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In this paper we present a complete theoretical analysis of the steady-state photocarrier gratingsSSPGd
method, starting from the generalized equations that describe charge transport and recombination under grating
conditions. The analytical solution of these equations and the application of simplifying assumptions leads to
a very simple formula relating the density of statessDOSd at the quasi-Fermi level for trapped electrons to the
SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG
curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG
experiment, illustrating the case when measurements are performed at different illumination intensities. We
propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing
a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the
DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated
amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS
reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG
and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained
from both methods are in very good agreement.
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I. INTRODUCTION

The localized states in the gap of amorphous semiconduc-
tors determine the transport properties of these materials, so
a detailed knowledge of the density of statessDOSd within
the energy gap is of great interest. Several methods have
been proposed to probe the DOS as a function of energy, like
field-effect,1 space-charge-limited currents,2 capacitance,3

transient photocurrent,4 photoemission,5 time of flight,6 opti-
cal absorption,7 thermally stimulated conductivity,8,9 modu-
lated photoconductivity in the high frequency10 and low
frequency11 regimes, and steady-state photoconductivity.12,13

The methods used to estimate the DOS can be divided into
two categories:sid methods where an initial DOS described
by several parameters is proposed, obtaining the parameter
values from a fit of the experimental data with the results of
numerical calculations resulting from a theoretical descrip-
tion of the experiment;sii d methods where the experimental
data are used directly to determine the DOS, based on a
reconstruction formula derived from the theoretical analysis
of the experiment. The drawback of the methods belonging
to the first category is that no less than twenty parameters are
involved in the description of the DOS, so the uniqueness of
the fit cannot be ensured—even when a single set of param-
eter values is used to fit the results of several measurements.
The main drawback of the second group of methods is that
the DOS is only obtained over a limited energy range. In a
recent publication14 the authors presented a new method be-
longing to the second category, based on steady-state photo-

current gratingsSSPGd measurements. In this work we dis-
cuss the method in more detail, presenting new experimental
results for hydrogenated amorphous silicon samples.

The SSPG technique was introduced in 1986 by Ritter,
Zeldov and Weiser15 as a methodshereafter referred as the
RZW methodd to measure the ambipolar diffusion length
sLambd of low-mobility semiconductors. The technique be-
came a standard method for material characterization in sev-
eral laboratories, and it was applied not only to amorphous
silicon and its alloys16–18 but also to microcrystalline
silicon19,20 and to crystalline materials.16,21 Several authors
analyzed different aspects of the SSPG method, contributing
to an understanding of the physics involved. In their original
treatment, Ritter, Zeldov and Weiser presented a simple for-
mula to obtainLambunder the assumption of ambipolar trans-
port and space-charge neutrality.15,16 The same authors per-
formed later a more detailed analysis of the method,
numerically solving the transport equations in the small-
signal approximation.22 They established the limits of valid-
ity of the simple formula to getLamb from SSPG measure-
ments, namely under low applied electric fields and in the
“lifetime regime,” a regime where the dielectric relaxation
time td is much smaller than the carrier lifetimes. In 1990,
Balberg23 obtained analytical solutions for the transport
equations in the limit of a low applied electric field, thus
further clarifying the conditions that allow an interpretation
of the experimental results in terms ofLamb. Later, Li24 and
Balberg25 solved independently the transport equations under
the influence of an externally applied electric field, obtaining
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analytical solutions in the regions of low and high fields.
Hattori and co-workers26 used a second-order perturbation
approach to solve the SSPG transport equations in the small-
signal approximation, revealing deficiencies of the previous
analyses. These authors studied the light-intensity depen-
dence of the transport parameters, and they proposed a
method to correct the apparent diffusion length that is ob-
tained when the RZW formula is used to treat the data.

Most of the previously mentioned analyses of the SSPG
method described the transport equations based on the con-
cept of drift or trap-limited mobilities and a phenomenologi-
cally introduced recombination lifetime, treating the photo-
carrierssfree plus trappedd as a whole. On the other hand,
Abel and Bauer27 based their description of the SSPG experi-
ment on the free carriers concentration and their extended-
states mobility-lifetime products. These authors presented a
generalized theory of the SSPG leading to an analytical ex-
pression capable of fitting experiments in which the external
electric field and the period of the photocarrier grating are
varied simultaneously. At the same time, these authors imple-
mented numerical simulations to validate their analytical ex-
pressions, and they applied their method to measurements
performed on hydrogenated amorphous siliconsa-Si:Hd
samples. In spite of their great contribution to the under-
standing of the SSPG method, Abel and Bauer treated the
carriers recombination phenomenologically, without specify-
ing the microscopic mechanisms. For that reason, the density
of recombination centers does not appear in their formula-
tion.

Finally, Balberg and co-workers applied the SSPG
method in conjunction with steady-state photoconductivity to
estimate the DOS of amorphous28,29 and microcrystalline
silicon.30 The procedure used by these authors consisted on
fitting the temperature dependence of four phototransport
propertiessnamely, the two carriers mobility-lifetime prod-
ucts and their light intensity exponentsd with the results of
computer simulations arising from a pre-suggested DOS.
Thus, this method belongs to the first category mentioned
above. To our knowledge, no attempts to derive the density
of localized states directly from the application of a recon-
struction formula to SSPG measurements had been presented
until our recent paper.14

This work is organized as follows. In Sec. II we present
the basic equations describing the SSPG experiment and we
solve them analytically to obtain a generalized expression for
the current density under grating conditions. Then we find
simplified expressions applicable in general to intrinsic semi-
conductors, and we propose further simplifications valid for
a-Si:H. Finally, we go to the limit of large grating periods,
showing that the DOS at the quasi-Fermi energy can be ob-
tained from a very simple formula. In Sec. III we verify the
validity of the simplifying assumptions and of the final the-
oretical expression from the results of numerical simulations.
We examine the accuracy of previous theoretical analyses of
the SSPG experiment, and we propose a correction proce-
dure to the RZW formula16 to get the right value for the
minority carriers mobility-lifetime product. We study the
limitations of our method and the range of experimental con-
ditions that ensure its validity, proposing the best experimen-
tal conditions under which the method should be applied. In

Sec. IV we prove the applicability of this new method by
performing measurements ona-Si:H samples. We compare
the results of the new method with measurements performed
by using the modulated photocurrent methods, showing the
good agreement between the DOS determinations. Finally,
we conclude in Sec. V.

II. THEORY

A. Basic equations

The SSPG experiment is usually performed by illuminat-
ing the sample with a steady laser beam of high intensity and
a less intense beam chopped at a pulsationv. The case when
v is increased to a value comparable to the inverse of the
carriers lifetime has been treated in a recent paper by
Nicholson.31 In the following, however, we will assumev
=0; an assumption that does not alter the following treatment
since v is usually chosen very small. When the two laser
beams of intensitiesI1 andI2 interfere on the sample surface
scoordinate xd, an intensity grating Isxd= I1+ I2

+g02ÎI1I2 coss2px/Ld is created, where the grating period is
L=l / f2 sinsd /2dg, l being the laser wavelength andd the
angle between the two beams. The factorg0, which takes
values between zero and one, accounts for the grating quality
due to partial coherence of the beams, mechanical vibrations
or light scattering.16,20 The nonuniform illumination leads to
a spatially modulated generation rate,Gsxd=G0

+DG cosskxd=G0+RebDGejkxc, k=2p /L, j2=−1, and Re
meaning the real part of the complex number. This spatially
modulated generation rate in turn creates free electrons and
holes distributions,nsxd and psxd, with the same period.
However, since electrons and holes have different diffusion
coefficients, the amplitudes and phases of the two distribu-
tions will differ, generating an internal electric field,jintsxd,
that will add to the externally applied electric fieldjext. The
internal electric field is related to the local charge densities
via Poisson’s equation,

djintsxd
dx

=
q

««0
Hpsxd +E

Ev

Ec

f1 − fsE,xdgNDONsEddE− nsxd

−E
Ev

Ec

fsE,xdNACCsEddEJ , s1d

where « is the dielectric constant of the sample,«0 is the
dielectric permittivity of vacuum,Ev is the energy at the top
of the valence band,Ec is the energy at the bottom of the
conduction band,fsE,xd is the occupation function,NDONsEd
is the density of donor statessneutral when occupied and
positively charged when emptyd, andNACCsEd is the density
of acceptor statessneutral when empty and negatively
charged when occupiedd. Though we have solved analyti-
cally the equations describing the SSPG experiment for a
DOS made of different types of statessmonovalent and/or
amphotericd, for clarity we will concentrate here on a single
type of monovalent states.

Both the externally applied electric field and the internally
developed space charge field will contribute to the current
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density under coherent illumination, which is given by

jcoh=
1

L
E

0

L

fqmnnsxd + qmppsxdgfjext+ jintsxdgdx= j0 + D j .

s2d

The carrier concentrationsnsxd and psxd are obtained by
solving the continuity equations for electrons and holes,
which in the steady-state are

Gsxd − Rnsxd = − mn
d

dx
fnsxdjsxdg − Dn

d2nsxd
dx2 , s3d

Gsxd − Rpsxd = mp
d

dx
fpsxdjsxdg − Dp

d2psxd
dx2 , s4d

wherem is the extended-states mobility andD is the diffu-
sion coefficient. Subscriptssn or pd refer to electrons or
holes, respectively. The recombination ratesRsxd are given
by

Rnsxd =E
Ev

Ec

hcnnsxdf1 − fsE,xdg − ensEdfsE,xdjNsEddE,

s5d

Rpsxd =E
Ev

Ec

hcppsxdfsE,xd − epsEdf1 − fsE,xdgjNsEddE,

s6d

wherec is the capture coefficient,esEd is the emission rate,
andNsEd is the DOS.

In the low-modulation condition established whenI1@ I2,
it is expected that the relevant physical parameters vary si-
nusoidally asGsxd does. In general, however, there will be
variable phase shifts, and any quantity can be expressed as
Qsxd=Q0+RebDQejkxc, whereQ0 is the value under uniform
illumination G0, andDQ originates from the spatially modu-
lated term of the generation rateDGsxd. DQ can also be
written asDQ=DQr + jDQi, the indexesr and i standing for
real and imaginary, respectively. This linearizes the system
of coupled differential equationss1d and s3d–s6d, giving rise
to the following system of linear equations:

An 3 Dnr − Bn 3 Dni + Ap
* 3 Dpr = DG,

Bn 3 Dnr + An 3 Dni + Ap
* 3 Dpi = 0,

An
* 3 Dnr + Ap 3 Dpr − Bp 3 Dpi = DG,

An
* 3 Dni + Bp 3 Dpr + Ap 3 Dpi = 0. s7d

The coefficients are given by

An = cnE f1 − scnn0 + endtgs1 − f0dN dE+
qmnn0

««0

3F1 + cnE s1 − f0dtNdEG + k2Dn,

An
* = cnE scpp0 + epdts1 − f0dN dE−

qmpp0

««0

3F1 + cnE s1 − f0dtNdEG ,

Ap = cpE f1 − scpp0 + epdtgf0N dE+
qmpp0

««0

3F1 + cpE f0tNdEG + k2Dp,

Ap
* = cpE scnn0 + endtf0N dE−

qmnn0

««0

3F1 + cpE f0tNdEG ,

Bn = − kmnjext, andBp = kmpjext,

where the energy dependence has been omitted for the sake
of clarity. Integrals are evaluated betweenEv andEc, and we
call t−1=cnn0+cpp0+en+ep.

From the solution of Eq.s7d, analytical expressions for
nsxd, psxd, and jintsxd can be obtained. Inserting them into
Eq. s2d, it is found that

D jsLd =
q2sDni Dpr − Dnr Dpid

2k««0
Hmnf1 + cpE f0tNdEg

+ mnF1 + cpE s1 − f0dtNdEGJ . s8d

The full expression ofDniDpr −DnrDpi is rather complex,

DniDpr − DnrDpi =
DG2

DEN
fsAn − An

*d 3 Bp − sAp − Ap
* d 3 Bng,

s9d

whereDG=g0
2ÎG1G2, G1 andG2 being the generation rates

originating fromI1 and I2, respectively, and

DEN= fAnAp − An
*Ap

* − BnBpg2 + fBnAp + BpAng2. s10d

B. Simplified expressions

The first simplifications that can be done concern the in-
tegrals estimate. These integrals should be calculated over
the whole energy gap fromEv to Ec. However, if the DOS
function does not vary faster than the Boltzmann factoreE/kBT

swherekB is Boltzmann’s constant andT is the absolute tem-
peratured, the exponential variation of the emission rates al-
lows us to restrict the energy range to thebEtp,Etnc interval,
Etp and Etn being the quasi-Fermi levels for trapped holes
and electrons, respectively, which are fixed by the dc illumi-
nation. For instance, in the expression ofAn appears the in-
tegral
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cnE
Ev

Ec

s1 − f0dtN dE= cncpp0E
Ev

Ec

t2N dE+ cnE
Ev

Ec

ent2N dE

< ttFcncpp0ttE
Etp

Etn

N dE+ cnNnG
< ttF 1

tn
+ cnNnG , s11d

where tt is defined by tt=1/scnn0+cpp0d and Nn

=kBTNsEtnd, NsEtnd being the density of states at the quasi-
Fermi level for trapped electrons.tn stpd is the free electron
sholed lifetime, defined for steady-state uniform illumination
as tn=sn0−nthd /G0 for, equivalently,tp=sp0−pthd /G0g, nth

spthd being the thermal equilibrium electronsholed density.
For insulators or intrinsic semiconductors in the high-
generation regimen0@nth and p0@pth, so from Eq.s15d in
Ref. 32 we have

1

tn
= cncpp0ttE

Etp

Etn

N dE,
1

tp
= cpcnn0ttE

Etp

Etn

N dE.

s12d

We will also callNp=kBTNsEtpd, NsEtpd being the density of
states at the quasi-Fermi level for trapped holes. The factors
Nn and Np arise from the sharp peaked functionsent2 and
ept2, centered atEtn andEtp, which can be approximated by
Dirac d functions provided thatNsEd does not vary with
energy faster than the emission coefficients.

The second approximation that can be done is to neglect
the 1 in the expressionsb1+cpe f0tNdEc and b1−cnes1
− f0dtNdEc. Indeed, a rapid estimate of these expressions,
taking the case ofa-Si:H and using the above approxima-
tions, shows that the terms containing the integrals are much
higher than unity. Actually, both expressions come from Eq.

s1d, where the “ones” express the contribution of free carriers
to the charge neutrality while the integrals express the gap
states contribution. Neglecting the “ones” simply means as-
suming that charge neutrality is mainly controlled by the
deep states and not by the free carriers, which must be the
case in defective semiconductors.

Using these approximations we will first simplify Eq.s9d,
before giving a final approximate expression forD jsLd. If
we call Xn=cntnNn andXp=cptpNp, Eq. s9d transforms into

DniDpr − DnrDpi

= −
DG2kjext

DEN3 tntp
HF tt

td
s1 + Xnd + k2Ln

2Gmptp

+ F tt

td
s1 + Xpd + k2Lp

2GmntnJ , s13d

whereLn
2=Dntn, Lp

2=Dptp, andtd is the dielectric relaxation
time, given by

1

td
=

qsmnn0 + mpp0d
««0

=
q

««0
smntn + mptpdG0. s14d

The expression ofDEN is rather long, since, if we write
DEN=A2+B2, we obtain

A2 = 3
cpp0

tt

tp
S 1

tn
+ cnNn + cnNpDS tt

td
s1 + Xpd + k2Lp

2D
+ cnn0

tt

tn
S 1

tp
+ cpNp + cpNnDS tt

td
s1 + Xnd + k2Ln

2D
+ mnmpKS tts2 + Xn + Xpd

tdsmntn + mptpd
+ KD + k2mnmpjext

2 4
2

s15d

and

B2 = k2jext
2 3− mpFcpp0ttS 1

tn
+ cnNn + cnNpD + mn

qtt

««0

n0

tn
s1 + Xnd + k2DnG

+ mnFcnn0ttS 1

tp
+ cpNn + cpNpD + mp

qtt

««0

p0

tp
s1 + Xpd + k2DpG 4

2

, s16d

where we callK=k2kBT/q.
The complete expression of the denominator can be sim-

plified applying some approximations already introduced by
other groups.23–27 First, we will assume that the experiment
is performed in the “low electric field” regime. The definition
of this regime varies from one author to another, so we will
try to clarify this concept. For instance, Abelet al.27 do not
explicitly specify the limit between “high electric field” and
“low electric field” domains, but the various curves pre-
sented in their workfFig. 6sbd of Philos. Mag. B, Ref. 27g
allows us to estimate that the “low electric field” domain

comprises fields lower than or equal to 200 V/cm. Li gives a
conditionfEq. s54d of Ref. 24g from which, assuming for the
case ofa-Si:H a ratio of ten between electron and hole mo-
bilities and a diffusion length of the order of 150 nm, one
obtains jext!1000 V/cm at room temperature. Balberg25

and Hattoriet al.26 propose another expression for the low
electric field limit that, at room temperature and for a grating
period of 1mm, gives the conditionjext!1600 V/cm.
Clearly, the definition of the “weak field regime” is not strict
and depends on experimental conditions such as temperature,
generation rate, and grating period. Note that Hattoriet al.
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have shown that the weak field condition was “intimately
correlated with the transition between the lifetime and the
relaxation time regimes in the presence of an externally ap-
plied field,”26 so that there is probably not a unique limit for
a given sample. In agreement with the previous authors we
have estimated from our simulations that, ifjext is lower than
,100 V/cm, the term containingjext in Eq. s15d can be ne-
glected compared to the other terms. Moreover, for grating
periods higher than,0.1 mm it can easily be estimated that
B2 is much smaller thanA2.

To further simplify the denominator, we will assume in
the following that the material and the experimental condi-
tions are such that the experiment is performed in the “life-
time regime.” According to previous publications23,24,26,27

this “lifetime regime” is such that the dielectric relaxation
time is much shorter than the carriers lifetimes. It means that
the dominant terms must be those including a 1/td coeffi-
cient. As a consequence, under the preceding conditionssfor
which we will give more details belowd, the two terms in-
volving Ln

2 andLp
2, as well as the lonelyK in the third addend

of Eq. s15d, are all negligible compared to the other terms.
Note that these approximations are even better with increas-
ing grating periods. Consequently,DEN transforms into

DEN=
tt

2

td
23

cpp0
tt

tp
S 1

tn
+ cnNn + cnNpDs1 + Xpd

+ cnn0
tt

tn
S 1

tp
+ cpNp + cpNnDs1 + Xnd

+ mnmpK
s2 + Xn + Xpd
smntn + mptpd

4
2

.

s17d

Introducing an ambipolar mobility-lifetime product as

mta =
mntn 3 mptp

mntn + mptp
, s18d

after some lengthy but easy calculations we end with

DEN1/2 =
q

««0
G0tt

mnmp

mta
s1 + Xnds1 + Xpd31 +

cptp

cntn + cptp

Xn

s1 + Xpd
+

cntn

cntn + cptp

Xp

s1 + Xnd

+ Kmta
s2 + Xn + Xpd

s1 + Xnds1 + Xpd
4 . s19d

With the same approximations as those presented in Eq.s11d, the numerator ofD jsLd is

NUM = −
1

2
S q

««0
D2

DG2 jdcs0tt
2Smnmp

mta
D2Fmptps1 + Xnd + mntns1 + Xpd

mntn + mptp
G2

, s20d

with s0=qsmnn0+mpp0d. This leads to the following final expression forD jsLd:

D jsLd = −
1

2
SDG

G0

D2 jdcs0

s1 + Xnd2s1 + Xpd2

Fmptps1 + Xnd + mntns1 + Xpd

mntn + mptp

G2

F1 +
cptp

cntn + cptp

Xn

s1 + Xpd
+

cntn

cntn + cptp

Xp

s1 + Xnd
+ Kmta

s2 + Xn + Xpd

s1 + Xnds1 + Xpd
G2

s21d

This expression is valid for any type of intrinsic semiconduc-
tor in the range of low applied electric fields, low dielectric
relaxation time, and a relatively large grating periodssee
previouslyd. In the following we will concentrate on the case
of intrinsic hydrogenated amorphous silicon.

C. Hydrogenated amorphous silicon for largeL

We will first discuss the respective values ofXn and Xp.
From Eq.s12d we have

Xn = tncnNn =
cnn0 + cpp0

cpp0E N dE

Nn,

s22d

Xp = tpcpNp =
cnn0 + cpp0

cnn0E N dE

Np.

That means thatXn andXp are the products of the lifetimes,
i.e., capture by all the states in between the quasi-Fermi lev-
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els for trapped electrons and holes, by the capture rate of the
stateskBT around these levels. Consequently,Xn,1 andXp
,1 as soon as the quasi-Fermi levels are separated by more
than a fewkBT.

Dealing with intrinsica-Si:H means that we can consider
mntn@mptp and, assuming thatcn andcp are not too differ-
ent, Eq.s21d transforms into

D jsLd = −
1

2
SDG

G0
D2 jdcs0

s1 + Xnd2

1

F1 + Kmta

s2 + Xn + Xpd

s1 + Xnds1 + Xpd
G2

,

s23d

where mta can be taken equal tomptp. The coefficientb,
defined by Ritter, Zeldov, and Weiser in Ref. 15, can be
evaluated by

b =
j0 + D jsLd − j1

j0 − j1

= 1 −
1

2
SDG

G0
D2

3
j0

s j0 − j1ds1 + Xnd2

1

S1 + mptpK
2 + Xn + Xp

s1 + Xnds1 + XpdD
2 ,

s24d

where j1 is the current density generated byI1 si.e., G1d
alone. In the high-L limit the term containingK can be ne-
glected, and from Eq.s23d it can be seen thatD j tends to-
wards a constant value,

D jsL → `d = −
1

2
j0SDG

G0
D2 1

s1 + Xnd2 , s25d

while b transforms into

blim = 1 −
1

2

j0
j0 − j1

sDG/G0d2

s1 + Xnd2 . s26d

Taking into account the power-law dependence of the photo-
conductivity on the generation rate,s~Gg, we find that
j0/ s j0− j1d>1+G1/gG2, where we recall thatG1 is the gen-
eration rate arising from the more intense beam,G2 is the
one coming from the less intense beam, andG0=G1+G2.
Finally, the following expression can be obtained:

NsEtnd =
qmnG0

cnkBTs0
F g0

s1 + G2/G1d
Î2s1 + gG2/G1d

gs1 − blimd
− 1G .

s27d

This equation expresses the DOS at the quasi-Fermi energy
as a function of material parametersscn andmnd and experi-
mental magnitudes that can be easily measuredstemperature,
generation rate, photoconductivity,g, g0, and blimd. The
quasi-Fermi energy for trapped electronsEtn can be evalu-
ated from the steady-state photoconductivitys0 since, when
electrons are the majority carriers,Etn is almost equal to the
quasi-Fermi level for free electrons,Efn. The energy position

of Efn can be varied either from a temperature scan or a
generation rate scan. That gives the basis for a DOS spec-
troscopy in the upper half of the band gap. The experiment
can be performed at a single grating periodL, provided it is
in the high-L region where thebsLd curve tends towards a
constant value. Thus, the experimental setup is simple.

III. SIMULATIONS

We have performed a numerical simulation of the experi-
ment starting from the DOS shown in Fig. 1, which is quite
typical for hydrogenated amorphous silicon. We have taken
standard values for the material parameters—such ascn=cp
=1310−8 cm3 s−1, mn=10 cm2 V−1 s−1, mp=1 cm2 V−1 s−1,
equal DOS at the band edges,NsEcd=NsEvd=1
31021 cm−3 eV−1—and we have solved numerically,without
any approximation, the set of equationss1d ands3d–s6d. The
bsLd curve that we get is shown in Fig. 2sopen diamondsd,
and it closely resembles the typical SSPG experimental
curves. We would like to insist on the fact that the DOS that
we use here to illustrate the above calculation is one among

FIG. 1. sColor onlined Typical density of states used to calculate
thebsLd curves shown in Fig. 2. The position of the Fermi levelEf0

is indicated.

FIG. 2. sColor onlined bsLd curves obtained from the exact
expression ofD jsLd fEq. s8d, open diamondsg or from the approxi-
mate equations24d sclosed diamondsd.
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many tests that we have made, obtaining always the same
typical results. In Fig. 2 we also present absLd curvesclosed
diamondsd calculated from the approximate expression given
by Eq.s24d. Both curves have been calculated with an exter-
nal electric fieldjext=100 V/cm, a temperatureT=300 K,
g0=1, and generation ratesG1=1019 cm−3 s−1, G2=G1/100.
The close agreement between both curves indicates that the
approximate expression forb and the complete calculation
give similar results. However, we would like to come back to
the simplifications that were used to derive Eq.s24d. First,
we will discuss the various methods proposed in the litera-
ture to derive the minority carriers mobility-lifetime product
from SSPG data, and we will apply these methods to the
results of our simulations. Then, we shall stress the limits of
the approximations used in our calculation.

A. Examination of previously-proposed methods to extract
information from SSPG data

At this point we would like to discuss the accuracy of the
previously-mentioned theoretical descriptions of the SSPG
experiment.22–27 The original formula proposed by RZW in
Ref. 16 can be written as

b = 1 −
2F

f1 + 2Ksmptpdappg2 , s28d

where we callsmptpdapp the apparent mobility-lifetime prod-
uct for holes that would be obtained from a fit of the SSPG
data with this formula. A fit of the exactbsLd curve of Fig.
2 with the RZW expression givesF=0.943 andsmptpdapp

=7.13310−9 cm2 V−1. Having solved without any approxi-
mation the set of equationss1d and s3d–s6d for steady-state
conditions, we know the exact values for these parameters,
which areF=0.948 andmptp=5.84310−9 cm2 V−1. The pa-
rameterF is obtained with good accuracy, and that is the
common behavior that we have found when the simulations
are performed in the region of low applied electric fields. On
the other hand, it can be seen that the simple RZW formula
overestimatesmptp by 22%, even when we are in the region
of low electric fields and in the lifetime regime, where the
formula should be valid. The simplified expression forbsLd
that we have presented in Eq.s24d indicates that, asXn and
Xp can take values between 0 and 1, the factors2+Xn

+Xpd / bs1+Xnds1+Xpdc can take values between twoswhen
Xn=Xp=0d and oneswhenXn=Xp=1d. For the first case Eq.
s24d reduces to the RZW formula, while for the second case
Eq. s24d would indicate that the RZW formula overestimates
the mptp product by a factor of two. However, our calcula-
tions reveal that other generation rates or other DOS can
cause that the RZW formula leads to an overestimation of the
exact mptp product by a factor even larger than twossee
belowd. Thus, the RZW formula should be used with caution,
keeping in mind that it probably overestimates the realmptp
value.

In the formulation of Li,24 a general transport formula is
provided for the current under grating conditionsfEq. s48d in
Ref. 24g where the ultimate fitting parameters are the drift
mobilities mn

D and mp
D, and the common recombination life-

time tR. A fit of the exactbsLd curve sFig. 2d with Li’s Eq.

s48d shows a poor sensitivity to the parameter values. If Li’s
Eq. s52d is used insteadsvalid in the weak-field conditiond,
the terms can be re-arranged so that the fitting parameters are
now Lamband the ratiotR/td. A fit of the exactbsLd curve of
Fig. 2 with Li’s Eq. s52d gives tR/td=28 andLamb=7.72
310−6 cm, which meansmptp=1.15310−9 cm2 V−1 sa fac-
tor of 5 underestimate of the exactmptpd if we approximate
Lamb>Î2skBT/qdmptp.

Hattori and co-workers26 propose a quite complicated cor-
rection procedure to obtain the trueLamb from the apparent
Lapp obtained from the RZW formula. The correction proce-
dure implies knowing the value of the parametertR/td,
which according to the authors should be measured by some
other technique like modulated photoconductivity or photo-
current decay. Since from the exact solution of the transport
equations we know the value of this parameter, we can apply
Hattori’s correction procedure to getLamb=1.75310−5 cm,
meaning mptp=5.92310−9 cm2 V−1. Thus, although quite
cumbersome, Hattori’s procedure provides a correct estima-
tion of the truemptp, at least for this generation rate.

In the formulation of Abel and Bauer,27 the theoretical
expression ofbsL ,jextd is expressed as a function of two
fitting parameters,mptp andmntd

rel, wheretd
rel is an effective

dielectric relaxation time given bytd
rel=sn0/N0dtd, n0 being

the concentration of free electrons andN0 the total concen-
tration of electronssfree plus trappedd, both under uniform
illumination. A fit of the exactbsLd curve sFig. 2d with the
Abel–Bauer expression givesmptp=6.17310−9 cm2 V−1 and
mntd

rel=1.85310−9 cm2 V−1, thus providing a good estima-
tion of the correct value with an easy-to-handle formula.

The next step that we have taken was to test the above-
described procedures on simulated SSPG curves obtained
under different illumination intensities. We performed simu-
lations with the same parameter values that were used to get
Fig. 2 except for the generation rate, which was varied in the
range 1019øG1ø1022 cm−3 s−1, keeping always G2
=G1/100. The results are presented in Fig. 3, where themptp
values obtained by using the different methods to fit the
bsLd curves are plotted as a function of the generation rate.
The dependence is characterized by the exponentgh, defined
as in Ref. 28 bymptp~Gsgh−1d. The linear fitsson logarithmic
scalesd are also presented in Fig. 3, as well as thegh values
obtained from the different methods, which can be compared
to the actual values ofmptp andgh calculated from our simu-
lations. As it can be seen, Hattori’s method provides the best
estimation not only for themptp values but also for thegh
coefficient. At this point we have to add a word of caution on
those methodssalready mentioned in Sec. Id that use SSPG
measurements to get the temperature dependence of thegh
coefficient, and then perform a fit to this dependence to ex-
tract the DOS of the material.28–30As can be seen from Fig.
3, the RZW formula is not a reliable means to obtain thegh
coefficient from SSPG measurements, and what is worse, the
accuracy of this formula can even be temperature-dependent.
So, in agreement with Hattoriet al.,26 we conclude that our
results also “contradict a speculation made by Balberg23 that
the SSPG experiments directly measure the correct value of
Lamb and its light-intensity dependence in the range of con-
ventional light intensities 1−100 mW/cm2.”
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B. Accuracy of the present calculation

In view of the above results, it could be thought that Eq.
s24d would provide a better fit to the SSPG data. However,
the presence of three fitting parameterssmptp, Xn, and Xpd

leads to poor sensitivity. Moreover, the value ofXp obtained
from a fit tends to be negative, suggesting that this formula is
not accurate enough. To understand this problem we have to
come back to the simplification of the denominator ofD jsLd.
If we assume that the field-dependent terms are negligible,
thenDEN can be written from Eq.s15d as

DEN1/2

= S 1

tntp
D3

cpp0tts1 + Xn + cntnNpdS tt

td
s1 + Xpd + k2Lp

2D
+cnn0tts1+Xp+cptpNndS tt

td
s1+Xnd+k2Ln

2D
+ mtaK

tt

td
s2 + Xn + Xpd + k4Lp

2Ln
2 4

s29d

To come to Eq.s17d, and eventually to Eq.s24d, we have
assumed that the dominant terms were those intt /td, an
approximation which iscertainly valid at highL but that is
wrong for L values of the order of,1 mm. For instance,
in the present simulation concerninga-Si:H for which
electrons are the majority carriers, one findstt /td
>sq/««0dsmn/cnd<150 for mn=10 cm2 V−1 s−1 and cn

=10−8 cm3 s−1. Compared tott /td the termk2Lp
2 is almost

always negligible, but that is not always the case for the term
k2Ln

2. Note that we also have to deal with a term ink4 that, at
this stage, we will assume to be negligiblesan assumption
that we will justify laterd. If one keeps thek2Ln

2 term, it adds
a new term to Eq.s19d, which transforms into

DEN1/2 =
q

««0
G0tt

mnmp

mta
s1 + Xnds1 + Xpd3 1 +

cptp

cntn + cptp

Xn

s1 + Xpd
+

cntn

cntn + cptp

Xp

s1 + Xnd

+ Kmta
s2 + Xn + Xpd

s1 + Xnds1 + Xpd
+ Kmntn

««0cn

qmn
S 1 + Xp + cptpNn

s1 + Xnds1 + XpdD 4 . s30d

With the usual assumptionmntn@mptp and neglecting the
term cptpNn smuch smaller than oned, a modified Eq.s24d is
found such that, by identification with the classical RZW
formula, one ends with

2smptpdapp= mptp
2 + Xn + Xp

s1 + Xnds1 + Xpd
+ mntn

««0cn

qmn

1

s1 + Xnd
.

s31d

We display in Table I the mobility-lifetime products for
electrons and holes obtained from our calculations performed
at differentG0 valuessthe same as Fig. 3d. We also present
the smptpdapp values that can be calculated from Eq.s31d
taking into account the values ofXn andXp, and thesmptpdapp

values deduced from a “standard” fit of thebsLd curves by
means of the RZW methodfEq. s28dg. As can be seen, there

is an excellent agreement between the two sets ofsmptpdapp

values. It can also be shown that assumingXn=Xp=0 does
not largely modify this very good agreement. Therefore, the
apparent mobility-lifetime product obtained from a fit of the
SSPG data with Eq.s28d can in principle be corrected to give
the true value as

mptp > smptpdapp−
««0cn

2qmn
smntnd. s32d

The mptp values corrected by the application of Eq.s32d are
also presented in Table I, where it can be seen that the agree-
ment with the “true”mptp is quite good except for the largest
generation rate. In Fig. 3 we have also presented themptp
values corrected by Eq.s32d. As can be seen, the agreement
with the “true” values is rather good except for the highest
generation rate, for which the corrected value is too low. This

FIG. 3. sColor onlined Dependence ofmptp on the generation
rate. The “true”mptp ssquaresd is obtained from the solution of the
transport and charge neutrality equations under steady-state condi-
tions. The other values are obtained from a fit of simulatedbsLd
curves by using some of the methods proposed in the literature. The
mptp values corrected from the RZWsmptpdapp by means of Eq.
s32d are also displayed. The exponentgh ssee the text for a defini-
tiond is obtained from a power-law fitslinesd of the displayedmptp

values.
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is due to the fact that, for the highest generation rate, the
approximationXp<0 no longer holds. Therefore, Eq.s32d
can be applied to improve the initial estimate provided by the
RZW method, with some caution for the highest generation
rates.

We would like to add a word on the opportunity to define
a “lifetime” regime and a “relaxation” regime. The distinc-
tion between these two regimes does not appear explicitly in
our formulation. Though we have clearly underlined the in-
fluence oftd, we have shown that the important factor is the
ratio tt /td, which does not directly involve the carrier life-
time. More work is needed to fully clarify if the distinction
between these regimes is really relevant for the SSPG experi-
ment.

Finally, we come back to the term ink4 that we have
neglected in the above discussion. In Hattori’s work this term
equals k4Ldn

2 Ldp
2 std/t8d, while in our work it is equal to

fk4Ln
2Lp

2/ s1+Xnds1+Xpdgstd/ttd, both being related to the di-
electric relaxation time. TakingL=1 mm and the values
from Table I for the mobility-lifetime products, this last term
takes values from,0.15 for the lowestG0 to ,0.011 for the
highestG0. Both values represent less than a 10% correction
to the other terms, so this term ink4 can be reasonably omit-
ted.

The corrective term that we have included in Eq.s30d also
explains why in Fig. 2 the “real” curve is above thebsLd
curve calculated from our Eq.s24d. This naturally comes
from the fact that the term that we have neglected in Eq.s24d
is not negligible especially at intermediateL. Indeed,b=1
−CsLd and CsLd is higher in Eq.s24d than the trueCsLd
because of a smaller denominator leading to a lowerb.

C. Determination of the density of states

We have insisted on the accuracy of the present calcula-
tion to show that it can be an alternative to those previously
developed in the literature. One can see that none of them is
perfect, and corrective terms are always necessary to obtain
the final and proper value of the ambipolar diffusion length.
However, our main aim in this paper is to show that part of
the DOS can be deduced from SSPG measurements. Despite
the problem of corrective terms, it can be seen from Fig. 2
that the twobsLd curvesfexact and obtained from Eq.s24dg
are gathering in a single one for largeL values, since all the
terms containingk tend to zero in this region. We are then

quite confident on the possibility to deduce the DOS from
the blim measured at highL values.

We present in Figs. 4sad and 4sbd two different DOS’
introduced in the simulation with the corresponding recon-
structionssSSPG-DOSd obtained from Eq.s27d, changingEtn
from a variation ofT and/or a variation ofG0. The transport
parameters were chosen the same as those listed above. As it
can be seen, the DOS can be reconstructed with quite good
accuracy. We have deliberately chosen to study DOS’ with
steep variationsfnarrow deep defect Gaussian distributions,
low characteristic temperature of the conduction band tail
sTc=250 Kdg to show that, despite the DOS roughness, the
SSPG-DOS follows rather well the contours of the chosen
DOS. With a smoother, and thus less demanding DOS, the
SSPG-DOS reconstructions would have been even better.
This behavior underlines one of the limits of the method.

TABLE I. Evolution with the generation rate of the mobility-lifetime products for electrons and holes. Columns two and three result from
the exact solution of the steady-state transport equations. Columns four and five are the apparent mobility-lifetime products for holes that
would be obtained by applying the RZW method, either from the classical fit of thebsLd curves with Eq.s28d or from Eq.s31d. The last
column provides themptp values that can be deduced by applying Eq.s32d to the smptpdapp values of column four.

G0

scm−3 s−1d
mntn

scm2/Vd
mptp smptpdapp

sFitd
smptpdapp

fEq. s31dg
mptp

fEq. s32dg

1.0131019 6.40310−7 5.84310−9 7.13310−9 7.20310−9 5.01310−9

1.0131020 5.77310−7 2.32310−9 3.90310−9 3.92310−9 1.99310−9

1.0131021 4.84310−7 0.86310−9 2.19310−9 2.31310−9 0.58310−9

1.0131022 2.90310−7 0.36310−9 0.97310−9 1.23310−9 5.60310−12

FIG. 4. sColor onlined Examples of two different DOS recon-
structions by means of Eq.s27d.
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The limits and accuracy of the method are two points on
which we would like to insist. For instance, it is obvious that
the grating periodLlim giving the blim value is sample-
dependent, since it will depends on themptp value. We
present in Fig. 5 the results that would be obtained applying
Eq. s27d to thebsLd curve calculated from the DOS of Fig.
1, taking two different values forLlim :6.4 and 64mm. The
simulations have been done with a constant temperature of
300 K and different dc generation rates ranging from
1017 to 1021 cm−3 s−1. Clearly, the choice ofLlim =6.4 mm
does not lead to a good reproduction of the introduced DOS.
It can be seen from Fig. 2 that for this valuesL=6.4 mmd b
has not completely reached saturation—a condition that is
only reached forL larger than 10mm—thus explaining the
discrepancy between the two curves at lowE−Ev values.
This point brings to light a possible experimental problem,
which would be to determine the grating periodLlim giving
the right value forblim. We can mention, however, thatblim
can be easily obtained by measuring a few points in thebsLd
curve. Indeed, a fit of the experimental points with the
RZW16 formula fEq. s28dg will provide blim from the fitting
parameterF asblim =s1−2Fd.

A different behavior appears for the higher energies, i.e.,
closer to the conduction band. Both curves deviate from the
deep defect density shape to, more or less, parallel the con-
duction band tailsCBTd. This behavior can be explained if
we consider the way we introduceNn fsee Eq.s11dg in the
calculation ofbsLd. Nn comes from the evaluation of the
integral,

Int =E
Ev

Ec

ensEdt2sEdNsEddE

=E
Ev

Ec ensEd
„cnn0 + cpp0 + ensEd + epsEd…2NsEddE, s33d

which, taking into account the fast decrease ofepsEd, can be
approximated by

Int =
1

cnn0 + cpp0
E

Etp

Ec

ensEd
cnn0 + cpp0

S1 +
ensEd

cnn0 + cpp0
D2NsEddE

=
1

cnn0 + cpp0
E

Etp

Ec

QsEdNsEddE. s34d

The functionQsEd is peaked atEtn and decreases exponen-
tially at both sides with a ±1/kBT slope. If the DOS is not
varying too fast, thenInt can be reasonably taken asInt
=Nn/ scnn0+cpp0d, whereNn is truly proportional toNsEtnd.
In this case, the SSPG-DOS follows rather well the true
DOS. On the other hand, whenEtn gets closer to the conduc-
tion band, then the convolution product of the increasing
CBT swith a 1/kBTc sloped and the decreasing part ofQsEd
swith a −1/kBT sloped starts to play a non-negligible role in
Int. If T is larger thanTc, then the CBT rises more rapidly
thanQsEd decreases and its contribution to the totalNn can
be non-negligible. In that caseNn is no longer proportional to
NsEtnd, and it can be even much larger if the CBT contribu-
tion increases. This behavior is also underlined in Fig. 5. The
temperature chosen for the simulations has been fixed at
300 K, larger thanTcs=250 Kd. Increasing the dc generation
rate results in a quasi-Fermi level getting closer to the CBT.
Since we approximate the integral assuming that the SSPG-
DOS is proportional toNsEtnd, an assumption that turns com-
pletely wrong onceEtn approaches the CBT, we get too high
values for the SSPG-DOS.

As a consequence, the best way to probe the complete
DOS would be to chooseG0 and T so that, whenEtn ap-
proaches the CBT, the sample temperature is lower than the
conduction band tail characteristic temperature. This is illus-
trated in Fig. 6. The simulation has been performed with the
DOS of Fig. 1 and the parameters listed above. First, it can
be seen that the SSPG-DOS reconstructions from Eq.s27d
using two differentLlim s10 and 100mmd give almost the

FIG. 5. sColor onlined SSPG-DOS reconstruction taking two
different values forLlim. The simulations giving thebsLd curves,
from which the SSPG-DOS has been extracted, were performed
with different dc generation rates atT=300 K.

FIG. 6. sColor onlined SSPG-DOS reconstruction compared to
the introduced DOS in the case of a generation rate scan at a con-
stant T of 300 K, and a temperature scan at a constantG0 of
1019 cm−3 s−1. The SSPG-DOS has been calculated for two differ-
ent Llim values.
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same data points, showing that, for this peculiar “sample,”
the choice ofLlim =10 mm is convenient. Second, as in the
case shown in Fig. 5, the SSPG-DOS reconstructions calcu-
lated at room temperature withG0 varying from
1017 to 1021 cm−3 s−1 deviate from the true DOS at highG0
values, i.e., whenEtn gets closer to the conduction band. This
problem disappears when theb curves are calculated with a
meanG0 value of 1019 cm−3 s−1 and the temperature is varied
in the range 100–400 K. With this low generation rate the
quasi-Fermi level for trapped electrons enters the CBT only
at low temperatures, when 1/kBT@1/kBTc, being therefore
the QsEd function extremely narrow compared to the CBT
width. It can be seen in Fig. 6 that this procedure results in
an excellent reconstruction of the introduced DOS by the
SSPG-DOS.

IV. EXPERIMENTAL

To prove the experimental usefulness of the technique,
measurements on two hydrogenated amorphous silicon
samples have been performed. Note that, according to Eq.
s27d, we do not obtain directly the true density of states from
the experimental data, but rather the quantityNsEtnd
3cn/mn. It is exactly this quantity that is obtained from the
modulated photocurrentsMPCd technique. Thus, the validity
of the SSPG-DOS determination can be confirmed by com-
paring it to the MPC-DOS obtained on the samea-Si:H
sample by using the same standard values forcn andmn.

We have applied the new technique to two standard hy-
drogenated amorphous silicon samples, prepared under con-
ditions described elsewhere.33 Sample 1 has a thickness of
0.65mm, a room-temperature dark conductivity of 6.5
310−8 V−1 cm−1, and an activation energy of 0.62 eV; while
Sample 2 has a thickness of 1.1mm, a room-temperature
dark conductivity of 2.7310−9 V−1 cm−1, and an activation
energy of 0.69 eV. Two aluminum coplanar electrodes, with
a gap of 0.5 mm, have been evaporated on the samples. A
He-Ne laser providing a light intensity at the sample surface
of 90 mW/cm2 has been used as a source of coherent illu-
mination. An intensity ratioI1/ I2=85 has been used, and the
less intense beam has been chopped at a frequency of 111 Hz
to perform SSPG measurements. Assuming that the RZW
formula provides a good estimation of theF factor ssee Sec.
III A d, after measuringg and taking into account thatF
=gg0

2 sRef. 16d, the grating quality factorg0 was found to be
close to one for our SSPG setup and for these samples. Then
we have fixedLlim =10 mm and we have measured the coef-
ficientsb andg as a function of the temperature and genera-
tion rate. Measurements have been performed under vacuum,
with a pressure lower than 10−5 Torr. For both samples we
performed a temperature scan from 100 to 370 K in 30 K
steps at a fixed generation rate of 231021 cm−3 s−1; while
for Sample 2 we also changed the generation rate between
231021 cm−3 s−1.G0.231019 cm−3 s−1 at a fixed tem-
perature of 370 K. The results of the application of Eq.s27d
to the measured data are shown in Figs. 7sad and 7sbd, where
our new technique based on SSPG measurements is com-
pared with the MPC methods, performed both in the high
frequency10 sHF-MPCd and the low frequency11 sLF-MPCd

limits. To obtain absolute DOS values, an electron mobility
mn=10 cm2 V−1 s−1 and a capture coefficient cn
=10−8 cm3 s−1 have been assumed in all the methods. To set
the energy scale we have usedEtn<Efn=Ec
−kBT lnfqmnkBTNsEcd /s0g for SSPG and LF-MPCssee Ref.
11d, and Evn=Ec−kBT lnfcnkBTNsEcd /vg for HF-MPC ssee
Ref. 10d, where the pulsation of the excitation was varied in
the range 102 s−1øvø63105 s−1. Note that energies are
now referred to the conduction band edge to avoid uncertain-
ties in the value of the mobility gap for these samples. In Fig.
7sad it can be appreciated that for Sample 1 the agreement
among the three methods is very good over the energy range
where they overlap. For the HF-MPC method, each curve
corresponds to a frequency scan performed at a different
temperature. As demonstrated in Ref. 10, the actual DOS is
reproduced by the upper envelope of all the frequency scans
performed at different temperatures. The maxima exhibited
by the curves at low temperaturesslow energiesd are due to a
bad signal to noise ratio appearing at high frequencies, i.e.,
when the DOS is high and the sample response is propor-
tionally low. The departure of the curves from the upper
envelope at high temperaturesshigh energiesd results from
the influence of the continuous flux used in the method. For
a detailed discussion of the HF-MPC method, and in particu-
lar on the DOS shape determination, the reader is referred to

FIG. 7. sColor onlined A comparison between DOS determina-
tions for Sample 1sad and Sample 2sbd from modulated photocon-
ductivity in the low frequencysLF-MPCd and high frequencysHF-
MPCd domains, and from SSPG as a function of temperaturesad
and as a function of temperature and generation ratesbd. NsEcd
=1021 cm−3 eV−1, mn=10 cm2 V−1 s−1, and cn=10−8 cm3 s−1 have
been assumed in all cases.
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Ref. 10. A fit of the band-tail region with an exponential
function gives a characteristic energy of 23±2 meV, mean-
ing a characteristic temperature of 270 K, in agreement with
previous determinations.34 It can be seen that the HF-MPC
provides the DOS over the largest energy range. However,
the range of the SSPG-DOS determination can be enlarged if
the temperature as well as the generation rate are varied si-
multaneously, as shown in Fig. 7sbd for Sample 2. From this
latter figure it can be seen that the agreement among the
three methods is very good except for energies close to the
conduction band-tail. A fit of the band-tail DOS with an ex-
ponential function gives characteristic energies of 20, 26, and
29 meV from SSPG, LF-MPC, and HF-MPC, respectively.
The disagreement in this region may be due to a failure of
the simplifying hypotheses of the different methods when the
DOS is steeper thankBT, as discussed in Sec. III C of this
work, Sec. IV B of Ref. 10, and Sec. III B of Ref. 11. An-
other possible source of discrepancies may be the fact that
the developments made for the different methods are mainly
valid for a single type of states. More work is needed to
overlook the influence on the DOS evaluation of the pres-
ence of different types of states in the gap. However, the
general agreement between the three DOS estimates in both
figures means that this new technique provides a simple
method for DOS determinations, with an accuracy at least
comparable to the one of the MPC techniques.

V. CONCLUSION

In conclusion, we have described a novel and accurate
method based on SSPG measurements in the high-L limit to

determine the DOS of intrinsic semiconductors. We have
presented the basic equations describing the phenomenon,
and we have solved them to obtain a simple formula relating
the DOS at the electron quasi-Fermi level to SSPG measure-
ments. Contrary to previous approaches, the DOS is not ob-
tained from a fit of measured SSPG data. Instead, the mea-
sured values are used to directly reconstruct the DOS of the
sample. This new method has been tested taking the case of
a-Si:H as an example. First, we have performed simulations
starting from a typical DOS fora-Si:H. We have examined
previous theoretical descriptions of the SSPG phenomenon,
providing themptp values that would be obtained by apply-
ing the previously-proposed methods to SSPG data obtained
at differentG0 values. We have studied the accuracy of our
approximate formulas to reproduce the SSPG curves, and we
have proposed a corrective term to obtain themptp value
from the smptpdapp that arises from a fit of the data with the
RZW formula. We have also studied the accuracy and limi-
tations of our method to reproduce an introduced DOS. Fi-
nally, we have presented experimental measurements on two
a-Si:H samples showing that the method is applicable, ex-
perimentally simple, and capable of providing DOS determi-
nations compatible with the ones obtained from the modu-
lated photoconductivity methods.

ACKNOWLEDGMENTS

This work was supported by project PEI N° 6329 from
CONICET and project A02E01 from Ecos Sud-SECyT. One
of the authorssJ. A. S.d acknowledges support from the Al-
exander von Humboldt Foundation.

1W. E. Spear and P. G. LeComber, J. Non-Cryst. Solids8–10, 727
s1972d.

2I. Solomon, R. Benferhat, and H. Tran-Quoc, Phys. Rev. B30,
3422 s1984d.

3P. Viktorovitch, J. Appl. Phys.52, 1392s1981d.
4G. F. Seynhaeve, R. P. Barclay, G. J. Adriaenssens, and J. M.

Marshall, Phys. Rev. B39, 10 196s1989d.
5W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S.-J. Oh,

Phys. Rev. B31, 5187s1985d.
6W. E. Spear, J. Non-Cryst. Solids1, 197 s1969d.
7M. Vanecek, J. Kocka, J. Stuchlík, and A. Tríska, Solid State

Commun. 39, 1199s1981d.
8R. A. Street and A. D. Yoffe, Thin Solid Films11, 161 s1972d.
9J. A. Schmidt, R. R. Koropecki, R. Arce, A. Dussan, and R. H.

Buitrago, J. Non-Cryst. Solids338–340, 322 s2004d.
10C. Longeaud and J. P. Kleider, Phys. Rev. B45, 11 672s1992d.
11R. R. Koropecki, J. A. Schmidt, and R. Arce, J. Appl. Phys.91,

9865 s2002d.
12F. Wang and R. Schwarz, Phys. Rev. B52, 14 586s1995d.
13M. Q. Tran, Philos. Mag. B72, 35 s1995d.
14J. A. Schmidt and C. Longeaud, Appl. Phys. Lett.85, 4412

s2004d.
15D. Ritter, E. Zeldov, and K. Weiser, Appl. Phys. Lett.49, 791

s1986d.

16D. Ritter, K. Weiser, and E. Zeldov, J. Appl. Phys.62, 4563
s1987d.

17G. H. Bauer, C. E. Nebel, and H.-D. Mohring, Mater. Res. Soc.
Symp. Proc.118, 679 s1988d.

18L. Yang, A. Catalano, R. R. Arya, and I. Balberg, Appl. Phys.
Lett. 57, 908 s1990d.

19M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch, and A.
Shah, J. Appl. Phys.80, 5111s1996d.

20R. Brüggemann, Appl. Phys. Lett.73, 499 s1998d.
21J. Y. Duboz, F. Binet, D. Dolfi, N. Laurent, F. Scholz, J. Off, A.

Sohmer, O. Briot, and B. Gil, Mater. Sci. Eng., B50, 289
s1997d.

22D. Ritter, E. Zeldov, and K. Weiser, Phys. Rev. B38, 8296
s1988d.

23I. Balberg, J. Appl. Phys.67, 6329s1990d.
24Y.-M. Li, Phys. Rev. B 42, 9025s1990d.
25I. Balberg, Phys. Rev. B44, 1628s1991d.
26K. Hattori, H. Okamoto, and Y. Hamakawa, Phys. Rev. B45,

1126 s1992d.
27C.-D. Abel and G. H. Bauer, inAmorphous Silicon Technology,

MRS Symposia Proceedings No. 258sMaterials Research Soci-
ety, Pittsburgh, 1992d, p. 705; C.-D. Abel and G. H. Bauer, Prog.
Photovoltaics1, 269 s1993d; C.-D. Abel, G. H. Bauer, and W.
H. Bloss, Philos. Mag. B72, 551 s1995d.

J. A. SCHMIDT AND C. LONGEAUD PHYSICAL REVIEW B71, 125208s2005d

125208-12



28I. Balberg, R. Nidis, L. F. Fonseca, S. Z. Weisz, J. P. Conde, P.
Alpuim, and V. Chu, Phys. Rev. B63, 113201s2001d.

29I. Balberg, J. Non-Cryst. Solids299–302, 531 s2002d.
30I. Balberg, Y. Dover, R. Naides, J. P. Conde, and V. Chu, Phys.

Rev. B 69, 035203s2004d.
31J. P. Nicholson, Appl. Phys. Lett.77, 2563s2000d.

32J. G. Taylor and G. W. Simmons, J. Non-Cryst. Solids8–10, 940
s1972d.

33R. H. Buitrago, R. Arce, and R. R. Koropecki, J. Non-Cryst.
Solids 164–166, 259 s1993d.

34See, for example, R. A. Street,Hydrogenated Amorphous Silicon
sCambridge University Press, Cambridge, 1991d, p. 81.

ANALYSIS OF THE STEADY-STATE PHOTOCARRIER… PHYSICAL REVIEW B 71, 125208s2005d

125208-13


