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Frictional dynamics of viscoelastic solids driven on a rough surface
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We study the effect of viscoelastic dynamics on the frictional properties of a (mean-field) spring-block system
pulled on a rough surface by an external drive. When the drive moves at constant velocity V , two dynamical
regimes are observed: at fast driving, above a critical threshold V c, the system slides at the drive velocity and
displays a friction force with velocity weakening. Below V c the steady sliding becomes unstable and a stick-slip
regime sets in. In the slide-hold-slide driving protocol, a peak of the friction force appears after the hold time
and its amplitude increases with the hold duration. These observations are consistent with the frictional force
encoded phenomenologically in the rate-and-state equations. Our model gives a microscopical basis for such
macroscopic description.
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I. INTRODUCTION

Friction is behind many phenomena of our every day life
experience such as the adhesion of car tires on the road
[1,2], the sound emitted by a violin [3,4], or the wear of
human articular joints [5]. Often, in these situations, the two
bodies in contact may display discontinuous dynamics, the
so-called stick-slip dynamics [6,7], in which periods of rapid
movement (slip) are followed by periods of relative rest (stick).
At the macroscopic scale the stick-slip motion is justified
by the empirical difference observed between the static and
dynamic friction coefficient, but a general explanation of this
phenomenon from first principles is not yet available. The
introduction of viscoelastic effects in the dynamics can be
the key for a microscopic theory of friction. In fact, we have
recently shown that viscoelastic solids sliding on a rough
substrate can display a stick-slip instability [8]. Interestingly
it was also pointed out that viscoelasticity is at the origin of
the observed precursors, the microslips occurring at the onset
of slip [9–11].

A scheme of the model studied in Ref. [8] is reproduced
for convenience in Fig. 1. It consists of an ensemble of
interacting blocks driven at velocity V on a rough substrate.
The macroscopic friction arises from the real area of solid-
substrate contact, which consists in the junctions between
asperities. When the block is stuck on the rough substrate, the
elastic energy of the spring k0 slowly accumulates over time
and is released when junctions break, letting the block move.
The rupture of a single junction can trigger further rupture,
with a characteristic time τ0 that characterizes the dynamics of
the block-substrate contact. In the quasistatic limit (V → 0+),
when the driving time scale τD is very slow compared to τ0,
the chain of events triggered by a single rupture can be very
large and is called an avalanche.
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In the case of purely elastic interactions between the blocks,
the macroscopic friction force, namely the average elongation
of the spring k0, is the control parameter of the depinning
transition, a second-order transition between a pinned phase
and a phase where the system slides at the driving velocity
V [12–16]. Viscoelastic interactions [17] change the nature
of the moving phase, inducing hysteretic behavior, as it was
shown by Marchetti et al. [18,19] in the context of the plastic
depinning transition of a vortex lattice.

FIG. 1. (Color online) Sketch of the viscoelastic interface model.
(a) The interface consists in blocks (labeled i,i + 1, . . . ) located
at the positions hi,hi+1, . . . (empty squares) and bound together
via a combination of springs (k1,k2) and dashpots (ηu). Driving is
performed via springs k0 linked to the position w = V t . (b, c) The
asperities that provide the contact (highlighted with ellipses) hinder
the sliding of the block on its substrate, with a random force f dis

i (hi)
acting as a microscopic static friction force. (c) The solid sled on the
substrate and the asperities under stress are changed.
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In the quasistatic driving limit (τ0 � τD), the presence of
viscoelasticity (with a characteristic time τu) has been shown
to produce a rich phenomenology of the avalanche dynamics,
with main shocks, aftershocks, and spatiotemporal correlations
similar to that observed in seismology [8,20–24]. When the
viscoelastic relaxation is very fast compared to the driving
(τu � τD), these system-size avalanches can be understood as
a stick-slip dynamics of the mean-field model [8].

In the present paper we study the case where the driving
rate τD is of the same order of magnitude as the viscoelastic
time scale τu, but is still very slow compared to the duration
of each single avalanche: τ0 � τu � τD . We show that in this
limit, the system displays the basic features of dry friction. In
particular, when a uniform driving is applied, we observe a
transition between a stick-slip regime (slow driving, τu � τD)
and a steady-sliding regime (fast driving, τu � τD). When
the driving velocity is not constant, as in the case of the slide-
hold-slide protocol, our results display qualitatively the kind of
behavior observed in the experiments [25], most remarkably,
the existence of a peak in the friction force after the hold period,
which becomes larger as the hold time increases. It must be
noted that this kind of experiments on friction dynamics are
usually modeled using the so-called rate-and-state equations
[26,27], which incorporate the fact that the friction force does
not simply depend on the relative velocity between the two
nominal surfaces but also depends on the history of the contact,
via a macroscopic “state” variable θ . In our model this depen-
dence is encoded in the state of the microscopic viscoelastic
elements. In this way our model gives a microscopical basis
for the rate-and-state description of friction.

The paper is organized as follows. In Sec. II we briefly
present the model. In Sec. III we study the case of uniform
driving, and we complete this study with the slide-hold-slide
protocol in Sec. IV. We then interpret our results in terms of
rate-and-state formalism in Sec. V and conclude in Sec. VI.

II. MODEL

The equations of motion for the model pictured in Fig. 1
are derived in Appendix A:

η0∂thi = k0(w − hi) + k1∇2hi + f dis
i (hi) + k2∇2hi − k2ui,

(1)

ηu∂tui = k2∇2hi − k2ui. (2)

Here hi is the position of the block i, w = V t is the driving
term in the uniform driving protocol, and η0 is the damping
coefficient for the sliding of blocks relatively to the substrate.
The internal variable ui accounts for the dashpots elongation,
which induce the damping of the elastic force, k2(∇2hi − ui),
acting on the block i. The characteristic response time of
blocks is τ0 = η0/ max(k0, k1, k2), while the characteristic
readjustment time for the dashpots is τu = ηu/k2.

The random force f dis
i (hi) mimics the contacts between the

asperities of the block and those of the surface and acts as a
microscopic static friction force. When a contact is broken,
two things happen: (i) the block moves and redistributes stress
to neighboring blocks, and (ii) the asperities involved in the
junction are renewed, as sketched in Fig. 1(c). This renewal
process makes the asperity landscapes different for each block.

FIG. 2. (Color online) (a) Mean-field model of Eqs. (1) and (2).
(b) Equivalent model if the solution is stationary.

For simplicity, we consider that the random force f dis
i (hi)

acting on block i is completely independent from that acting
on other blocks.

Equations (1) and (2) were introduced in Ref. [8] and
studied in d = 2 and in mean field for V = 0+. Here we extend
the mean-field approximation [which corresponds to replace
the laplacian ∇2hi with h − hi , where h is the average location
of the blocks; see Fig. 2(a)] to the finite velocity case. Note that
this model couples the hi’s with h ≡ ∑

i hi/N ; i.e., it actually
represents N times the k2, ηu, k1 units. As it is usual in the
mean-field case, the values of the parameters are thus scaled
as k2/N, ηu/N, k1/N , to ensure the extensive character of the
total energy. We compute the macroscopic friction force

σ ≡ k0(w − h), (3)

accumulated in the system for different driving protocols and
adopt the so-called “narrow wells” approximation [13]. In this
scheme, the disorder f dis

i (hi) is modeled as a collection of
narrow pinning wells representing impurities, with spacings z

distributed as g(z) and with average z = ∫ ∞
0 zg(z)dz. As the

wells are very narrow, the disorder force f th
i (hi) that derives

from this potential is 0 everywhere except for countably many
points. Within this approximation each block is pinned in a
single narrow well (see Fig. 9 in Appendix A). For simplicity
we consider narrow wells of constant depth (and shape),
namely, the random thresholds are constant, f th

i = const. = 1.
Our model provides a description of the interface between

two solid surfaces where all dynamical properties are con-
centrated in one of them, and the other (the substrate) is
taken as inert. It has to be emphasized that the blocks have
to be considered as microscopic single contacts between the
surfaces, and as such they are individually given a rather trivial
and time-independent interaction law with the substrate. In
addition, the k1, k2, and ηu elements (and to a certain extent
also the k0 springs) must be considered as part of the surface
itself, the whole picture in Fig. 2 thus representing a small part
of the two solid surfaces in contact.

Note that here and in the rest of the paper, we give all
quantities in dimensionless form. In order to restore physical
units we need to reintroduce the units of the fundamental
quantities: distance along the h direction (z), along the surface

012407-2



FRICTIONAL DYNAMICS OF VISCOELASTIC SOLIDS . . . PHYSICAL REVIEW E 92, 012407 (2015)

(x), force (f), and time (t), so for instance the previous unit
value of f th means f th = 1f, spring constants k1,k2 are given
in units of fx2/z, k0 is in units of f/z, etc.

III. UNIFORM DRIVING PROTOCOL

At long times, under a driving performed at constant veloc-
ity V , the solution of Eqs. (1) and (2) becomes independent
of the initial condition and, in mean field, two phases are
observed: for small V we find a limit cycle solution that
corresponds to a stick-slip phase, whereas for large V a
stationary solution exists. The stationary value of the friction
force, σ (V ), can be computed analytically for g(z) = δ(z − z)
using the crucial remark that if a steady sliding regime exists
then in this regime h moves with velocity V . In particular, h =
V t − σ (V )/k0. In the stationary regime the k2-plus-dashpot
branch shown in Fig. 2(a) can also be thought of as connecting
hi with w = V t , instead of h, as indicated in Fig. 2(b). This
is so because the additional stretching induced by the time-
independent shift, w − h = σ (V )/k0, is quickly absorbed by
the dashpot, without altering the forces in any manner.

The model in Fig. 2(b) coincides with the one studied by
Dobrinevski, Le Doussal, and Wiese in Ref. [28] and can
be solved exactly. In particular the friction force writes (see
Appendix C)

σ (V ) = f th −
[
V ηu − zk2

ezk2/V ηu − 1

]
− z

2
(k0 + k1), (4)

and it is bounded by the two limiting values

σ (V → 0) = f th − z

2
(k0 + k1), (5)

σ (V → ∞) = f th − z

2
(k0 + k1 + k2). (6)

Note that:
(1) The friction force decreases as the driving velocity

increases, an effect called velocity weakening, and observed
in tribology experiments for different materials, especially at
very low velocities [25,29].

(2) The velocity weakening displays a characteristic 1/V

decay at large V .
(3) The dependence on k0 and k1 is limited to the last term

in Eq. (4), which accounts for a constant shift of the whole
σ (V ) curve.

Velocity weakening is a necessary link between the static
(V = 0) and kinetic (V > 0) friction coefficients, and as such
is known to be crucial in the triggering of instabilities in sliding
systems, leading to stick-slip motion [6] and to the existence
of earthquakes in sliding tectonic faults [30]. For a review
on nanoscale models of friction and experimental results
on nanotribology one should consult Ref. [31] or the letter
[32], which contains accessible references to the literature.
In our model, velocity weakening is a direct consequence
of the viscoelastic relaxation. In fact, the model without
viscoelasticity lacks any velocity dependence of the friction
force, as in that case there is no internal time scale to compete
with the driving time scale. It should be noted that the most
commonly observed velocity-weakening friction law is only
logarithmic in V but cannot be expected here because we

( )

FIG. 3. (Color online) Evolution of the stress σ over time for
three velocities. At slow driving, V = 0.001 (large amplitude), V = 5
(small amplitude), the stress oscillates periodically, with an amplitude
that we denote �σ (V ). At faster driving, V = 9.8 (lower curve,
almost always constant), the stress reaches a stationary value after
a very short transient. The precise choice of initial condition only
impacts the transient regimes. We used k0 = 0.01, k1 = 0.1, k2 = 0.9,
and z = 0.1.

introduced a single relaxation time scale in a mean-field model.
This echoes the results found in Ref. [33], where a 1/V

velocity-weakening law is found to occur in a noninteracting
block model with random friction coefficients, where the
relaxation time scale is present thanks to the noninstantaneous
slips. One may also note that we do not expect any of
the velocity-strengthening scenarios (as those proposed in
Ref. [34]) to occur either, since we do not account for any of
the faster mechanisms that become relevant under fast driving.

We now turn on the numerical study of the mean-field
version of Eqs. (1) and (2) using an uncorrelated distribution
of pinning wells, with mean z̄, namely g(z) = z̄−1e−z/z̄. In
practice we implement the Fokker-Planck method used in
Ref. [8], adapted to the case of finite driving velocity. All
technical details are left to Appendix B.

In Fig. 3, the evolution of the stress over time is compared
for three values of the velocity: at slow driving velocities the
stress σ (t) oscillates periodically with an amplitude denoted
�σ (V ), while at fast driving a stationary value is reached
[i.e., �σ (V ) = 0]. Note that the amplitude �σ (V ) of the
oscillations is also the width of the stress drops or “gaps”
that occur during the system-size events.

This behavior points to a bifurcation of the dynamics as
velocity is reduced. To study this effect, we report in Fig. 4 the
maximum and minimum of the friction force over time, as a
function of the driving velocity V , for various values of k0. We
observe that the stress gap vanishes smoothly at the transition
point V = V c, pointing to a “second-order” dynamical phase
transition in the order parameter �σ . In Fig. 5 we show the
full phase diagram of the system in the k0-V plane. There,
for various sets of (k1, k2) we observe a divergence of V c as
1/k0. This 1/k0 dependence at low k0 comes directly from the
uniform increase of the pulling force as k0V t and implies that
for any non zero values of k1, k2, and V , there will always be
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FIG. 4. (Color online) Friction force against driving velocity, for
different values of k0 (k0 = 0.3, 0.1, 0.01, 0.001, 0.0001, from left to
right); and constant k1 = 0.1, k2 = 0.9, z = 0.1. In the slow driving
regime (on the left), motion occurs mostly through the abrupt slips
during which stress falls from the stress before slip, σB (up), to the
stress after slip, σA (down). In the faster driving regime, the dynamics
is stationary and friction decreases with velocity. Crosses indicate the
values of V for which the numerical integration has actually been
performed.

a value of k0 below which some stick-slip dynamics occurs,
even at very large velocities.

In the stationary regime, our simulations confirm, overall,
the friction behavior of Eq. (4). In particular, in Fig. 6 we

stick-slip

steady slip

FIG. 5. (Color online) Phase diagram in the k0-V plane, for
different sets of (k1,k2) values: from bottom to top we used
(k1 = 0.0, k2 = 1.0), (0.1, 0.9), (0.5, 0.5), (0.9, 0.1). In the lower-
left region, the system behaves in a nonstationary way; i.e., we have
stick-slip motion. For k0 � k2, the system is never nonstationary, even
at quasistatic driving, as predicted in Ref. [35]. The bold dashed line
has slope one, indicating a scaling of the critical velocity as V c ∼ k−1

0

for small k0’s. The thin dashed vertical lines indicate the asymptotic
behavior V c → 0 when k0 → k−

2 .

FIG. 6. (Color online) Velocity weakening in the steady-slip
regime (V > V c), far from the critical point. We observe that σ

decreases when the velocity increases. For V → ∞, the decay in the
friction force toward the limiting large-velocity value σV =∞ goes as
∼V −1. Inset: plot in the log-log coordinates. The dashed line gives
the pure power law with exponent −1. We used the same color code
as in previous figures (curves that go to larger values are the lower
k0’s).

observe a clear velocity weakening with a characteristic 1/V

decay toward σ (V → ∞) = 1 − (k0 + k1 + k2)z̄/2.

IV. SLIDE-HOLD-SLIDE PROTOCOL

Slide-hold-slide experiments are an important tool in the
investigation of the tribology of solids. When the sliding of a
solid is interrupted for some time �t , the contacts at the surface
of the solid can strengthen over time, so that when sliding is
resumed, a peak in the friction force has to be overcome before
one recovers the stationary friction force. The amplitude of
the friction peak increases with the hold time �t since the
relaxation is more effective when it has more time to act.
Our model has all the necessary ingredients to reproduce the
peak in the friction force after a hold period. In fact, when
driven at a finite velocity, the viscoelastic elements do not
have the time to completely relax to the most convenient (i.e.,
lowest energy) configuration at each global position. If a hold
time is given to the system, the mechanical energy reduces as
the viscoelastic elements relax. Upon resuming driving, this
lower-energy configuration requires a larger stress to initiate
motion again. Thus the effect is expected to become stronger
as the hold time increases, saturating at hold times much larger
than the viscoelastic relaxation time.

To simulate this process, we set the driving velocity V to a
value at which a steady sliding is observed. Once we reached
a stationary dynamics, the driving is stopped for some time
interval �t and then resumed. The evolution of the friction
force during this protocol in our model is shown in Fig. 7
(left). The height of the friction peak as a function of the hold
time �t is shown in Fig. 7 (right).

We observe some similarities and some differences when
comparing our results with experimental observations. In
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FIG. 7. (Color online) Slide-hold-slide experiment. Left: Evolution of the stress σ over time under this protocol, around the time when
driving is resumed (t = 0.015 here). The driving velocity is V = 1000. Right: For many different hold times �t , we record the maximal
deviation (�σ )max from stationary stress (blue points). This deviation corresponds to the gap between static and kinetic friction coefficient. In
our model we observe a linear growth of the gap with �t while in experiments a logarithmic increase is measured. The dashed line gives the
purely exponential saturation: �σmax = �σ∞(1 − e−�t/τ ), with τ = 2 and �σ∞ ≡ �σmax(�t = ∞).

experiments, during the hold time the stress shows a relaxation
toward some lower value, something that is not observed in our
model. The reason is that stress relaxation can occur only if
some secondary avalanches (aftershocks) are triggered by the
viscoelastic relaxation. When the pinning thresholds f th have
a single value, then aftershocks are excluded and the decrease
cannot happen. However, in models with a wide distribution
of pinning thresholds this relaxation has been observed [20]
and is compatible with experiments.

Qualitatively, the friction peak is similar in our simulations
and in experiments: in both cases its height increases as a
function of the hold time, but in experiments the increase is
usually reported to be logarithmic, while here we observe an
exponential saturation at large �t . The reason for this differ-
ence is that our model contains only a single relaxation time
constant, which naturally defines a typical time scale, above
which the system is fully relaxed and thus no longer evolves.

V. ANALYSIS IN TERMS OF RATE-AND-STATE
EQUATIONS

It has been long realized that the friction force cannot be
described by a single valued function of the instantaneous
velocity. The history of the contact plays an important role in
determining the actual friction force. Our model is an example
of such a case, since the value of the friction force depends on
the state of the viscoelastic elements, which in turn depend on
the history of the system. We thus briefly recall the standard
rate and state formalism, and then show how it provides an
appropriate framework to understand our results.

A. The RS formalism

Phenomenologically, the behavior of frictional contacts has
been successfully described through the formalism named
rate-and-state (RS) friction, originated in the works of Di-
eterich and Ruina [26,27]. Instead of assuming that there
exists only a kinetic and a static friction coefficient, the RS

formalism assumes that the friction coefficient continuously
depends on the relative velocity v between the two surfaces
(the rate variable) and on a state variable usually called θ .
We recall that by definition, the friction coefficient μ acts as
a threshold for the friction force σ actually arising from the
contacts: we always have σ � μFN , where FN is the force
normally applied on the solid. The usual RS form for μ(v,θ ) is

μ(v,θ ) = μ0 + a log(v) + b log(θ/Dc), (7)

where a, b are positive constants. Note that we use a small v

to indicate the instantaneous velocity, which may differ from
the driving velocity V . The a term describes the so-called
“direct effect,” the increase of friction with increase of the
relative velocity commonly observed in many materials.

The state variable θ is supposed to follow a second equation,
usually written

θ̇ = 1 − θv

Dc

, (8)

where Dc is the “critical slip distance,” i.e., the amount of slip
(of the center of mass of the sliding block) necessary to break
a newly formed junction.

Under steady sliding, we have θ̇ = 0, θ = Dc/v, and the
RS Eqs. (7) and (8) simplify into

μ(v,θ ) = μ0 + (a − b) log(v). (9)

If b > a this equation describes the phenomenon of velocity
weakening, namely a reduction of the friction coefficient when
velocity increases. Velocity weakening is a crucial ingredient
involved in the description of seismic phenomena [30]. In
the case in which the contact is at rest (v = 0), we get
θ̇ = 1, i.e., θ (t) = θ0 + t , and according to Eq. (7) we obtain
an increase of the static friction coefficient with the time
of contact. RS equations have been used to describe the
behaviors of frictional systems under a variety of nonsteady
sliding conditions, providing an excellent phenomenological
description for numerous systems.
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B. Interpretation of our model in terms of RS equations

Under uniform driving, our model displays two features that
are common to many frictional systems: a velocity-weakening
friction law and a bifurcation to a stick-slip regime for low
driving velocities. We have described in Sec. III how the
velocity-weakening effect appears in the model. Now we will
see that assuming the existence of this effect, the bifurcation to
a stick-slip regime at low velocities is captured in all its detail
by the use of the RS formalism.

The usually assumed form Eq. (9) of the friction coefficient
is not appropriate to accurately describe the results observed
in our model in the steady sliding regime. On the one hand, our
model does not have any ingredient that could produce a direct
effect in the RS Eq. (7), suggesting that we should use a = 0.
On the other hand, the logarithmic b term is not appropriate in
our case, mainly because we have considered only a relaxation
mechanism that is described by a single time constant, the one
associated to the dashpot and k2 springs. Instead, from our
simulations of Sec. III (as for instance those in the right part
of Fig. 4) we can construct a simple analytical expression for
the friction coefficient in the steady sliding regime:

μsteady � f th − z̄

2
(k0 + k1 + k2) + 0.007

v + 0.078
, (10)

where the numerical values correspond to k1 = 0.1, k2 = 0.9,
and z = 0.1. We remark that this is just a simple, although
accurate fitting to the numerical results that allows the
analytical treatment presented below, but it has no additional
particular significance.

We now assume that under any nonsteady-sliding situation,
the value of the friction coefficient can still be written in terms
of the function found in the steady state. Using the fact that in
the steady state v ≡ Dc/θ , we write

μ(θ ) = f th − z̄

2
(k0 + k1 + k2) + 0.007

Dc/θ + 0.078
. (11)

The time evolution of θ will be assumed to be described by the
standard RS evolution, Eq. (8). The sliding contact is coupled
to a driving spring pulled at constant velocity V , so that the
pulling force reads

σ = (V t − x)k0, (12)

where x is the spatial average coordinate of the contact, i.e.,
ẋ = v. This force σ is also the actual instantaneous friction
force arising from the contacts. Our aim is now to determine
the temporal evolution of x and σ and reproduce the bifurcation
behavior that we obtained in Sec. III.

If steady sliding is assumed, the force μFN must balance
the pulling force, and we get θ = Dc/V , v = V . However,
steady sliding may be unstable due to the following process:
if at some moment x is stopped, the pulling force starts to
increase according to σ = σ 0 + V tk0. On the other hand, the
friction force starts to increase due to the increasing of θ ,
according to μ = μ(θ0 + t). If the initial increase of μFN

is more rapid than the increase of σ , the contact will stay
stuck as long as μFN > σ , until eventually the pulling force
becomes larger than the pinning force, and a rapid slip moves
the value of x to a new position. If μFN < σ , slip occurs and
is essentially instantaneous since we have not added inertia to

FIG. 8. Friction force as a function of velocity for the same set of
values as described in the caption of Fig. 4, using the RS formalism.
The form of the steady-sliding part of the curves is introduced by
hand. We used a value Dc = 0.06 to achieve the best fitting. The RS
formalism yields the form of σmax and σmin for V < V c.

the contact. During the slip stage, the value of θ is reduced
following Eq. (8), which in the rapid slip limit can be written
as dθ = −θdx/Dc and analytically integrated. Slip finishes
when σ drops below μFN again, and a new stick-slip cycle
begins. We have integrated Eqs. (11), (8), and (12) and in fact
obtained steady sliding for large V , and a stick-slip behavior at
small V , in which the value of σ oscillates between two values,
σmax and σmin. In Fig. 8 we plot the values of σmax and σmin (or
the single value σ in case of steady sliding) as a function of
V for the same set of k0 values used in Fig. 4. It can be seen
that the value of Dc enters in the problem only in combination
with the spring stiffness, as kDc. In Fig. 8 we used Dc = 0.06
to achieve the best fitting with the results of Fig. 4. We note
that as suggested by its original meaning, Dc is of the order
of z, which is the distance at which the correlations between
pinning forces disappears. In addition to the coincidence of
the two figures in the steady-sliding regime [which is enforced
by hand through the choice of the μsteady function in Eq. (10)],
we see that the RS formalism gives a very good coincidence
in the low-velocity, stick-slip regime.

A careful analysis of our RS equations near the bifurca-
tion point shows that the two values σmax and σmin depart
symmetrically from the branch of steady sliding and are
such that σmax − σmin ∼ (V c − V )1/2, which corresponds to
a Hopf bifurcation. Note, however, that the validity range of
these scalings becomes progressively smaller as k0 is reduced,
and in the k0 → 0 limit we get the scaling σmin ∼ const,
σmax − σmin ∼ (V c − V ).

VI. CONCLUSION

We have presented a detailed analytical and numerical
analysis of a viscoelastic model of friction in mean-field
approximation, in which the driving velocity competes with
the timescale of the viscoelastic effects within the system.

Our main findings are the following. At low driving
velocities, we obtain a stick-slip dynamics with amplitudes
of the stress oscillations that decrease with increasing driving
velocity (V ) or increasing driving stiffness (k0). Beyond a
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certain critical driving velocity (V > V c), the amplitude of
these oscillations becomes zero; i.e., the sliding is smooth.
The transition between stick-slip and smooth-sliding occurs
in a continuous manner and is very well described by a phe-
nomenological rate-and-state analysis. In the smooth-sliding
regime the friction force reduces as a function of the driving
velocity, reproducing the well known velocity-weakening
phenomenology. In our model, this effect is originated in
the existence of viscoelastic elements that set an additional
timescale for the dynamics. Finally, the response of our model
to intermittent driving allowed us to reproduce qualitatively an
important aspect of the aging of contacts, namely the increase
of the static friction with time of contact at rest. Overall, we
believe our model reproduces many well-known features of
real tribology and gives a well-defined model on which many
assumptions and predictions of phenomenological theories
(like rate-and-state equations) can be investigated in depth.
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APPENDIX A: DETAILED DERIVATION OF
THE EQUATIONS OF MOTION

We first study the one-dimensional case, as presented in
Fig. 9.

The interface is decomposed in blocks of mass m, labeled
i and moving along horizontal rails hi . The action of the
dashpot is to resist the change in φi − hi via viscous friction,
with a resulting force on hi given by ηu∂t (φi − hi). The
blocks move in a medium with some effective viscosity η

and we study the overdamped regime, m∂2
t hi � η∂thi . As

each block is described by two degrees of freedom hi and
φi , the time evolution is governed by two equations. We now
provide a pedestrian derivation of the equations, for the sake of
completeness. The first equation comes from the force balance
on hi :

η∂thi = f dis
i (hi) + k0(w − hi) + k1(hi+1 − hi)

+ k1(hi−1 − hi) + ηu∂t (φi − hi) + k2(φi−1 − hi).

(A1)

The second equation is derived from the force balance on φi :

0 = k2(hi+1 − φi) + ηu∂t (hi − φi), (A2)

where we assume that the internal degree of freedom φi has
no mass. Similarly, the force balance on φi−1 yields

0 = k2(hi − φi−1) + ηu∂t (hi−1 − φi−1). (A3)

In order to let the Laplacian term k2(hi+1 − 2hi + hi−1)
appear, we introduce the variable

ui ≡ φi − hi + hi−1 − φi−1, (A4)

which represents the elongation of the dashpot elements
connected to site i. We inject Eq. (A2) into Eq. (A1) to get rid
of the time derivatives, and we subtract Eq. (A3) from Eq. (A2)

k2 k1

hi φi
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FIG. 9. (Color online) Sketch of the one-dimensional viscoelas-
tic interface model. The interface itself (bold black line) consists in
blocks set at discrete lattice sites i, i + 1, . . . along the x axis (in
higher dimensions, x ∈ Rd ). The blocks can evolve along the z axis:
they are identified by their locations hi, hi+1, . . . (empty squares) and
bound together via a combination of springs (k1, k2) and dashpots
(ηu). The viscoelastic interaction introduces an internal degree of
freedom φi , represented by full squares (blue). Driving is performed
via springs k0 linked to the position w = V t (thin purple lines). The
disorder force f dis

i (red) for the site i derives from a disordered energy
potential Edis

i (z) (gray).

to obtain Eq. (A6):

η∂thi = f dis
i (hi) + k0(w − hi)

+ (k1 + k2)(hi+1 − 2hi + hi−1) − k2ui, (A5)

ηu∂tui = k2(hi+1 − 2hi + hi−1) − k2ui. (A6)

A more elegant notation using the Laplacian operator ∇2 is

η∂thi = f dis
i (hi) + k0(w − hi) + k1∇2

i hi + k2
(∇2

i hi − ui

)
,

ηu∂tui = k2
(∇2

i hi − ui

)
. (A7)

To generalize this to higher dimensions (on a square lattice),
one simply has to connect each block hi to its neighbors via
viscoelastic elements, using a single orientation per direction.
The equations obtained are exactly Eq. (A7) if we reinterpret
the label i as referring to d-dimensional space, the Laplacian
∇2 as the d-dimensional one, and the ui variable as

ui =
d∑

j=1

(φj − hj ) +
2d∑

j ′=d+1

(hj ′ − φj ′), (A8)

where indices j denote the d first neighbors, connected via
a dashpot followed by the spring k2 (and k1 in parallel) and
indices j ′ denote the last d neighbors, connected via the spring
k2 followed by a dashpot (and k1 in parallel).

We study the mean-field limit via the fully connected
approximation. In practice, each block position hi interacts
with the positions of all other blocks via N − 1 springs of
elastic constant k1/N (N being the number of blocks in the
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system) and via N − 1 viscoelastic elements (i.e., spring in
series with a dashpot). As usual for fully connected systems,
the final equation for the site i is obtained by replacing any
occurrence of �hi with h − hi .

APPENDIX B: THE NUMERICAL METHODS

In previous works [8,35] we showed how to translate the
stochastic dynamics into a master equation (or Fokker-Planck
equation), but only in the case in which V → 0. Here we
generalize the procedure to any velocity V . Our Cython code
is fully available [36].

It is useful to describe the dynamics using the local
variable, δi :

δi ≡ 1 − k0(w − hi) − (k1 + k2)(h − hi) + k2ui, (B1)

which represents the amount of additional stress that a site
can hold before becoming unstable: as long as δi > 0,∀i, the
block is stable and its position, hi , remains fixed when δi = 0
the block jumps to the next pinning well at a random distance
z: hi → hi + z. To define the dynamics in terms of δ variables,
we need to split it in a fast part δF and a relaxed one δR:

δF
i = 1 − k0(w − hi) − (k1 + k2)(h − hi),

(B2)
δR
i = k2ui,

such that δi = δF
i + δR

i . The blocks dynamics is controlled by
three processes:

(i) The avalanches. When a block is unstable (δi � 0),
it moves to the next pinning wells: δF

i 
→ δF
i + z(k0 + k1),

with z drawn from g(z). Each jump z is followed by a stress
redistribution δF

j 
→ δF
j − zk1/N . These drops can trigger

other instabilities. The characteristic duration of such an
avalanche is τ0 = η0/ max(k0, k1, k2).

(ii) The driving. External driving increases over time: for
instance w = V t in the uniform driving protocol. In terms of
δ, driving means that over a time step dt , δF

i 
→ δF
i − k0V dt .

This driving can happen until a new instability is triggered [step
(i)]. The characteristic time scale of driving is τD = z/V .

(iii) The relaxation. In absence of instabilities, the hi’s are
constant, and Eq. (2) reduces to

δR
i (t) = k2(h − hi) + [

δR
i (t0) − k2(h − hi)

]
e
−k2

t−t0
ηu , (B3)

where t0 is the time at which the last avalanche occurred. Note
that hi does not evolve during relaxation or driving, so that
relaxation can happen until a new instability is triggered [step
(i)]. The characteristic time scale of relaxation is τu = ηu/k2.

In this paper we study the case τ0 � τu ∼ τD and focus
on the case of the mean-field model where fluctuations vanish
and the description of the system via a simple probability
distribution becomes exact. Indeed, the sole distribution P (δ)
does not provide enough information to fully characterize the
system and its evolution. We consider the joint probability den-
sity distribution P (δF , δR). The quantity P (δF , δR, t)dδF dδR

represents the probability for a site drawn at random to have
a particular set of values of δF , δR and can be computed
numerically starting from the dynamical rules that apply to
the δ’s.

To be concrete, we discretize P (δF , δR) with a bin ε. The
distribution probability is then a matrix Pi,j , where P (δF =

εi,δR = εj )dδF dδR = Pi,j . We use a time step dt = ε/k0V

and define the constant κ = k0 + k1 + k2.
The finite velocity is expressed through the fact that every

time there is some driving of w by a quantity dw = V dt , there
is also relaxation during a time dt . In particular, we define the
relaxation factor R(dt) = 1 − e−dtk2/ηu . For the avalanches,
two crucial quantities should be defined: (1) the fraction of un-
stable sites P tot

unst ≡ ε
∑

i,j |i+j<0 Pi,j = ε
∑

j

∑
i ′|(i ′+j<0) Pi ′,j ,

and (2) the stress redistribution P tot
unstz(k1 + k2) that follows the

stabilization of the unstable sites. When P tot
unstz(k1 + k2) > 1,

the avalanche increases geometrically over the time steps,
which is why it is practical to define a “critical” value
P c

0 = 1
z(k1+k2) .

The sketch of the algorithm is the following.
(1) Relaxation process:

(i) Compute j∞(i), the bin associated to the fully
relaxed state, δR

i,∞ = k2
κ

(δF − δF ):

j∞(i) = Int

[
k2

−i + ∑
i ′,j i ′P (i ′,j )

κ

]
.

(ii) Relaxation corresponds to shift1 Pi,j to Pi,j+Shift

(where Shift = Int{[j∞(i) − j ]R(dt)}), set r = 1 and per-
form the Avalanche process.
(2) Avalanche process: consists of driving and jumps.

(i) Driving:

Pi,j ← Pi,j + (Pi+1,j − Pi,j )r. (B4)

(ii) Compute Punst(j ) = ∑
i ′|i ′+j<0 Pi ′,j .

(iii) Jumps:

Pi,j ← Pi,j + ε

κ
g

(
ε(i + j )

κ

)
Punst(j ),

(B5)
Pi,j ← 0 if i + j < 0.

(iv) Compute P0 = ∑
i=−j Pi,j .

(v) If P0 � P c
0 , set r = 1 and perform the Avalanche

process again.
(vi) Else

(a) Compute P tot
unst = ∑

j Punst(j ).
(b) If P tot

unst � P c
0 /100, set r = min(1,P tot

unst/P
c
0 ) and

perform the Avalanche process again.
(c) Else, perform the Relaxation process.

Here we used the exponential distribution with z̄ = 0.2 and
an upper-length cutoff g(z) = 1/ze−z/z�(z)�(10 − z), where
� is the Heaviside function. We always used ηu = 1.

Above V c we consider that the stationary regime is reached
when the relative variation between the last three values of σ

does not exceed 1%. Below V c we ask that the stress drops
�σ of three consecutive global shocks change less than 1%.
Finally, the critical value V c is found by decimation: starting
with a very small Vmin = 1e−4 and very large Vmax = 1000,
simulations are repeated between the two boundaries until the
relative difference between those two boundaries is less than

1Instead of crudely taking the integer part of [j∞(i) − j ]R(dt), it
is numerically much more stable to split the shift over the two bins,
using a linear interpolation.
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FIG. 10. (Color online) Convergence of the stress to its limit
value σ (V ), as the binning ε decreases. We selected velocities V

close to but larger than V c for the five values of k0 studied (from top
to bottom: decreasing k0 and increasing V ). Convergence is reached
for the three largest values of k0.

1%. This means that a larger absolute tolerance is allowed for
larger values of V c.

An issue limiting higher precision is the presence of
numerical instabilities when approaching to the critical point.
In Fig. 10 the dependence of σ on the binning ε is shown.
For large values of k0 (0.3, 0.1, and 0.03), it is clear that we
converge toward a plateau σ (V ) when the binning decreases.
The small values of k0 represent a challenge, because the
precision required from the algorithm is ∼zk0. However,
comparing the expected values (dashed lines) and the behavior

at larger k0’s, it can be expected that smaller binnings would
produce the expected results.

APPENDIX C: ANALYTICAL SOLUTION FOR
THE STATIONARY REGIME

Let us now solve the model of Fig. 2(b). We call f 0(t),
f 1(t), and f 2(t) the forces coming from the branches with the
k0, k1, and k2 springs. The coordinate hi will jump to hi + z

each time

f 0(t) + f 1(t) + f 2(t) = f th. (C1)

Between jumps, the different forces behave as

f 0(t) = f 0
a + k1V t, (C2)

f 1(t) = f 1
a + k0V t, (C3)

f 2(t) = V η + (
f 2

a − V ηu

)
exp

(
−k2t

ηu

)
, (C4)

where the a subindexes on the right indicate values of the
forces right after the jump. This expression holds until the
next jump that occurs at time t ≡ z/V . At this moment,
the forces must satisfy Eq. (C1), and we obtain

f 0
b = f 0

a + k1z, (C5)

f 1
b = f 1

a + k0z, (C6)

f 2
b = V η + (

f 2
a − V ηu

)
exp

(
− k2z

V ηu

)
, (C7)

where the b subindex stands for the values right before the
jump. In addition, we have f 1

b = −f 1
a since the average value

of f 1 must vanish. Also, since the dashpot is rigid at the jump,
we get f 2

b − f 2
a = zk2. From all these equations all forces

(f 0
b , f 0

a , f 1
b , f 1

a , f 2
b , f 2

a ) can be calculated. In particular we
are interested in the average friction force σ which is given
by σ = (f 0

a + f 0
b )/2. Through a straightforward elimination

procedure we get the Eq. (4) given in the main text.
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