞.

If we denote by CR
q (X) and Cq(X) the best constants in the inequalities (1) and (2), 

respectively, then we know from [19, Proposition 4.2.14] that

Cq(X) ≤ CR
q (X) ≤ π

2Cq(X) .

The complex approach to cotype is going to be more convenient for us.
Cotype can be seen as a property of the Banach space X in terms of linear map-

pings in the variables z1, z2, . . . with values in X. Our aim in this note is to consider 
cotype-like properties which consider not only linear mappings, but also other algebraic 
combinations: polynomials (of certain classes) in the variables z1, z2, . . . with values in X. 
For this, we introduce the following notation: if α ∈ N

(N)
0 is a multi-index (a finite se-

quence on N0 of arbitrary length), we write zα for the monomial zα1
1 · · · zαn

n , and set 
|α| := α1 + α2 + · · · .

For each m-homogeneous polynomial on N variables

P (z) =
∑

α∈N
N
0

xαz
α

|α|=m
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there exists a unique symmetric m-linear form T (z(1), . . . , z(m)) =
∑N

i1,...,im=1 ai1,...,imz
(1)
i1

. . . z
(m)
im

such that

P (z) = T (z, . . . , z) for every z ∈ CN .

Then [4, Proposition 2.1] and the relation between the coefficients xα and ai1,...,im
(see e.g. [5, page 544] or [2, Lemma 2.5]) immediately give that for every finite fam-
ily (xα)|α|=m (i.e., a family with only finitely many non-zero elements) we have

( ∑
|α|=m

‖xα‖q
)1/q

≤
(
Cq(X)K

)mmm

m! (m!)1/q
′
( ∫

T∞

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2

dz

)1/2

, (3)

where K denotes the constant in the (2, 1)-Kahane inequality (see e.g. [10, Theorem 11.1]) 
and 1

q + 1
q′ = 1. Let us observe that on the right-hand side we are actually integrating 

on some finite dimensional TN , where N can be taken as the maximum of those k such 
that there exists α with xα �= 0 and αk �= 0.

Note that letting m = 1 in this inequality we have exactly (2). Hence, (3) can be 
seen as a sort of homogeneous version of the classical cotype. We will then say that X
has m-homogeneous cotype q if there exists a constant C > 0 such that for any finite 
multi-indexed sequence (xα)|α|=m ⊂ X we have

( ∑
|α|=m

‖xα‖q
)1/q

≤ C

( ∫
T∞

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2

dz

)1/2

. (4)

The constant of m-homogeneous cotype, which we denote by Cq,m(X), will be the best 
constant for which the inequality holds.

With this definition, what (3) is telling us is that if X has cotype q, then it also has 
m-homogeneous cotype q with Cq,m(X) ≤

(
Cq(X) K

)mmm

m! (m!)1/q′ . On the other hand, 
it is easy to see that if X has m-homogeneous cotype q for some m and q, then X has 
cotype q with Cq(X) ≤ Cq,m(X).

In other words, cotype and m-homogeneous cotype are equivalent properties. This fact 
has interesting consequences for vector-valued power and Dirichlet series (see e.g. [4]), 
but for some applications (see Section 3) a better control of the behaviour of Cq,m(X)
as m grows is needed. When we do have such control, we say that the Banach space X
has hypercontractive homogeneous cotype.

Definition 1.1. A Banach space X has hypercontractive homogeneous cotype q if there 
exists C > 0 such that for every m ∈ N and every finite family (xα)|α|=m we have

( ∑
|α|=m

‖xα‖q
)1/q

≤ Cm

( ∫
T∞

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2

dz

)1/2

.
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Hypercontractive homogeneous cotype is clearly a local property, and it means 
m-homogeneous cotype for all m together with an estimate of the form Cq,m(X) ≤ Cm

for some universal constant C. We consider

cot(X) := inf
{

2 ≤ q < ∞
∣∣X has cotype q

}
and

cotHyp(X) := inf
{

2 ≤ q < ∞
∣∣X has hypercontractive homogeneous cotype q

}
.

Although these infima are in general not attained we call them the optimal cotype and 
the optimal hypercontractive homogeneous cotype of X. If there is no 2 ≤ q < ∞ for 
which X has (hypercontractive homogeneous) cotype q, then X is said to have trivial 
(hypercontractive homogeneous) cotype, and we put cot(X) = ∞ (or cotHyp(X) = ∞).

Clearly, if X has hypercontractive homogeneous cotype, then it has (classical) cotype 
or, in other words, cot(X) ≤ cotHyp(X) for every Banach space X. We conjecture that 
these two concepts are actually equivalent; that is: a Banach space has hypercontractive 
homogeneous cotype q if and only if it has cotype q.

We are not able to prove our conjecture, but we give some positive answers. First 
we show that for spaces having local unconditional structure it is true (Theorem 2.1). 
We prove that spaces having Fourier cotype also have hypercontractive homogeneous 
cotype (Proposition 2.4). As a consequence we have that for Schatten classes Sr with 
r ≥ 2 our conjecture is true, and also that for Banach spaces with type 2 the equality 
cot(X) = cotHyp(X) holds.

By Kahane’s inequality (see e.g. [10, Theorem 11.1]), the L2 norm on the right-hand 
side of inequality (2) can be changed to any other Lp-norm. Before we go into details, we 
give a kind of polynomial version of Kahane’s inequality. This shows that in Definition 1.1
we can take any Lp-norm on the right hand side, just as in the usual definition of cotype. 
A recent result [8, Theorem 2.1] shows that the constant (r/s)m/2 is almost optimal in 
this case.

Proposition 1.2. For 1 ≤ s ≤ r < ∞, any Banach space X and any finite sequence 
(xα)|α|=m ⊂ X we have

( ∫
TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥rdz)1/r

≤
(r
s

)m
2
( ∫

TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥sdz)1/s

.

For the proof of Proposition 1.2, we introduce vector-valued Hardy spaces. We define 
them in a more general setting than needed for this proof, since we will come back to 
them later in Section 3.
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For any multi-index α = (α1, . . . , αn, 0, . . .) ∈ Z(N) (all finite sequences in Z) the α-th
Fourier coefficient f̂(α) of f ∈ L1(T∞, X) is given by

f̂(α) =
∫
T∞

f(z)z−αdz .

Then, given 1 ≤ r ≤ ∞, the X-valued Hardy space on T∞ is the subspace of Lr(T∞, X)
defined as

Hr(T∞, X) =
{
f ∈ Lr(T∞, X)

∣∣ f̂(α) = 0 , ∀α ∈ Z(N) \ N(N)
0

}
.

The spaces Hr(TN , X) with N ∈ N, are defined analogously.
Given f ∈ Hs(T, X) and 0 < c < 1, we define for z = eiθ the Poisson integral

Pc(f)(z) := 1
2πPc ∗ f(z) = 1

2π

π∫
−π

f(eit)Pc(θ − t)dt,

where Pc denotes the Poisson kernel

Pc(t) =
∞∑

n=−∞
c|n|eint = 1 − c2

1 − 2c cos(t) + c2
.

Equivalently, Pc(f) can be defined as the function whose Fourier coefficients are

P̂c(f)(n) = cnf̂(n), for n ∈ N0.

As in the scalar valued case, the Poisson integral gives an ‘extension’ of f ∈ Hs(T, X)
to a function F on the disc D, defining for w = ρeiθ ∈ D:

F (w) = Pρ(f)(eiθ) =
∞∑

n=0
f̂(n)wn. (5)

For s = +∞, we also have

sup
w∈D

|F (w)| = ‖f‖H∞(T,X).

We refer to [3] and the references therein for details. Just for completeness, we comment 
that going the other way around (i.e., starting with a function on the disc and taking its 
boundary values to get a function on the torus) is not always possible in the vector-valued 
case. This is true if and only if X has the analytic Radon–Nikodým property.

The operator Pc : Hs(T, X) → Hs(T, X) is a linear contraction, since it is given by 
the convolution with a function of L1-norm one (note the normalization by 2π). Weissler 
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in [21] proved that if r > s ≥ 1, then Pc : Hs(T, C) → Hr(T, C) is again a contraction for 
every c ≤

√
s/r and this value is optimal. We use now his result to give a vector-valued 

version.

Lemma 1.3. Let r > s ≥ 1 and set c =
√

s/r. Then, the mapping Pc is a linear contrac-
tion from Hs(T, X) to Hr(T, X).

Proof. Take f ∈ Hs(T, X) and ε > 0. By classical results (as in [14, Theorem 2.7]) we 
can find ϕ ∈ Hs (the scalar-valued space) with |ϕ(z)| = ‖f(z)‖X + ε for all z ∈ T and 
g ∈ H∞(T, X) with ‖g‖H∞(T,X) ≤ 1 such that f = ϕ g. Now, if we call F , Φ and G the 
extensions of f , ϕ and g given by (5), we have

‖Pcf‖Hr(T,X) =
(∫

T

‖F (cz)‖rXdz
)1/r

=
(∫

T

‖Φ(cz)G(cz)‖rXdz
)1/r

≤ ‖g‖H∞(T,X)

(∫
T

|Φ(cz)|rdz
)1/r

= ‖g‖H∞(T,X)

(∫
T

|Pc(ϕ)(z)|rdz
)1/r

≤
(∫

T

|ϕ(z)|sdz
)1/s

,

where the last inequality is a consequence of [21, Corollary 2.1]. Now, the last expression 
is not greater than(∫

T

(‖f(z)‖ + ε)sXdz
)1/s

≤
(∫

T

‖f(z)‖sXdz
)1/s

+ ε = ‖f‖Hs(T,X) + ε .

Since this holds for any ε > 0, the proof is complete. �
Polynomials with coefficients in X belong to Hs(T, X), so as a particular case of the 

lemma, for x0, . . . , xN ∈ X we have:

(∫
T

∥∥∥∥∥
N∑

k=0

xk (cz)k
∥∥∥∥∥
r

X

dz
)1/r

≤
(∫

T

∥∥∥∥∥
N∑

k=0

xkz
k

∥∥∥∥∥
s

X

dz
)1/s

. (6)

Iterating as in [1, Theorem 9], working with one variable at a time and applying the 
continuous Minkowski inequality, we can deduce from (6) that Pc is also a continuous 
contraction from Hs(TN , X) to Hr(TN , X). For m-homogeneous polynomials this gives:( ∫

TN

∥∥∥ ∑
|α|=m

xα (cz)α
∥∥∥r)1/r

≤
( ∫
TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥s)1/s

,

which by the homogeneity of the polynomial yields Proposition 1.2.
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2. Banach spaces with hypercontractive homogeneous cotype

For q ≥ 2, Banach lattices with nontrivial concavity q have hypercontractive homoge-
neous cotype q. This fact can be deduced from an analysis of the proof of [7, Theorem 5.3]. 
Indeed, in a first step Krivine’s calculus can be used to extend [1, Theorem 9] to Banach 
lattices (for details on Krivine’s calculus see [15, pp. 40–42]). Then, the concavity prop-
erty of the Banach lattice gives the result. In this section we give other Banach spaces, 
different from lattices, that have hypercontractive homogeneous cotype.

2.1. Local unconditional structure and hypercontractive homogeneous cotype

Our next result shows that every Banach space with local unconditional structure 
(l.u.st.) and cotype q has hypercontractive homogeneous cotype q, giving the first positive 
answer to our conjecture. Let us recall (see e.g. [20, Definition 1.1] or [10, Chapter 17]) 
that a Banach space X is said to have local unconditional structure if there exists λ > 0
such that for every finite dimensional subspace F of X there exists a space U with 
unconditional basis {un} and operators T : F → U and S : U → F such that ST = idF

and

‖T‖ · ‖S‖ · χ{un} ≤ λ,

where χ{un} denotes the unconditional basis constant of {un}.

Theorem 2.1. If X has cotype q and l.u.st., then X has hypercontractive homogeneous 
cotype q.

The theorem will be a direct consequence of the next two results. Pisier in [20] intro-
duced what is now usually called Pisier’s property (α). The next simple lemma shows 
that if X has cotype q and satisfies (�), which is a polynomial weaker version of prop-
erty (α) with good constants, then X has hypercontractive homogeneous cotype q. Then 
Proposition 2.3 shows that if X has cotype q and l.u.st., then it satisfies a strong version 
of property (�).

Lemma 2.2. Let X be a Banach space with cotype q and suppose there exists C > 0 such 
that for every finite family (xα)α∈NN

0 , |α|=m ⊂ X,

(∫
Ω

∫
TN

∥∥∥ ∑
α∈N

N
0

|α|=m

xαεα(ω)zα
∥∥∥2

dzdω

)1/2

≤ Cm

( ∫
TN

∥∥∥ ∑
α∈N

N
0

|α|=m

xαz
α
∥∥∥2

dz

)1/2

, (�)

where (εα) are i.i.d. Rademacher random variables.
Then X has hypercontractive homogeneous cotype q.
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Proof. Let Cq = CR
q (X) be the Rademacher cotype q constant of X (i.e., the best 

constant in (1)). For each z ∈ TN , since (xα) is a finite family we have(∑
α

‖xα‖q
)2/q

=
(∑

α

‖xαz
α‖q

)2/q

≤ C2
q

∫
Ω

∥∥∥∑
α

εα(ω)xαz
α
∥∥∥2

dω

Integrating this inequality on z ∈ TN and using (�), we obtain(∑
α

‖xα‖q
)2/q

≤ C2
q

∫
TN

∫
Ω

∥∥∥∑
α

εα(ω)xαz
α
∥∥∥2

dω dz ≤ C2
qC

2m
∫
TN

∥∥∥∑
α

xαz
α
∥∥∥2

dz .

Therefore, X has hypercontractive homogeneous cotype q. �
In the next result we follow and adapt some of the ideas of [20]. We recall that an 

operator between Banach spaces u : X → Y is absolutely q-summing if there is C > 0
such that for every finite family x1, . . . , xn ∈ X we have( n∑

j=1
‖uxj‖q

) 1
q

≤ C sup
x∗∈BX∗

( n∑
j=1

|x∗(xj)|q
) 1

q

.

The best constant C in this inequality is called the absolutely q-summing norm of u and 
is denoted by πq(u).

Proposition 2.3. If X has cotype q and l.u.st., then there exists C > 0, such that for 
every choice of finitely many xα ∈ X and signs εα = ±1( ∫

TN

∥∥∥ ∑
|α|=m

xαεαz
α
∥∥∥2

dz

)1/2

≤ C qm/2
( ∫
TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2

dz

)1/2

.

In particular, X satisfies (�).

Proof. We fix εα = ±1 for each α ∈ NN
0 with |α| = m, and define operators u : X∗ →

Lq(TN ) and v : X∗ → L1(TN ) by

u(x∗)(z) =
∑

|α|=m

εαx
∗(xα)zα and v(x∗)(z) =

∑
|α|=m

x∗(xα)zα .

For each x∗ ∈ X∗, the scalar case in Proposition 1.2 gives

‖u(x∗)‖Lq
=

⎛⎝ ∫
TN

∣∣∣ ∑
|α|=m

εαx
∗(xα)zα

∣∣∣qdz
⎞⎠1/q

≤ q
m/2

∫
TN

∣∣∣ ∑
|α|=m

εαx
∗(xα)zα

∣∣∣dz
= q

m/2‖v(x∗)‖L1 .
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From this and the very definition of the absolutely 1-summing norm we easily deduce 
that π1(u) ≤ q

m/2π1(v). By [20, Theorem 1.1] we have

πq(tu) ≤ Cπ1(u) ≤ Cq
m/2π1(v) .

Now, [20, Proposition 1.1] states that, for 1 ≤ p ≤ ∞, every ϕ1, . . . , ϕn ∈ Lp(TN )
(or any other Lp(μ), μ a probability measure) and every y1, . . . , yn ∈ X, the operator 
S : X∗ → Lp(TN ) given by

S(x∗) =
n∑

i=1
x∗(yi)ϕi (7)

satisfies

πp(S) ≤

⎛⎝ ∫
TN

∥∥∥ n∑
i=1

yiϕi(z)
∥∥∥pdz

⎞⎠1/p

≤ πp(tS). (8)

Note that we can write u and v as in (7), taking ϕα(z) = εαz
α, and ϕα(z) = zα

respectively. As a consequence, we can use the second inequality in (8) for u and the first 
inequality in (8) for v to obtain

( ∫
TN

∥∥∥ ∑
|α|=m

xαεαz
α
∥∥∥2

dz

)1/2

≤
( ∫

TN

∥∥∥ ∑
|α|=m

xαεαz
α
∥∥∥qdz)1/q

≤ πq(tu) ≤ Cq
m/2π1(v) ≤ C qm/2

∫
TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥dz

≤ C qm/2
( ∫
TN

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2

dz

)1/2 �

2.2. Fourier cotype implies hypercontractive homogeneous cotype

Now we show that Banach spaces with Fourier cotype also have hypercontractive 
homogeneous cotype. This is independent of our result in the previous section (Theo-
rem 2.1), since for example the Schatten classes Sr have Fourier cotype but do not have 
l.u.st.

There are many equivalent definitions of Fourier cotype (see [11]). Let us give the 
one that is more akin to our framework. Given 2 ≤ q < ∞, we say that X has Fourier 
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cotype q if there is a constant C > 0 such that for each choice of finitely many vectors 
x1, . . . , xN ∈ X we have

( N∑
k=1

∥∥xk

∥∥q)1/q
≤ C

(∫
T

∥∥∥ N∑
k=1

xkz
k
∥∥∥q′dz)1/q′

. (9)

We write

cotF(X) := inf
{

2 ≤ q < ∞
∣∣X has Fourier cotype q

}
,

and (although this infimum in general is not attained) we call it the optimal Fourier 
cotype of X. In the literature (see, for example, [16]) the sums in (9) usually run from 
−M to M or in Z, but it is not hard to check that both definitions are equivalent: the 
rotation invariance of the measure dz gives

(∫
T

∥∥∥ M∑
j=−M

xj z
j
∥∥∥q′dz)1/q′

=
(∫

T

∥∥∥zM M∑
j=−M

xj z
j
∥∥∥q′dz)1/q′

=
(∫

T

∥∥∥ 2M∑
k=0

xk−M zk
∥∥∥q′dz)1/q′

,

from which the equivalence follows easily.
Spaces with Fourier cotype satisfy a stronger version of hypercontractive homogeneous 

cotype, with a uniform constant for every (homogeneous or not) polynomial of any 
degree. This result is basically well known in the literature on Fourier type. It can be 
seen as a consequence of, for example, [11, Theorem 6.14] and the equivalence between 
Fourier type p and Fourier cotype q when 1

p + 1
q = 1. We give the proof for the sake of 

completeness.

Proposition 2.4. A Baach space X has Fourier cotype q ≥ 2 if and only if there exists 
C > 0 such that for every finite family (xα)

α∈N
(N)
0

we have

(∑
α

‖xα‖q
)1/q

≤ C

( ∫
TN

∥∥∥∑
α

xαz
α
∥∥∥q′dz)1/q′

. (10)

In particular, Banach spaces with Fourier cotype q have hypercontractive homogeneous 
cotype q.

Proof. If X satisfies (10), then it obviously has Fourier cotype q. For the reverse im-
plication, let m be the maximum of all αj ’s such that xα is not zero. By the rotation 
invariance of the measures dz2, . . . , dzN , fixed z1 ∈ T we have:
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∫
TN−1

∥∥∥∑
α

xαz
α1
1 zα2

2 · · · zαN

N

∥∥∥q′dz2 · · · dzN

=
∫

TN−1

∥∥∥∑
α

xαz
α1
1 (z2 z

m+1
1 )α2 · · · (zN z

(m+1)N−1

1 )αN

∥∥∥q′dz2 · · · dzN

=
∫

TN−1

∥∥∥∑
α

xαz
α1+(m+1)α2+···+(m+1)N−1αN

1 zα2
2 · · · zαN

N

∥∥∥q′dz2 · · · dzN .

As a consequence, a change in the order of integration gives∫
TN

∥∥∥∑
α

xαz
α
∥∥∥q′dz (11)

=
∫

TN−1

⎛⎝∫
T

∥∥∥∑
α

(xαz
α2
2 · · · zαN

N ) zα1+(m+1)α2+···+(m+1)N−1αN

1

∥∥∥q′dz1

⎞⎠ dz2 · · · dzN . (12)

For every α for which xα is not zero we have 0 ≤ αj ≤ m, j = 1, . . . , N . Also, if a 
multi-index β satisfies 0 ≤ βj ≤ m, j = 1, . . . , N and

α1 + (m + 1)α2 + · · · + (m + 1)N−1αN = β1 + (m + 1)β2 + · · · + (m + 1)N−1βN ,

then we must have α = β (this is just the uniqueness of the expansion of a natural 
number in base m + 1). Therefore, the powers of z1 in the sum in (12) are all different. 
We can then apply (9) to the inner integral of (12) for each fixed z2, . . . , zN . This gives 
that the whole expression in (12) is bounded from below by

1
Cq′

∫
TN−1

(∑
α

‖xαz
α2
2 · · · zαN

N ‖q
)q′/q

dz2 · · · dzN = 1
Cq′

(∑
α

‖xα‖q
)q′/q

.

So (11) is bounded from below by this last expression, which is the result we were looking 
for. �

We remark that in Proposition 2.4 we have a cotype-like inequality that holds for any 
polynomial of any degree and on any number of variables. Following our philosophy, we 
could call this analytic cotype.

Let us recall that a Banach space satisfying the reverse inequality in (2) for 1 ≤
q ≤ 2 is said to have type q. It is a well known fact (which follows, for example, from 
[18, Section 6.1.8.6]) that if X has type 2 and cotype q0, then it has Fourier cotype q for 
every q > q0. Therefore, we have

cot(X) = cotF(X) = cotHyp(X)

for every Banach space X with type 2.



D. Carando et al. / Journal of Functional Analysis 270 (2016) 68–87 79
2.3. Examples

By Theorem 2.1, cotype and hypercontractive homogeneous cotype coincide in Lr(μ)
and, more generally, in Lr-spaces for 1 ≤ r ≤ ∞ (see Chapters 3 and 17 in [10] for 
the definition of Lr-spaces and their local unconditional structure, respectively). As 
a consequence, an Lr-space X has hypercontractive homogeneous cotype cot(X) =
max{2, r} for 1 ≤ r ≤ ∞.

The Schatten classes Sr (as well as Lr-spaces) have Fourier cotype max{r, r′} and 
these are the optimal values (see [12, Theorem 1.6] or [13, Theorem 6.8]). Thus by 
Proposition 2.4, they have hypercontractive homogeneous cotype max{r, r′} (in fact, they 
have the much stronger uniform and non-homogeneous one given in Proposition 2.4). On 
the other hand, these spaces have cotype max{2, r} and type min{2, r} [10, page 228]. 
In other words, hypercontractive homogeneous and usual cotypes coincide for Schatten 
classes for r ≥ 2. Note that, since Schatten classes with r �= 2 do not have l.u.st. 
[10, page 364], Theorem 2.1 does not apply in this case.

We summarize these positive answers to our conjecture in the following

Corollary 2.5. Cotype and hypercontractive homogeneous cotype coincide in Lr-spaces 
for 1 ≤ r ≤ ∞ and in Sr for 2 ≤ r ≤ ∞.

3. Sets of monomial convergence for Hp(T∞, X)

Each function f ∈ Hp(T∞, X) defines a formal power series 
∑

α f̂(α)zα. We address 
now the question of for which z’s does this power series converge. Given a Banach space X
and 1 ≤ p ≤ ∞, we define the set of monomial convergence of Hp(T∞, X):

monHp(T∞, X) =
{
z ∈ CN

∣∣∣ ∑
α

‖f̂(α)zα‖X < ∞ for all f ∈ Hp(T∞, X)
}
.

We also define, for each m ∈ N,

monHm
p (T∞, X) =

{
z ∈ CN

∣∣∣ ∑
α

‖f̂(α)zα‖X < ∞ for all f ∈ Hm
p (T∞, X)

}
,

where

Hm
p (T∞) =

{
f ∈ Hp(T∞)

∣∣∣ f̂(α) �= 0 ⇒ |α| = m
}
.

The problem of determining monHp(T∞) and monHm
p (T∞) in the scalar-valued case 

goes back to Bohr at the 1910s, and the so far most general result was recently given 
in [2] (for more information and detailed historical remarks see the references therein): 
For p = ∞ we have

B ⊂ monH∞(T∞) ⊂ B ,
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where

B =
{
u ∈ Bc0

∣∣∣ lim sup
n

1
log n

n∑
k=1

|u∗
k|2 < 1

}

B =
{
u ∈ Bc0

∣∣∣ lim sup
n

1
log n

n∑
k=1

|u∗
k|2 ≤ 1

}

(u∗ the decreasing rearrangement of u), and for 1 ≤ p < ∞

monHp(T∞) = 2 ∩Bc0 for 1 ≤ p < ∞ .

In the homogeneous case we have for each m

monHm
p (T∞) =

{
 2m

m−1 ,∞ for p = ∞
2 for 1 ≤ p < ∞ .

It can be seen easily that in the preceding results scalar-valued functions can be replaced 
by functions with values in finite dimensional Banach spaces – but the following theorem 
indicates that the situation for functions with range in infinite dimensional spaces is 
substantially different (see also [9]).

Theorem 3.1. Let 1 ≤ p ≤ ∞, m ∈ N, and X be an infinite dimensional Banach space.

(1) If X has trivial cotype, then

monHp(T∞, X) = 1 ∩Bc0 and monHm
p (T∞, X) = 1 .

(2) If X has hypercontractive homogeneous cotype cot(X) < ∞, then

monHp(T∞, X) = cot(X)′ ∩Bc0 and monHm
p (T∞, X) = cot(X)′ .

To see some examples, we have mentioned in Section 2.3 that a Lr-space X has 
hypercontractive homogeneous cotype cot(X) = max{2, r} for 1 ≤ r ≤ ∞, and that for 
r ≥ 2, Sr has hypercontractive homogeneous cotype cot(Sr) = r. As a consequence, we 
have the following.

Corollary 3.2. Let 1 ≤ p ≤ ∞.

(1) If 1 ≤ r ≤ ∞ and X is a Lr-space then

monHp(T∞, X) = min{2,r′} ∩Bc0 and monHm
p (T∞, X) = min{2,r′} .
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(2) If 2 ≤ r ≤ ∞, then

monHp(T∞,Sr) = r′ ∩Bc0 and monHm
p (T∞,Sr) = r′ .

We split the proof of Theorem 3.1 into two steps, that we present as separate lemmas. 
Before we state the first one, let us recall (see e.g. [10, Chapter 14]) that a Banach 
space X finitely factors q ↪→ ∞ with 2 ≤ q ≤ ∞ whenever for each N there are vectors 
x1, . . . , xN ∈ X such that for every choice of λ1, . . . , λN ∈ C we have

1
2‖λ‖∞ ≤

∥∥ N∑
n=1

λnxn

∥∥ ≤ ‖λ‖q . (13)

Lemma 3.3. Let X be an infinite dimensional Banach space which finitely factors q ↪→
∞. Then monH1

∞(T∞, X) ⊂ q′ .

Proof. Let us take z ∈ monH1
∞(T∞, X). By a standard closed graph argument there is 

a constant c(z) > 0 such that for each f ∈ H1
∞(T∞, X) we have

∞∑
n=1

‖f(en)‖ |zn| ≤ c(z)‖f‖∞.

We fix some N ∈ N and choose x1, . . . , xN ∈ X as in (13). Given w1, . . . , wN ∈ C we 
define f ∈ H1

∞(T∞, X) by f(u) =
∑N

n=1(xnwn) un. Then we have

N∑
n=1

|wnzn| ≤ 2
N∑

n=1
‖(wnxn)zn‖ ≤ 2c(z) sup

u∈T∞

∥∥ N∑
n=1

(wnxn)un

∥∥
≤ 2c(z) sup

u∈T∞

∥∥(wnun)Nn=1
∥∥
q
≤ 2c(z)

∥∥(wn)Nn=1
∥∥
q
.

Since the w1, . . . , wN are arbitrary, this clearly proves the claim. �
Lemma 3.4. If X has hypercontractive homogeneous cotype q, then q′ ∩ Bc0 ⊂
monH1(T∞, X).

Proof. Assume here that q < ∞. We first prove that there is a constant C > 0 such that 
for each m, each f ∈ Hm

1 (T∞, X), and each y ∈ q′ ∩Bc0 we have

∑
|α|=m

‖f̂(α)yα‖ ≤ Cm
( ∑

|α|=m

|yα|q′
)1/q′

‖f‖1 .

We fix such f, y and N ∈ N; proceeding as in [4, page 524] we can find a function 
fN ∈ H1(TN , X) such that ‖fN‖1 ≤ ‖f‖1 and f̂N (α) = f̂(α) for all α ∈ NN

0 . Using this 
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fact, that X has hypercontractive homogeneous cotype q (with constant D, say) and 
Proposition 1.2 (the polynomial Kahane inequality) we have for C = D

√
2

∑
α∈N

N
0

|α|=m

‖f̂(α)yα‖ ≤
( ∑

|α|=m

|yα|q′
)1/q′( ∑

|α|=m

‖f̂N (α)‖q
)1/q

≤ Dm
( ∑

|α|=m

|yα|q′
)1/q′( ∫

TN

‖fN (y)‖2
Xdz

)1/2

≤ Dm
√

2
m
( ∑

|α|=m

|yα|q′
)1/q′

‖fN‖1 ≤ Cm
( ∑

|α|=m

|yα|q′
)1/q′

‖f‖1 , (14)

Take now 0 < r < 1/C, and let us check that

rB�q′ ∩Bc0 ⊂ monH1(T∞, X) .

To do this we fix some f ∈ H1(T∞, X) and z = ry ∈ rB�q′ ∩Bc0 . For each N we consider 
fN as above. By [4, Proposition 2.5] there is fm

N ∈ Hp(TN , X) such that f̂N (α) = f̂m
N (α)

for all α ∈ NN
0 with |α| = m, f̂m

N (α) = 0 if |α| �= m, and ‖fm
N ‖1 ≤ ‖fN‖1. Then, 

applying (14) to fm
N we get

∑
α∈NN

0

‖f̂(α)zα‖ =
∞∑

m=0

∑
α∈N

N
0

|α|=m

‖f̂m
N (α) (ry)α‖

≤
∞∑

m=0
rm

∑
α∈N

N
0

|α|=m

‖f̂m
N (α) yα‖

≤
∞∑

m=0
rmCm

( ∑
|α|=m

|yα|q′
)1/q′

‖fN
m ‖1

≤
∞∑

m=0
rmCm

( ∑
|α|=m

|yα|q′
)1/q′

‖f‖1

≤
(∑

α

|yα|q′
)1/q′

‖f‖1

∞∑
m=0

rmCm .

Let us recall (see e.g. [6, page 24]) that

z ∈ 1 ∩Bc0 if and only if
∑

α∈N
(N)
0

|zα| < ∞ . (15)

This implies that the last term is finite.
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We can now complete our argument. For z ∈ q′ ∩Bc0 we choose n0 such that

z̃ = (0, . . . , 0, zn0 , zn0+1, . . .) ∈ rB�q′ ∩Bc0 .

Then z̃ ∈ monH1(T∞, X), and a straightforward vector-valued extension of [2, Lem-
ma 3.7] (see also [5, Lemma 2] where the analogous result for monH∞(T∞, X) is shown) 
completes the proof. �

With this at our hand we are now ready to prove our main result in this section.

Proof of Theorem 3.1. We show parts (1) and (2) together. Take 1 ≤ p ≤ ∞ and assume 
that X is an infinite dimensional Banach space with hypercontractive homogeneous 
cotype cot(X). By a vector-valued modification of [2, Lemma 3.3] we have

monHm
p (T∞, X) ⊂ monHm−1

p (T∞, X)

and trivially

monH1
p (T∞, X) ⊂ monH1

∞(T∞, X) .

First of all, as a consequence of a deep result of Maurey and Pisier [17] (see also 
[10, Theorem 14.5 and page 304]) X always finitely factors cot(X) ↪→ ∞. Then Lem-
mas 3.3 and 3.4 give

cot(X)′ ∩Bc0 ⊂ monH1(T∞, X) ⊂ monHp(T∞, X) ⊂ monH1
∞(T∞, X) ∩Bc0

⊂ cot(X)′ ∩Bc0 .

This completes the argument. �
Let us remark that in Theorem 3.1-(2) we are assuming that X has non-trivial hy-

percontractive homogeneous cotype (hence also usual cotype) and both optimal values 
are equal and attained. If this is not the case, then our proof shows that

cot(X)′ ∩Bc0 ⊂ monHp(T∞, X) ⊂ monHm
p (T∞, X) ∩Bc0 = cotHyp(X)′+ε ∩Bc0 (16)

for all ε > 0.

4. Multiplicative �1-multipliers for Hardy spaces of Dirichlet series

Power series in infinitely many variables and Dirichlet series can be identified by an 
ingenious idea of Bohr. For a fixed Banach space X we denote by P(X) the vector space 
of all formal power series 

∑
α cαz

α in X and by D(X) the vector space of all Dirichlet 
series 

∑
n ann

−s in X. Let (pn)n be the sequence of prime numbers. Since each integer n
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has a unique prime number decomposition n = pα1
1 · · · pαk

k = pα with αj ∈ N0, 1 ≤ j ≤ k, 
the linear mapping, that we call the Bohr transform in X,

BX : P(X) −→ D(X) ,
∑

α∈N
(N)
0

cαz
α �

∑∞
n=1 ann

−s , where apα = cα

is bijective. Given 1 ≤ p ≤ ∞ and m ∈ N, define the two linear spaces

Hp(X) = BX (Hp(T∞, X))

and

H m
p (X) = BX

(
Hm

p (T∞, X)
)
,

which through the norms induced by BX form (what we call) the Banach spaces of 
vector-valued Hardy–Dirichlet series.

A scalar sequence (bn) is called multiplicative (or completely multiplicative) if bmn =
bnbm for all m, n. Basic examples of multiplicative sequences (bn) are the sequences 1/nσ. 
We call a scalar sequence (bn) an 1-multiplier for Hp(X) whenever for all 

∑
n ann

−s ∈
Hp(X) we have

∞∑
n=1

‖an‖X |bn| < ∞ for all
∑
n

ann
−s ∈ Hp(X).

All multiplicative 1-multipliers for Hp(X) are denoted

mult Hp(X) ,

and, given m ∈ N, in the homogeneous case of course an analogous definition

mult H m
p (X)

can be done. In [2, Remark 4.1] (here again the scalar case immediately transfers to the 
vector valued case) we have the following link between sets of monomial convergence and 
multiplicative 1-multipliers.

Remark 4.1. Let (bn) be a multiplicative sequence of complex numbers, and 1 ≤ p ≤ ∞. 
Then (bn) is an 1-multiplier for Hp(X) if and only if (bpk

) ∈ monHp(T∞, X). Clearly, 
an analogous equivalence holds whenever we replace Hp(X) by H m

p (X).

Remark 4.2. Suppose now that 1 ≤ p < ∞. Let us observe that if b ∈ p is multiplicative, 
then |bn| < 1 for all n. Indeed, if some |bn| ≥ 1, then since the sequence is multiplicative 
|bnk | ≥ 1 for every k and this contradicts the fact that b is in p. Then, b ∈ Bc0 for any 
multiplicative sequence b ∈ p. On the other hand, if b ∈ Bc0 is multiplicative, by (15)
we have that (bpk

)k ∈ p if and only if b ∈ p.
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With Remarks 4.1, 4.2 and Theorem 3.1 we immediately have the following charac-
terization of multiplicative 1-multipliers of Hp(X) and H m

p (X), respectively.

Theorem 4.3. Let 1 ≤ p ≤ ∞, m ∈ N, X be an infinite dimensional Banach space and 
b = (bn) be a multiplicative scalar sequence.

(1) If X has trivial cotype, then

b ∈ mult Hp(X) ⇔ (bpk
)k ∈ 1 ∩Bc0 ⇔ b ∈ 1

b ∈ mult H m
p (X) ⇔ (bpk

)k ∈ 1 .

(2) If X has hypercontractive homogeneous cotype cot(X) < ∞, then

b ∈ mult Hp(X) ⇔ (bpk
)k ∈ cot(X)′ ∩Bc0 ⇔ b ∈ cot(X)′

b ∈ mult H m
p (X) ⇔ (bpk

)k ∈ cot(X)′ .

If X has nontrivial cotype but does not satisfy the assumptions of (2), multiplica-
tive multipliers are not completely characterized but we can use (16) to obtain some 
information about them.

To see an example, we use again the results in Section 2.3.

Corollary 4.4. Let 1 ≤ p ≤ ∞, m ∈ N, and b = (bn) be a multiplicative scalar sequence.

(1) If 1 ≤ r ≤ ∞ and X is a Lr-space, then

b ∈ mult Hp(X) ⇔ (bpk
)k ∈ min{2,r′} ∩Bc0 ⇔ b ∈ min{2,r′}

b ∈ mult H m
p (X) ⇔ (bpk

)k ∈ min{2,r′} .

(2) If 2 ≤ r ≤ ∞, then

b ∈ mult Hp(Sr) ⇔ (bpk
)k ∈ r′ ∩Bc0 ⇔ b ∈ r′

b ∈ mult H m
p (Sr) ⇔ (bpk

)k ∈ r′ .
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Appendix A. Cotype with respect to index sets

Throughout this note we have considered different kinds of cotypes: the classical (lin-
ear) cotype, homogeneous cotype, hypercontractive homogeneous cotype, Fourier cotype 
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and analytic cotype. We end this note introducing a general setting in which all these 
concepts can be framed.

Let Λ ⊆ N
(N)
0 be an indexing set. We say that the Banach space X has Λ-cotype q

if there exists a constant C > 0 such that for every finite family (xα)α∈Λ ⊂ X (i.e., 
a family with only finite non-zero elements) we have

(∑
α∈Λ

‖xα‖q
)1/q

≤ C

( ∫
T∞

∥∥∥∑
α∈Λ

xαz
α
∥∥∥q′dz)1/q′

. (17)

We denote by Cq,Λ(X) the best constant C satisfying the previous inequality.
The usual notion of cotype turns out to be a particular case of this concept, in the 

sense that it corresponds to an appropriate choice of the set of multi-indices Λ. If we 
take

Λ1 = {α ∈ N
(N)
0 : |α| = 1} ,

Then (17) with Λ1 is, through Kahane’s inequality, equivalent to (2). In other words, 
Λ1-cotype is just cotype.

The concept of m-homogeneous cotype can also be seen as a cotype with respect to 
an indexing set. If we take

Λm = {α ∈ N
(N)
0 : |α| = m} ,

and use Proposition 1.2 (the polynomial Kahane’s inequality) then m-homogeneous 
cotype q is Λm-cotype q. We can rephrase (3) and the subsequent comments: X has 
Λ1-cotype if and only if X has Λm-cotype for some (or for all) m and

Cq,Λ1(X) ≤ Cq,Λm
(X) ≤ mm

m! (m!)1/q
′
Km

√
q′

2

m

Cq,Λ1(X)m .

Also, hypercontractive homogeneous cotype q means Λm-cotype for all m together 
with the control of the constants: Cq,Λm

(X) ≤ Cm. Hence our conjecture reads:

Cq,Λ1(X) ≤ Cq,Λm
(X) ≤ λm Cq,Λ1(X)m

for some universal λ > 0.
For Fourier cotype, let us identify N as a subset of NN

0 in the natural way

N ∼ {α ∈ NN

0 : αk = 0 for k ≥ 2} .

Fourier cotype is N-cotype and analytic cotype (the inequality in Proposition 2.4) is 
N

(N)
0 -cotype. Finally, note that Proposition 2.4 states that N-cotype q is equivalent to 

N
(N)
0 -cotype q.
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