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Dynamic transition in Landau-Zener-Stückelberg interferometry of dissipative systems:
The case of the flux qubit
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We study Landau-Zener-Stückelberg (LZS) interferometry in multilevel systems coupled to an Ohmic quantum
bath. We consider the case of superconducting flux qubits driven by a dc+ac magnetic fields, but our results can
apply to other similar systems. We find a dynamic transition manifested by a symmetry change in the structure
of the LZS interference pattern, plotted as a function of ac amplitude and dc detuning. The dynamic transition
is from an LZS pattern with nearly symmetric multiphoton resonances to antisymmetric multiphoton resonances
at long times (above the relaxation time). We also show that the presence of a resonant mode in the quantum
bath can impede the dynamic transition when the resonant frequency is of the order of the qubit gap. Our results
are obtained by a numerical calculation of the finite time and the asymptotic stationary population of the qubit
states, using the Floquet-Markov approach to solve a realistic model of the flux qubit considering up to ten energy
levels.
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I. INTRODUCTION

In recent years, the experimental realization of Landau-
Zener-Stückelberg (LZS) interferometry [1] in several systems
has emerged as a tool to study quantum coherence under
strong driving. LZS interferometry is realized in two-level
systems (TLS), which are driven with a time periodic force.
The periodic sweeps through an avoided crossing in the energy
level spectrum result in successive Landau-Zener transitions.
The accumulated phase between these repeated tunneling
events gives place to constructive or destructive interferences,
depending on the driving amplitude and the detuning from the
avoided crossing. These LZS interferences have been observed
in a variety of quantum systems, such as Rydberg atoms
[2], superconducting qubits [3–15], ultracold molecular gases
[16], quantum dot devices [17–25], single spins in nitrogen
vacancy centers in diamond [26,27], nanomechanical circuits
[28], and ultracold atoms in accelerated optical lattices [29].
Several other related experimental and theoretical works have
studied LZS interferometry in systems under different shapes
of periodic driving [30–35], in two coupled qubits [36], in
optomechanical systems [37], and the effect of a geometric
phase [38]. Furthermore, experiments in superconducting flux
qubits under strong driving have allowed to extend LZS
interferometry beyond two levels [6]. In this later case, the
multilevel structure of the flux qubit, with several different
avoided crossings in the energy spectrum, exhibited a series
of diamond-like interference patterns as a function of dc flux
detuning and microwave amplitude [6,39].

Driven two-level systems have been extensively studied
theoretically in the past. Under strong time-periodic driving
fields, phenomena such as coherent destruction of tunneling
(CDT) [40,41] and multiphoton resonances [42,43] have been
analyzed. The influence of the environment has been studied
within the driven spin-boson model, [44] applying various
techniques like the path-integral formalism [45], or the solution
of the time dependent equations for the populations of the

density matrix [44–49], either as an integrodifferential kinetic
equation [46], or considering for weak coupling the underlying
Bloch-Redfield equations [45,47], or using the decomposition
of the quantum master equation into Floquet states [44,48], or
performing a rotating-wave approximation [49]. However, the
theoretical results for driven TLS in contact with a quantum
bath [44–49] present some discrepancies with the experiments
of LZS interferometry, particularly in the flux qubit [3–6].
In fact, these works typically predict population inversion
[45–49], which has not been observed in the experiments of
Refs. [3–6]. In a recent work we showed [50] that for the case
of a nonresonant detuning, population inversion arises for very
long driving times and it is mediated by a slow mechanism of
interactions with the bath. This long-time asymptotic regime
was not reached in the experiment.

Here, we will study in full detail the LZS interference
patterns of the flux qubit, by considering the dependence
with dc flux detuning in addition to the dependence with
microwave amplitude. To this end, we calculate numerically
the finite time and the asymptotic stationary population of
the qubit states using the Floquet-Markov approach [44,50],
solving a realistic model of the flux qubit in contact with an
Ohmic quantum bath. For the time scale of the experiments
we find a very good agreement with the diamond patterns of
Ref. [6]. For longer-time scales, we find a dynamic transition
within the first diamond (which corresponds to the two level
regime), manifested by a symmetry change in the structure
of the LZS interference pattern. We also consider the case of
an structured quantum bath, which can be due to a SQUID
detector with a resonant plasma frequency �p. Different types
of LZS interference patterns can arise in this case, depending
on the magnitude of �p.

The paper is organized as follows. In Sec. II, we present
the model for the flux qubit and we review the basics of
LZS interferometry. In Sec. III, we show our results for the
emergence of a dynamic transition in the LZS interference
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pattern at long times. In Sec. IV, we give our conclusions and
Appendix is included to describe in detail the Floquet-Markov
formalism used in this paper.

II. REVIEW OF LANDAU-ZENER-STÜCKELBERG
INTERFEROMETRY OF THE FLUX QUBIT

A. The flux qubit

Superconducting circuits with mesoscopic Josephson junc-
tions are used as quantum bits [51] and can behave as
artificial atoms [52]. A well studied circuit is the flux qubit
(FQ) [53–55], which, for millikelvin temperatures, exhibits
quantized energy levels that are sensitive to an external
magnetic field. The FQ consists on a superconducting ring
with three Josephson junctions [53] enclosing a magnetic flux
� = f �0, with �0 = h/2e. The circuits that are used for the
FQ have two of the junctions with the same Josephson coupling
energy, EJ,1 = EJ,2 = EJ , and capacitance, C1 = C2 = C,
while the third junction has smaller coupling EJ,3 = αEJ

and capacitance C3 = αC, with 0.5 < α < 1. The junctions
have gauge invariant phase differences defined as ϕ1, ϕ2,
and ϕ3, respectively. Typically, the circuit inductance can be
neglected and the phase difference of the third junction is: ϕ3 =
−ϕ1 + ϕ2 − 2πf . Therefore the system can be described with
two independent dynamical variables. A convenient choice
is ϕl = (ϕ1 − ϕ2)/2 (longitudinal phase) ϕt = (ϕ1 + ϕ2)/2
(transverse phase). In terms of this variables, the Hamiltonian
of the FQ (in units of EJ ) is [53]

HFQ = −η2

4

(
∂2

∂ϕ2
t

+ 1

1 + 2α

∂2

∂ϕ2
l

)
+ V (ϕl,ϕt ) , (1)

with η2 = 8EC/EJ and EC = e2/2C. The kinetic term of the
Hamiltonian corresponds to the electrostatic energy of the
system and the potential term corresponds to the Josephson
energy of the junctions, given by

V (ϕl,ϕt ) = 2 + α − 2 cos ϕt cos ϕl − α cos(2πf + 2ϕl).
(2)

Typical flux qubit experiments have values of α in the range
0.6–0.9 and η in the range 0.1–0.6 [6,54]. In quantum
computation implementations [53,54], the FQ is operated at
magnetic fields near the half-flux quantum, f = 1/2 + δf ,
with δf � 1. For α � 1/2, the potential V (ϕl,ϕt ) has two
minima at (ϕl,ϕt ) = (±ϕ∗,0) separated by a maximum at
(ϕl,ϕt ) = (0,0). Each minima corresponds to macroscopic
persistent currents of opposite sign, and for δf � 0 (δf � 0)
a ground state |+〉 (|−〉) with positive (negative) loop current
is favored.

In Fig. 1, we plot the lowest energy levels En as a function
of δf = f − 1/2, obtained by numerical diagonalization of
HFQ [56]. In this case, we set η = 0.25 and α = 0.8, close to
the experimental values employed in flux qubits experiments
[6,53]. Negative (positive) slopes in Fig. 1, correspond to
eigenstates with positive (negative) loop current. A gap 
ij

opens at the avoided crossings of the ith level of positive slope
with the j th level of negative slope at δf = fij . For our choice
of device parameters, the avoided crossing of the two lowest
levels at δf = f00 = 0 has a gap 
00 = 3.33 × 10−4 (in units
of EJ ). At larger δf , we find the avoided crossing with a third
level at f01 = −f10 = 0.0161 with gap 
01 = 
10 = 2.16 ×
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FIG. 1. Lowest energy levels of the flux qubit as a function of
flux detuning δf , for the qubit parameters η = 0.25 and α = 0.80
considered throughout this work. Energy is measured in units of
EJ and flux in units of �0. The gaps at the avoided crossings are
indicated as 
ij . Black lines correspond to “longitudinal” modes and
red lines to “transverse” modes (see text for description). The blue
arrows at the bottom of the plot illustrate the relation between ac
driving amplitudes and level crossing positions for a particular dc
flux detunning δf ∗

dc. The indicated values correspond to the edges of
the spectroscopic diamonds of Fig. 3 for the given δf ∗

dc.

10−3, and next the avoided crossing at f02 = −f20 = 0.0323
with gap 
02 = 
20 = 8.26 × 10−3. (There are also energy
levels that correspond to excited transverse modes [57], plotted
with red lines in Fig. 1, but they have a negligible contribution
to the dynamics considered here).

The two-level regime, involving only the lowest eigenstates
at E0(δf ) and E1(δf ), corresponds to |δf | � f01, such that the
avoided crossings with the third energy level are not reached.
In this case, the Hamiltonian of Eq. (1) can be reduced to a
two-level system [53,58]

HTLS = −ε

2
σ̂z − 


2
σ̂x, (3)

in the basis defined by the persistent current states |±〉 =
(|0〉 ± |1〉)/√2, with |0〉 and |1〉 the ground and excited
states at δf = 0. The parameters of HTLS are the gap

 = 
00 and the detuning energy ε = 4πIpδf . Here, Ip =
α|〈+| sin 2ϕl|+〉| = α|〈−| sin 2ϕl |−〉| is the magnitude of the
loop current, which for our case with α = 0.8 and η = 0.25 is
Ip = 0.721 (in units of Ic = 2πEJ /�0).

B. Landau-Zener-Stückelberg interferometry

Landau-Zener-Stückelberg (LZS) interferometry is per-
formed by applying an harmonic field on top of the static
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field with

δf → δf (t) = δfdc + fac sin (ω0t). (4)

If the ac driving amplitude is such that |δfdc ± fac| < f01,
which is fulfilled for fac < f01/2, the quantum dynamics can
be described within the two-level regime. In this case, we
use ε(t) = ε0 + A sin(ω0t) in the Hamiltonian of Eq. (3), with
ε0 = 4πIpδfdc and A = 4πIpfac.

When fac > |δfdc|, the central avoided crossing at δf = 0 is
reached within the range of the driving amplitude, δfdc ± fac.
In this case, the periodically repeated Landau-Zener transitions
at δf = 0 gives place to LZS interference patterns as a function
of δfdc and fac, which are characterized by multiphoton
resonances [42] and coherent destruction of tunneling [40],
as we describe below.

There are multiphoton resonances when [42] E1(δf ) −
E0(δf ) = nω0 (where ω0 is written in units of EJ /� and
energies in units of EJ ). If ω0 � 
, these resonances
are at ε0 = nω0 [1,43,44,48]. Calling fω = ω0/4πIp, the n

resonance condition can also be written as δfdc = nfω. An
example of the dynamic behavior in an n = 2 resonance is
shown in Fig. 2(a), calculated as described in Ref. [59] (see also
Appendix for details of the calculation). In this case, the FQ
is driven with frequency ω0 = 0.003 (for EJ /h ∼ 300 GHz
it corresponds to ω0/2π ∼ 900 MHz). The dc detuning is
δfdc = 0.00066, corresponding to δfdc/fω = 2 (since fω =
ω0/4πIp = 0.00033). The FQ is started at t = 0 in the
ground state |�(t = 0)〉 = |0〉, and the probability of having
a positive loop current is calculated, P+(t) = |〈�(t)|+〉|2.
Since for δfdc > 0 we have |0〉 ≈ |+〉, the initial probability
is P+(t = 0) ≈ 1. The red-dashed line in Fig. 2(a) shows
the time dependence of P+(t). The resonant dynamics is
clearly seen: the FQ oscillates coherently between positive
and negative current states. Therefore the probability P+(t)
oscillates between 0 and 1, having a time averaged value of
P+ = 1/2. In contrast, Fig. 2(b) shows the time dependence
of P+(t) in an off-resonant case, for δfdc/fω = 4.58. We see
that for off-resonance the FQ stays in the positive loop current
state, since P+(t) fluctuates around P+(t) � 1.

For Aω0 � 
2, it has been shown, in a rotating wave
approximation, that the average probability P+ near a n−
photon resonance is [1,3,43,48]

P+ = 1 − 1

2


2
n

(nω0 − ε0)2 + 
2
n

. (5)

At the resonance, ε0 = nω0, Eq. (5) gives P+ = 1/2 and
away of the resonance P+ � 1. The width of the resonance
is δε = |
n| = 
|Jn(A/ω0)| = 
|Jn(fac/fω)|, with Jn(x) the
Bessel function of the first kind. This gives a quasiperiodic
dependence as a function of fac for δfdc fixed near the
resonance. In particular, at the zeros of Jn(x), the resonance is
destroyed, giving P+ = 1 instead of P+ = 1/2, a phenomenon
known as coherent destruction of tunneling [40,41]. Plots of
P+ as a function of flux detuning δfdc and ac amplitude fac

give the typical LZS interference patterns, which have been
measured experimentally by Oliver et al. in flux qubits [3–6],
and have also been observed in other systems [7–29].

Equation (5) corresponds to ideally isolated flux qubits,
neglecting the coupling of the qubit with the environment.
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FIG. 2. Probability of a positive loop current P+ state as a function
of time, for a flux qubit driven with frequency ω0 = 0.003 (in units
of EJ /�). (a) δfdc = 0.00066 (second resonance) and fac = 0.0007.
(b) δfdc = 0.00151 (off resonance) and fac = 0.00245. (c) Same as
(b) but for a long time scale. Red dashed line shows the results in the
nondissipative case and the black line corresponds to the dissipative
case with an ohmic bath at T = 20 mK.

The dynamics of the FQ as an open quantum system is
usually characterized by the energy relaxation time tr ≡ T1

and the decoherence time tdec ≡ T2. Several phenomeno-
logical approaches have taken into account relaxation and
decoherence in LZS interferometry, obtaining a broadening
of the Lorentzian-shape n− photon resonances of Eq. (5).
For example, in Ref. [1], a Bloch equation approach is used,
obtaining for zero temperature:

P+ = 1 − 1

2

�2
�1


2
n

(nω0 − ε0)2 + �2
�1


2
n + �2

2
, (6)

with �1 = 1/T1 and �2 = 1/T2. Similar results were obtained
by Berns et al. [4], considering a Pauli rate equation with an
effective transition rate that adds to �1 a driving induced rate
W . The latter was obtained assuming that decoherence is due
to a classical white noise in the magnetic flux, an approach
that is valid for time scales smaller than the relaxation time
and larger than the decoherence time, for T1 > t � T2. The
case of low frequency 1/ω noise has been considered in a
similar approach [60,61], finding a Gaussian line shape for the
n resonances instead of the Lorentzian line shape.
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III. DYNAMIC TRANSITION IN LZS INTERFERENCE
PATTERNS

A. The driven flux qubit with an Ohmic bath

The description of the LZS interference patterns with phe-
nomenological approaches like Eq. (6) gives a good agreement
with most of the experimental results [6,39]. However, they
rely on approximations valid either for large frequencies,
or for low ac amplitudes, or for time scales smaller than
the relaxation time. Here, we will study LZS interferometry
using the Floquet formalism for time-periodic Hamiltonians
[42,44,48,59], which allows for an exact treatment of driving
forces of arbitrary strength and frequency. The time-dependent
Schrödinger equation is transformed to an equivalent eigen-
value equation for the Floquet states |α(t)〉 and quasienergies
εα , which can be solved numerically. (See the Appendix for
details.) To describe relaxation and decoherence processes, we
consider that the qubit is weakly coupled to a bath of harmonic
oscillators. The Markov approximation of the bath correlations
is performed after writing the reduced density matrix ρ̂

of the qubit in the Floquet basis, ραβ(t) = 〈α(t)|ρ̂(t)|β(t)〉
[44,48,50]. By following this procedure, the quantum master
equation obtained for ραβ is valid for periodic driving forces
of arbitrary strength. (In contrast, the standard Born-Markov
approach is valid for small driving forces.) The obtained
Floquet-Markov quantum master equation is [44,48,50]

dραβ (t)

dt
=

∑
α′β ′

�αβα′β ′ ρα′β ′ , (7)

�αβα′β ′ = − i

�
(εα − εβ)δαα′δββ ′ + Lαβα′β ′ . (8)

The coefficients Lαβα′β ′ depend on the spectral density J (ω) of
the bath, the temperature T , and on the qubit-bath coupling.
Using the numerically obtained Floquet states |α(t)〉, we can
calculate the coefficients Lαβα′β ′ , and then we compute the
solution of ραβ(t) as described in Appendix.

Here, we will consider the dynamics of a FQ coupled to a
bath with an ohmic spectral density [44,48,50]

J (ω) = γωe−ω/ωc ,

with ωc a cutoff frequency. The Ohmic bath mimics an unstruc-
tured electromagnetic environment that in the classical limit
leads to white noise. We consider γ = 0.001, corresponding
to weak dissipation [3,6], and a large cutoff ωc = 1.0EJ /� �
ω0. The bath temperature is taken as T = 0.0014EJ /kB

(∼20 mK for EJ /h ∼ 300 GHz).
Experimentally, the probability of having a state of positive

or negative persistent current in the flux qubit is measured
[3,6,54]. The probability of a positive loop current measure-
ment can be calculated in general as [50,59]

P+(t) = Tr[�̂+ρ̂(t)]

with �̂+ the operator that projects wave functions on the
ϕl > 0 subspace, as described in Appendix. In Fig. 2, the black
lines show the population P+ as a function of time obtained
from the numerical solution of Eq. (7), taking the ground state
|0〉 as initial condition, and compared with the isolated FQ (red
dashed lines) discussed in the previous section. In Fig. 2(a),
for the n = 2 resonance, we see that the population P+(t)

has damped oscillations that tend to the asymptotic average
value of P+ = 1/2 for large times. On the other hand, for the
off-resonant case of Figs. 2(b) and 2(c), we see that there is
a clear difference between the short time behavior of P+(t),
shown in Fig. 2(b), and the large time behavior shown in
Fig. 2(c). Moreover, we observe that P+(t) tends to asymptotic
values that are very different than in the isolated system.
For the particular case shown in the plot, we find population
inversion, i.e., P+ < 1/2, in the asymptotic long time limit, a
phenomenon we discussed in Ref. [50] for off-resonant cases.
In the following, we will see how this change of behavior in
the long time is reflected in the full LZS interference pattern
as a function of δfdc and fac.

B. Dynamic transition in LZS interferometry

In Figs. 3(a) and 3(b), we show an intensity plot of P+
as a function of δfdc and fac, calculated at a time near
the experimental time scale of Refs. [3,4,6], texp = 1000τ ,
with τ = 2π/ω the period of the ac driving. For fac <

f01/2, we observe an LZS pattern modulated by multiphoton
resonances and coherence destruction of tunneling, which can
be described within a good approximation with Eq. (6). This
LZS interference plot is very similar to the experimental results
of Refs. [3,6]. Furthermore, for higher ac amplitudes, we find
a pattern of “spectroscopic diamonds,” also in good agreement
with experiments [6]. The diamond structure obtained for high
ac amplitudes can be related to the energy level spectrum
of Fig. 1, for a fixed dc flux detuning f01 > δfdc > 0, as
follows [6,39]. The first diamond, D1, starts when the 
00 = 


avoided crossing at δf = f00 = 0 is reached by the amplitude
of the ac drive, i.e., when f00 = δfdc ± fac = 0. This defines
an onset ac amplitude f s

D1 = δfdc. The first diamond ends
when the nearest second avoided crossing is reached (with gap

01) at the ac amplitude f e

D1 = f01 − δfdc. Then the second
diamond, D2, starts when the other second avoided crossing
is reached, at f s

D2 = δfdc − f10, and it ends when the next
avoided crossing is reached at f e

D2 = f02 − δfdc. Similarly,
the third diamond, D3, starts at f s

D3 = δfdc − f20, and so on.
The analysis of the positions of the resonances as a function
of fac and δfdc was the route followed in Ref. [6] to obtain
the parameters characterizing the different avoided crossings
of the flux qubit.

The FQ of Refs. [3,6] have short decoherence times
(tdec ∼ 20 ns > τ = 2π

ω0
∼ 1–10 ns) and large relaxation times

(tr ∼ 100 μs). The typical duration of the driving pulses in
these experimental measurements (texp ∼ 3 μs) is in between
this two time scales, tdec < texp < tr . Due to this time-scale
separation, a model with classical noise [4], valid for t � tr ,
can qualitatively explain the experimentally observed behavior
of P+ within the first diamond, through Eq. (6) [1,3]. Moreover,
a multilevel extension of the model of Ref. [4] can also describe
the higher order diamonds (provided one gives as an input
parameter the positions fij and the gaps 
ij of the avoided
crossings) [39].

For large times t � tr , one would expect naively, that
after full relaxation with the environment, a blurred picture
of the LZS interference pattern of Fig. 3(a) with broadened
resonance lobes should be observed. The asymptotic P + ≡
limt→∞〈P+(t)〉τ , averaged over one period τ , is shown in
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FIG. 3. Landau-Zener-Stückelberg interference patterns. Showed
are intensity plots of P+ as a function of the driving amplitude fac

and dc detuning δfdc for (a) t = 1000τ , time scale of the experiments,
and (b) asymptotic regime for t → ∞. In (a) we mark the ac
amplitudes defined in the text that correspond to the edges of the
spectroscopic diamonds for a given δf ∗

dc. (c) P+ for δfdc = 0.00151
as a function of the driving amplitude fac, at t = 1000τ (blue
dashed line) and asymptotic average population P + (black line).
The calculations were performed for ω0 = 2π/τ = 0.003EJ /� and
ohmic bath at T = 0.0014EJ /kB ∼ 20 mK. Vertical lines separate
diamond regimes D1, D2, D3, described in the text.

Fig. 3(b). (P + can be calculated exactly after obtaining nu-
merically the right eigenvector of �αβα′β ′ with zero eigenvalue.
See Appendix for details.) Surprisingly, we see in Fig. 3(b) that
the asymptotic behavior of P+ gives a qualitatively different
LZS interference pattern within the first diamond, and not
a mere blurred version of Fig. 3(a). In particular, a cut at
constant δfdc is shown in Fig. 3(c). There we see clearly that
within the first diamond regime, f s

D1 < fac < f e
D1, the value

of P+ at the experimental time scale is very different than
the asymptotic value P +. On the other hand, beyond the first
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FIG. 4. (a) Population P+ as a function of the dc flux detuning
δfdc for the flux qubit driven with fac = 0.00245 and ω0 = 2π/τ =
0.003EJ /�, and coupled to an ohmic bath at T = 20 mK (for
EJ /h ≈ 300 GHz). Red line with squares: t = 1000τ . Black line with
circles: asymptotic (t → ∞) average population P +. Blue line with
triangles: time averaged population in the isolated system. Horizontal
orange line: indicates the P+ = 0.5 level to help to identify when
there is population inversion. The flux detuning δf is normalized by
fω = ω0/4πIp , such that the n-photon resonances are at δf = nfω.
(b) Enlarged view around the n = 2 resonance. The green dashed line
is a plot of the best fit with Eq. (6), while a plot of Eq. (5) (not shown)
falls exactly over the blue dotted line.

diamond, for fac > f e
D1, the results of P+(texp) and P + are

nearly coincident.
In Fig. 4, we show P+ versus δfdc, for fac = 0.00245, within

the first diamond. The blue line with triangles corresponds
to the solution of the isolated system, which shows dips
where P+ ≈ 1/2 that correspond to the n-photon resonances
at δfdc/fω = n. The red line with squares corresponds to
P+(texp), which shows values of P+ smaller than in the isolated
case (due to effect of decoherence and relaxation) and in
agreement with the experiments. The asymptotic P + is also
shown in Fig. 4 (black line with circles), which is lower
than P+(texp). Figure 4(b) shows in detail the behavior near
the n = 2 resonance. The isolated case shows a dip with a
Lorentzian shape accurately described by Eq. (5). The open
system at the experimental time scale shows a broadened
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FIG. 5. Intensity plots of the population P+ as a function of δfdc and driving time t for the flux qubit driven with fac = 0.00245 and
ω0 = 0.003EJ /�, and different temperatures. In (a) and (b), time is plotted in linear scale up to times of the order of the duration of the driving
pulses in the experiments. In (c) and (d), time is plotted in logarithmic scale showing the dynamic transition to antisymmetric resonances for
large times, when t � tr . The flux detuning δfdc is normalized by fω = ω0/4πIp , such that the n-photon resonances are at δf = nfω, and time
is normalized by the driving period τ = 2π/ω0. T values are given in millidegrees of Kelvin, corresponding to devices with EJ /h ≈ 300 GHz.

peak for P+(texp), partially consistent with a description like
Eq. (6), except that near the resonance the behavior of P+
versus δfdc becomes antisymmetric around δfdc/fω = n. In the
asymptotic steady regime, P + versus δfdc is antisymmetric
in a wide region around δfdc/fω = n, showing population
inversion (P + < 1/2) below the resonance, for δfdc/fω � n.

The temporal evolution from symmetric to antisymmetric
resonances can be seen in detail in Fig. 5, where we show an
intensity plot of P+ as a function of δfdc and the duration time t ,
for fac = 0.00245. Two different temperatures are considered,
a low temperature T = 1.4 mK < 
 in Figs. 5(a) and 5(c), and
T = 20 mK > 
 in Figs. 5(b) and 5(d). The relaxation time
tr for the driving amplitude considered in Fig. 5 is tr ≈ 1720τ

(as we will see in Sec. III C, tr depends on fac). Figures 5(a)
and 5(b) are for duration times up to the time scale texp ∼
1000τ of the experiments, for the two different temperatures.
We see that within this time scale texp < tr , the resonances are
symmetric. In Figs. 5(c) and 5(d), the duration time is plotted

in logarithmic scale and the evolution at very large times is
shown. We see that at a time t ∼ tr the resonances start to
change form, becoming asymmetric in the long time limit.
The asymmetry is stronger for low temperatures, in particular
for T < 
 there is full inversion of population on one side of
the resonances.

Figure 5 shows that, as a function of time, there is a dynamic
transition manifested by a symmetry change in the structure
of the LZS interference pattern. The dynamic transition is
from nearly symmetric resonances at short times (t � tr )
to antisymmetric resonances at long times (t � tr ). This is
clearly illustrated in Fig. 6 where an enlarged view of a part of
the first diamond is shown. Figure 6(a) corresponds to P+(texp)
and shows the characteristic features observed in experiments:
(i) P+ ≈ 1 away from the resonances, (ii) there are resonance
lobes where P+ ≈ 0.5, and (iii) the n-resonance lobes are
limited by the points where there is coherent destruction of
tunneling (CDT), given by Jn(fac/fω) = 0. On the other hand,
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FIG. 6. Dynamic transition in the LZS interference pattern
from (a) resonance lobes for t = 1000τ ∼ texp, to (b) triangular
checkerboard pattern for asymptotic long times. Enlarged views
of Figs. 3(a) and 3(b), respectively, showing a sector of the first
diamond including the n = 5,6,7 multiphoton resonances. The flux
detuning δf is normalized by fω = ω0/4πIp , such that the n-photon
resonances are at δf = nfω.

in the asymptotic regime, [Fig. 6(b)], the pattern of symmetric
n-resonance lobes is replaced by a pattern of antisymmetric
resonances, which form a triangular checkerboard picture
defined by triangles with P+ < 0.5 and P+ > 0.5 alternatively,
with their vertices located at the CDT points. We name, in
short, the former pattern of LZS interferometry as “symmetric
resonances” (SR) and the latter as “antisymmetric resonances”
(AR).

C. Relaxation, decoherence, and the bath-mediated population
inversion mechanism

The asymptotic AR interference patterns show population
inversion (PI) on one side of a multiphoton resonance, as seen
in Figs. 4(b), 5(c), and 5(d). This makes P+ antisymmetric
around the resonance. If we fix δfdc at a value in between
two resonances, the probability oscillates around P+ = 1/2
as function of fac, showing PI whenever a “triangle” with
P+ < 1/2 is traversed. This is shown in Fig. 7(a).

The underlying mechanism of this population inversion can
be understood by analyzing the contribution to relaxation of
virtual photon exchange processes with the bath [49,50]. As
we show in Appendix, within the first diamond regime, the
total relaxation rate �r can be decomposed as

�r = �(0) +
∑
n�=0

�(n) ,

0.3

0.4

0.5

0.6

0.7

P
+

0.002 0.004 0.006 0.008 0.01
f
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0

2×10
-7

Γ(n)
n=0
n=1
n=-1

(a)

(b)

FIG. 7. (a) Asymptotic average population P + for the same
case. The dashed vertical lines highlight one of the regions of fac

where there is population inversion. (b) Terms �(n) that contribute
to the relaxation rate as a function of the driving amplitude fac.
The calculations were performed for δfdc = 0.00151, ω0 = 2π/τ =
0.003EJ /�, and an ohmic bath at T = 20 mK (for EJ /h ≈ 300 GHz).

with �(n) the relaxation rates due to virtual n-photon transitions
to bath oscillator states [48–50]. In Fig. 7(b), we plot �(n) as
a function of fac for the same δfdc considered in Fig. 7(a).
We show the cases with n = 0, ± 1, where �(0) describes the
relaxation without exchange of virtual photons, corresponding
to the “conventional” dc relaxation mechanism, while �(±1)

correspond to the ac contribution due to the exchange of one
virtual photon with energy ±�ω0. We show in Fig. 7 that,
whenever there is population inversion, the dc relaxation terms
vanish (�(n=0) ≈ 0), while the �(n=−1) term is the largest one.
This indicates that the relevant mechanism leading to PI is
a transition to a virtual level at energy E0 + �ω0 > E1 (one
photon absorption, n = −1), followed by a relaxation to the
level E1 [49,50].

To better understand why the AR patterns have not been
observed yet in current experiments, we now analyze the time
scales of relaxation and decoherence. To this end, we calculate
numerically the full relaxation rate �r and the decoherence
rates �αβ , from the eigenvalues of the �αβα′β ′ matrix, as
discussed in Appendix. In Fig. 8, we show the relaxation rate
�r and two decoherence rates �αβ , as a function of the driving
amplitude fac for δfdc = 0.00151 (away from a n resonance).
For fac = 0, the relaxation rate �r corresponds to the 1/T1

measured experimentally, i.e., �r = 1/tr → �1 = 1/T1 when
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FIG. 8. Relaxation rate �r and decoherence rates �ab and �cd

as a function of the driving amplitude fac. The calculations were
performed for δfdc = 0.00151, ω0 = 2π/τ = 0.003EJ /� and an
ohmic bath at T = 20 mK (for EJ /h ≈ 300 GHz). Vertical lines
separate diamond regimes D1 and D2 described in the text.

fac → 0. Since to a good approximation the density matrix
becomes diagonal in the Floquet basis in the asymptotic regime
[44], the decoherence rate �ab shown in Fig. 8 corresponds
to the decoherence between the |a〉 and the |b〉 Floquet
states. When fac → 0, �ab → �2 = 1/T2, since in this limit
it corresponds to the decoherence between the two lowest
energy levels. We also plot in Fig. 8 the rate �cd , which is the
decoherence rate between the |c〉 and the |d〉 Floquet states. At
fac = 0 it corresponds to the decoherence between the third
and the fourth energy level.

For small fac, below the onset of the first diamond (fac <

f s
D1), the relaxation and decoherence rates stay in values

similar to the undriven case. However, when fac > f s
D1, we

see in Fig. 8 that both rates depend strongly on fac. Above
the onset of the first diamond, the overall behavior is that
the decoherence rate �ab increases and the relaxation rate
�r decreases as a function of fac. Therefore, within the first
spectroscopic diamond, the difference between decoherence
and relaxation is much larger than in the undriven case
(�ab � �r ). This explains the important difference between
P+(texp) and P +, within the first diamond in Fig. 3, due to
the large time window where AR patterns can be observed for
�−1

ab < texp < �−1
r .

Beyond the first diamond, for fac > f e
D1, the relaxation rate

�r increases strongly with fac, becoming nearly of the same
order of the decoherence rates within the second diamond and
above. This behavior is a consequence of the fact that when
more than two-levels are involved in the dynamics, there are
several possible decay transitions between energy levels that
contribute to a faster relaxation of the system. Therefore, in
the second diamond and beyond, decoherence and relaxation
rates become comparable. For this reason, P+(texp) ≈ P+ in
this case, since the relaxation time is significantly reduced and
thus �−1

ab ∼ �−1
r < texp.

Although previous works have found PI for the asymptotic
regime of two level systems [45,46,49,60], the time-dependent
dynamics with different time scales has been overlooked. In

f
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FIG. 9. Schematic plot of the two low-energy levels E0,E1 and
the two virtual levels Ep0,Ep1 as a function of the flux detuning δf ,
for the flux qubit coupled with an structured bath with a resonant
mode at frequency �p . The location of the “virtual crossings” at ±fp

are also indicated. The inset shows a plot of the spectral density J (ω)
of the structured bath.

fact, the relevant point from our findings is that the asymptotic
regime is difficult to reach in the experiment, since PI needs
long times (t � tr � tdec) to emerge when mediated by the
bath.

D. Effect of a resonant mode in the bath

The measurement of the state of the FQ is performed with a
read-out dc SQUID, which is inductively coupled to the qubit
[3,6,55,62]. This modifies the bath spectral density by adding
a resonant mode at the plasma frequency �p of the SQUID
detector. The so-called “structured bath” spectral density is
given by [62]

J (ω) = γω�4
p(

�2
p − ω2

)2 + (2πκω�p)2
, (9)

with 2πκ�p the width of the resonant peak at ω = �p [see
the inset of Fig. 9 for a schematic plot of J (ω)].

Here, we study the effect of this resonant mode at �p on
LZS interferometry, in the case �p > ω0. To this end, we
calculate the asymptotic P + using the spectral density of
Eq. (9), considering different values of �p, with κ = 0.001
fixed.

In Fig. 10, we show the intensity plots of P + as a function
of (δfdc,fac) for �p = 0.08 and �p = 0.02. As it is evident,
the diamond patterns are strongly affected by the structured
bath. In the case of �p = 0.08, we observe in Fig. 10(a) that
the (δfdc,fac) region formerly occupied by the first diamond
in the Ohmic case [shown in Fig. 3(b)] is now divided in three
parts: two new subdiamonds indicated as regimes (I) and (III),
and the region in between them, indicated as regime (II). When
lowering �p, the regime (III) becomes more predominant, as
can be seen in Fig. 10(b) for �p = 0.02.
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FIG. 10. Landau-Zener-Stückelberg interference patterns for a
flux qubit in contact with a structured bath. We show intensity
plots of the asymptotic average population P+ as a function of the
driving amplitude fac and dc detuning δfdc for (a) �p = 0.08 and
(b) �p = 0.02. We indicate in the plot the regions corresponding to
the regimes (I), (II), and (III) described in the text.

From now on, to describe the above mentioned changes of
the first diamond, we restrict to the two lowest levels of the
FQ. It has been shown that a two-level system coupled to a
structured bath that has a localized mode at �p is equivalent to
a two-level system weakly coupled to a single mode quantum
oscillator with frequency �p, and both coupled to an Ohmic
bath [63,64]. In fact, most of the results discussed in this
section can be qualitatively interpreted by assuming that at
low energies there are two virtual levels at Ep0 = E0 + ��p

and Ep1 = E1 + ��p, as sketched in Fig. 9. These virtual
levels are not stable and decay fast to their “underlying” energy
level, i.e., Ep0 → E0 and Ep1 → E1. The three regimes found
in Fig. 10 can be understood by considering that there are
two “virtual crossings” when E1(δf ) = Ep0(δf ), at the field
detunings

δf = ±fp ≈ ±�p/4πIp,

as shown schematically in Fig. 9. The boundaries of these
subdiamonds can be defined in a similar way as in Sec. III B,
replacing f01 by fp in the argument (when fp < f01). This
gives that the subdiamond of regime (I) is within the limits
f s

D1 < fac < fp − δfdc, and the subdiamond of regime (III)
is within the limits δfdc + fp < fac < f e

D1 (assuming 0 <

δfdc < fp). However, since the virtual levels Ep0 and Ep1 are
not truly stable, the regimes (II) and (III) show interference
patterns that are different than the analyzed in the previous
section, as we describe below.

Regime (I): antisymmetric resonances. If the nearest (in
energy scale) virtual bath mode at Ep0 is never reached within
the driving interval δfdc ± fac, the behavior is the same as
the one analyzed previously for the Ohmic bath in Figs. 3(b)
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FIG. 11. An enlarged view of the same section of the first
diamond shown in Fig. 6 for the Ohmic bath. (a) For �p = 0.08.
(b) For �p = 0.02.

and 6(b). The only difference is that the AR interference pattern
is now within a smaller sub-diamond, since it is limited by the
condition E1 − E0 < �p within the driving interval.

Regime (II): symmetric resonances. In this case, one of
the virtual crossings of E1 with Ep0 is reached within the
driving interval δfdc ± fac. Therefore transitions from the E1

level to the virtual level at Ep0 are possible. Since this later
virtual level is unstable, the system decays to the ground state
at E0. By going repeatedly through this process during the
periodic driving, population is pumped from the E1 level to
the ground state at E0, providing a ‘cooling’ mechanism.
The transitions via the unstable mode at Ep0 lead to a fast
relaxation of the system, before the slow mechanisms of
bath mediated population inversion, discussed in Sec. III C,
can take place. This impedes the dynamic transition to
antisymmetric resonances. In this way, the interference pattern
with symmetric resonant lobes remains in the asymptotic
regime. This is shown in Fig. 11(a), which corresponds to
an enlarged section of the regime (II) of Fig. 10(a).

Regime (III): sideband resonances. In this case, the two
virtual crossings of E1 with Ep0 are reached within the driving
interval δfdc ± fac. This makes possible to access also the
Ep1 level through Landau-Zener transitions at δf = 0, which
allows for new “sideband” resonances involving the Ep0 and
Ep1 levels, in addition to the direct resonances at E1 − E0 =
nω0. When Ep1 − E0 = nω0, called a blue sideband resonance
[63], the qubit resonates between the E0 and the Ep1 levels.
However, the Ep1 virtual level is unstable and it decays to the
E1 level. In this way, the ac drive is continuously pumping
population from the ground state to the excited state at E1,
leading to full inversion of the qubit population: P + ∼ 0.
When E1 − Ep0 = nω0, called a red sideband resonance [63],
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the qubit resonates between the E1 and the Ep0 levels. In
this case, the Ep0 virtual level decays fast to the E0 level,
and thus the ac drive is continuously pumping population
from the E1 level to the ground state, leading to P + ∼ 1.
In Fig. 11(b), we can see in detail the sideband resonance
patterns that characterize this regime, with alternating P+ ∼ 0
and P+ ∼ 1. This type of resonances have been analyzed in
Ref. [63], within a perturbative approach for �p < ω0. In that
case, only the regime (III) is realized. On the other hand, when
�p > ω0, the three regimes described above are possible.

To observe the subdivision of the first diamond in the three
regimes, the crossing of E1 with Ep0 should occur before the
avoided crossing of E1 with E2. This means that the condition
fp < f01 is required, or �p < 4πIpf01. For the typical flux
qubit parameters considered in this work, this later condition
corresponds to �p � 0.15. The SQUID detectors used in the
measurements of Refs. [3,4,6] have typically �p ∼ 10 GHz,
which is �p ∼ 0.2 in our normalized units. Therefore in the
case of these LZS interferometry experiments, the effects of
the resonant mode at �p are negligible, and everything is
within the regime (I) of asymptotic asymmetric resonances.
On the opposite side, the flux qubits studied in Ref. [55]
have �p � 
 � ω0, which situates them deeply in the case
of the regime (III). In fact, the n = 1 blue and red sideband
resonances have been observed in Ref. [55]. However, in
these devices, the oscillator mode of the SQUID detector is
strongly coupled to the qubit, while Eq. (9) is valid for weak
coupling. A full analysis in this case has to consider a quantum
oscillator with frequency �p coupled to the qubit within the
system Hamiltonian, see Refs. [55,63]. In any case, our results
show that it will be interesting to perform experiments on
LZS interferometry using SQUID detectors with low �p and
weakly coupled to the qubit, to observe the three regimes
shown in Figs. 10 and 11.

IV. CONCLUSIONS

To summarize, by performing a realistic modeling of the
flux qubit, we were able to analyze the time dependence of the
LZS interference patterns (as a function of ac amplitude and
dc detuning) taking into account decoherence and relaxation.

We found an important difference between the LZS patterns
observed for the time scale of current experiments and those
for the asymptotic long time limit: a symmetry change in
their structure. This is a dynamic transition as a function of
time from a LZS pattern with nearly symmetric multiphoton
resonance lobes to antisymmetric multiphoton resonances.
This transition is observable only when driving the system
for very long times, after full relaxation with the bath degrees
of freedom (t � tr ).

The large time scale separation, tr � tdec, present in the
device of Ref. [6] explains why in their case the asymptotic
LZS pattern is beyond the experimental time window. It will
be interesting if experiments could be carried out for longer
driving times in this device. For example, measurements of
curves of P+ at growing time scales near a multiphoton
resonance, could show the transition from symmetric to
antisymmetric behavior.

Another interesting finding is the dependence of the LZS
interference patterns on the frequency �p of the SQUID

detector. Different types of LZS interference patterns can
arise, depending on the magnitude of �p. In particular, we
showed that the resonant mode at �p can impede the dynamic
transition when �p is of the order of the qubit gap, in the regime
(II) discussed in Sec. III D. In principle, the frequency �p can
be varied (in a small range) by varying the driving current of
the SQUID detector [55] or with a variable shunt capacitor.
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APPENDIX: FLOQUET-MARKOV FORMALISM FOR THE
PERIODICALLY DRIVEN FLUX QUBIT

1. Periodically driven isolated flux qubit

Since the FQ of Eq. (1) is driven with a magnetic flux f (t) =
fdc + fac sin(ω0t), the Hamiltonian is time periodic H(t) =
H(t + τ ), with τ = 2π/ω0. In this case, it is convenient
to use the Floquet formalism, that allows to treat periodic
forces of arbitrary strength and frequency [42,44,48,59,65,66].
According to the Floquet theorem [42], the solutions of the
Schrödinger equation are of the form

|�(t)〉 =
∑

α

cαe−iεα t/�|α(t)〉,

where cα are time independent coefficients and εα are the
so-called quasienergies. The Floquet states |α(t)〉 are time-
periodic,

|α(t)〉 = |α(t + τ )〉,
and satisfy the eigenvalue equation

ĤF (t)|α(t)〉 = εα|α(t)〉,
where ĤF (t) = H(t) − i�∂/∂t is defined as the Floquet
Hamiltonian. The time periodicity of H(t) and |α(t)〉 makes
convenient to use the Fourier representation,

H(t) =
∑

k

Hke
−ikω0t , (A1)

|α(t)〉 =
∑

k

|αk〉e−ikω0t . (A2)

Therefore we can rewrite the Floquet eigenvalue equation as∑
q

[Hk−q − �kω0Iδk,q]|αq〉 = εα|αk〉 (A3)

with I the identity.
For the driven FQ, we write H(t) = H0 + W (t) with H0 =

HFQ(fdc) [the time independent part of the Hamiltonian of
Eq. (1)], and

W (t) = αEJ sin[2πfac sin (ω0t)] sin(2πfdc + 2ϕl)

+ 2αEJ sin2[πfac sin (ω0t)] cos(2πfdc + 2ϕl). (A4)
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In the energy eigenbasis of H0, given by H0|n〉 = En|n〉,
Eq. (A3) can be written as∑

m,q

[
(En − �kω0)δkqδnm + Wnm

k−q

]〈m|αq〉 = εα〈n|αk〉 (A5)

with

Wnm
k = ω0

2π

∫ 2π/ω0

0
〈n|W (t)|m〉eikω0t dt, (A6)

The static eigenvalues En and eigenstates |n〉 are ob-
tained by numerical diagonalization of H0, using 2π -periodic
boundary conditions on �ϕ = (ϕ1,ϕ2) and a discretization grid
of 
ϕ = 2π/M (with M = 256) [56]. Then, the Wnm

k are
evaluated from Eqs. (A6) and (A4), where the matrix elements
〈n| sin (2πfdc + 2ϕl)|m〉 and 〈n| cos (2πfdc + 2ϕl)|m〉 have
been calculated using the obtained eigenstates |n〉. In order
to solve the Floquet eigenvalue problem numerically, we have
to truncate the Eq. (A5) both in the Fourier indices k,q and the
in the number of energy levels of H0 considered [59]. The
truncated eigenproblem is of dimension Nd = (2K + 1)Nl

where K = max|q − k| is defined by the maximum value of
the Fourier index and Nl by the number of levels considered in
the diagonalization of H0. The obtained Floquet states 〈n|αk〉
and quasienergies εα contain all the information to study the
quantum dynamics of the system described above.

An alternative method, which is more efficient for large Nl ,
is to consider the time evolution operator U (t2,t1), which in
the Floquet representation can be expanded as

U (t2,t1) =
∑

α

e−iεα (t2−t1)|α(t2)〉〈α(t1)|.

Since |α(t + τ )〉 = |α(t)〉, the Floquet state |α(t)〉 is an eigen-
vector of U (t + τ,t) with eigenvalue e−iεατ . Therefore it is
possible to calculate the Floquet states and quasienergies from
the diagonalization of U (t + τ,t). Numerically, one needs to
compute the evolution operator U (t,0) within a period, for
0 � t � τ . Taking discretized time steps of length δt = τ/Mτ ,
we use the second-order Trotter-Suzuki approximation

U (tj+1,tj ) ≈ e−iH0
δt
2 e−iW (tj + δt

2 )δt e−iH0
δt
2

for times tj = jδt , and we compute the product U (tn,0) =
�n−1

j=0U (tj+1,tj ) for n � Mτ , starting with U (0,0) = I . The
Floquet states are then obtained as eigenvectors of U (τ,0) ≡
U (tMτ

,0). We diagonalize numerically the hermitian matrix
C = i(1 + U )(1 − U )−1, solving C|α(τ )〉 = cα|α(τ )〉, where
cα = cotan(εατ/2) and |α(0)〉 = |α(τ )〉, The Floquet states at
any time are then calculated as |α(tn)〉 = eiεαtnU (tn,0)|α(0)〉,
and their Fourier components |αk〉 can be obtained using
a fast Fourier transform routine. We find that for Nl � 4
this numerical procedure is more efficient than the direct
diagonalization of Eq. (A5).

Experimentally, the probability of having a state of positive
or negative persistent current in the flux qubit is measured
[3,6,54]. The probability of a positive current measurement
(“right” side of the double-well potential) can be calculated,
for δf � 1, integrating the probability |�(ϕl,ϕt )|2 within the
subspace with π > ϕl > 0 [59]:

P+(t) =
∫ π

0
dϕl

∫ π

−π

dϕt |�( �ϕ)|2,

where �ϕ = (ϕl,ϕt ) and �( �ϕ) = 〈�ϕ|�〉. For later generaliza-
tions, it is better to define the projector corresponding to a
positive current measurement:

�̂+ =
∫

π>ϕl>0
d �ϕ | �ϕ〉〈 �ϕ|,

in terms of this operator, we have P+(t) = 〈�(t)|�̂+|�(t)〉 ≡
〈�̂+〉. For an initial condition |�0〉 at t0, we can express P+(t)
in the Floquet basis as

P+(t) =
∑
α,β

e−i(εα−εβ )(t−t0)〈α(t0)|�0〉〈�0|β(t0)〉πβα(t)

with πβα(t) = 〈β(t)|�̂+|α(t)〉. In experiments, the initial time,
or equivalently the initial phase of the driving field seen
by the system in repeated realizations of the measurement,
is not well defined. Then, the quantities of interest are the
probabilities averaged over the initial times t0 [42,59,65].
Using the properties of the Floquet functions, the average over
the initial phase time t0 gives

ei(εα−εβ )t0 |β(t0)〉〈α(t0)| → δαβ

∑
k

|αk〉〈αk|,

and we obtain

P+(t) =
∑

α

παα(t)

(∑
k

|〈αk|�0〉|2
)

.

It is worth noticing that averaging over the initial phase
time of the driving field is equivalent to defining a density
matrix ρ(t) = |�(t)〉〈�(t)| which, due to the average over
t0, is diagonal in the Floquet basis, ραβ = 〈α(t)|ρ(t)|β(t)〉 =
δαβ

∑
k |〈αk|�0〉|2.

Finally, we average within a period over the observation
time t , to obtain a time independent “stationary” probability
P + ≡ P+(t). After defining the time-averaged projector in the
Floquet basis as

παβ = 〈α(t)|�̂+|β(t)〉 =
∑

k

〈αk|�̂+|βk〉,

we obtain the simple result

P + =
∑

α

πααραα

with ραα = ∑
k |〈αk|�0〉|2. Numerically, after diagonalization

of H0, we compute the matrix elements of the projector
πnm = 〈n|�̂+|m〉 = ∫

π>ϕl>0 �∗
n( �ϕ)�m( �ϕ)d �ϕ, with �n( �ϕ) =

〈�ϕ|n〉 [59]. Then, for each ω0 and fac, the Floquet states
and quasienergies are obtained, and the coefficients παβ =∑

k,n,m πn,mα∗
k,nβk,m are evaluated (with αk,n = 〈n|αk〉).

As an example, we calculate P+ for the driven FQ in the
two-level regime, as described by the Hamiltonian HFQ ≈
HTLS of Eq. (3). At zero temperature, and in the absence of
driving (fac = 0), the isolated FQ is in the ground state. In
this case, the probability P+ is simply the projection of the
ground state on the subspace of positive persistent current, and
we have P+ = 〈0|�̂+|0〉 = π00. For δfdc = fdc − 1/2 > 0, we
have P+ ≈ 1 except near δfdc = 0 where P+ = 1/2, as can be
seen in Fig. 12(a). (While for δfdc < 0, we have P+ ≈ 0, since
the ground state has the loop current in the opposite direction
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FIG. 12. (a) Probability P + of a state with positive loop current
as a function of δfdc for the undriven qubit (red squares) and for the
driven qubit (black circles) with fac = 0.0001 and �ω0/EJ = 0.0003.
The flux detuning δfdc is normalized by fω = ω0/4πIp , such that
the n-photon resonances are at δf = nfω. (b) Floquet quasienergies
(in units of EJ ) as a function of δfdc for the same case as in (a).
(c) Floquet quasienergies (in units of EJ ) as a function of fac for the
n = 1 resonant state at fdc = 0.50033 [corresponding to black square
in (a)]. (d) Floquet quasienergies (in units of EJ ) as a function of fac

for an out of resonance state at fdc = 0.50151 [corresponding to blue
diamond in (a)]. Device parameters of the flux qubit are α = 0.8 and
η = 0.25.

in this case.) In the presence of an ac drive, δf (t) = δfdc +
fac cos(ω0t), we calculate the time averaged P +, following
the procedure discussed above. The time averaged P + vs fdc

shows dips corresponding to n-photon resonances. as shown
in Fig. 12(a). These n-resonances are at ε0 ≈ nω0, which is
equivalent to δfdc = nfω, after defining fω = ω0/4πIp. the
n-resonances are at δfdc = nfω. In the Floquet picture, these
resonances correspond to avoided crossings of the Floquet
quasienergies [44,48] as a function of δfdc as we illustrate in
Fig. 12(b). When increasing fac, we see that for a n resonance
the quasienergies have a small gap, |εα − εβ | � ω0 (with the
difference εα − εβ defined modulo ω0). On the other hand, for a
value of δfdc away of a resonance the quasienergies maintain a

finite gap (compared to ω0) as a function of fac, see Figs. 12(c)
and 12(d).

2. Floquet-Markov approach for open system

Experimentally, the system is affected by the electromag-
netic environment that introduces decoherence and relaxation
processes. A standard theoretical model to study enviromental
effects is to couple the system bilinearly to a bath of noninter-
acting harmonic oscillators with masses mν , frequencies ων ,
momenta pν , and coordinates xν , with the coupling strength γν

[44]. The total Hamiltonian of system and bath is then given
by

H = HS(t) + HSB + HB,

where HS(t) is the time-periodic Hamiltonian of the system,
HB is the Hamiltonian that describes a bath of harmonic
oscillators and HSB its system-bath coupling Hamiltonian
term,

HB =
∞∑

ν=1

(
p2

ν

2mν

+ mνω
2
νx

2
ν

2

)
, (A7)

HSB = Â

∞∑
ν=1

γνxν (A8)

with Â the operator of the system that couples to the bath.
The bath degrees of freedom are characterized by the spectral
density

J (ω) = π

∞∑
ν=1

γ 2
ν

2mνων

δ(ω − ων).

It is further assumed that at time t = 0 the bath is in thermal
equilibrium and uncorrelated to the system. Then, the full
density matrix σ (t) has at initial time the form σ (0) =
ρ(0) exp(−βHB)/trB exp(−βHB), where ρ(t) = TrB(σ ) is
the density matrix of the system and T = 1/(kBβ) is the bath
temperature. After expanding the density matrix of the system
in the time-periodic Floquet states

ραβ(t) = 〈α(t)|ρ(t)|β(t)〉, (A9)

the Born (weak coupling) and Markov (fast relaxation)
approximations for the time evolution of ραβ (t) are performed.
In this way, the Floquet-Markov master equation is obtained
[44,48,67–71]:

dραβ (t)

dt
= − i

�
(εα − εβ)ραβ(t) +

∑
α′β ′

Lαβα′β ′(t)ρα′β ′(t).

(A10)

The first term in Eq. (A10) represents the nondissipative
dynamics and the influence of the bath is described by the
time-dependent rate coefficients

Lαβα′β ′(t) =
∑

q

Lq

αβα′β ′e
−iqω0t (A11)
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with

Lq

αβα′β ′ =
∑

k

(
gk

αα′ + g
−k−q

ββ ′
)
Ak

αα′A
k+q

β ′β

− δββ ′
∑

η

gk
ηα′A

k+q
αη Ak

ηα′ − δαα′
∑

η

g−k
ηβ ′A

k+q

ηβ Ak
β ′η.

(A12)

The nature of the bath is encoded in the coefficients

g
q

αβ = J
(
ε

q

αβ/�
)
nth

(
ε

q

αβ

)
with ε

q

αβ = εα − εβ + q�ω0 and nth(x) = 1/(exp (x/kBT ) −
1), and defining J (−x) = −J (x) for x < 0. The system-bath
interaction is encoded in the transition matrix elements Ak

αβ in
the Floquet basis

A
q

αβ =
∑

k

〈αk|Â|βk+q〉

.
In the case of the driven FQ, the system Hamiltonian is

HS = HFQ(t) and the bath degrees of freedom couple with the
system variable ϕl since the dominating source of decoherence
is flux noise (see Ref. [62]). Thus, after taking Â = ϕl and in
terms of the eigenbasis of H0, we have to compute

A
q

αβ =
∑
nm

∑
k

α∗
k,nβk+q,m〈n|ϕl|m〉. (A13)

Considering that the time scale tr for full relaxation satisfies
tr � τ , the transition rates Lαβα′β ′ (t) can be approximated by
their average over one period τ [67], Lαβα′β ′(t) ≈ Lq=0

αβα′β ′ =
Lαβα′β ′ , obtaining

Lαβα′β ′ = Rαβα′β ′ + R∗
βαβ ′α′

−
∑

η

(δββ ′Rηηα′α + δαα′R∗
ηηβ ′β). (A14)

The rates

Rαβα′β ′ =
∑

q

g
q

αα′A
q

αα′A
−q

β ′β (A15)

can be interpreted as sums of q-photon exchange terms.
This formalism has been extensively employed to study

relaxation and decoherence for time dependent periodic
evolutions in double-well potentials and in two level systems
[44,48,67–69]. Here we use it to model the ac driven FQ,
considering the full multilevel Hamiltonian of Eq. (1) [50].

The probability of a positive current measurement is calcu-
lated as P+(t) = 〈�̂+〉 = Tr(�̂+ρ(t)), with �̂+ the projector
defined in the previous section. With ρ(t) calculated in the
Floquet basis is

P+(t) =
∑
α,β

πβα(t)ραβ(t) (A16)

To calculate the time dependence of ραβ(t), it is convenient
to work in the superoperator formalism of the so-called
Liouville space [72,73]. We write

dραβ (t)

dt
=

∑
α′β ′

�αβα′β ′ ρα′β ′

with �αβα′β ′ = − i
�

(εα − εβ)δαα′δββ ′ + Lαβα′β ′ . Then we
change notation rewriting the Nl × Nl matrix ρ as an
N2

l × 1 vector represented as the ket |ρ〉〉, and the N2
l × N2

l

“supermatrix” �αβα′β ′ as the operator �̂ acting on this linear
space, where the inner product is defined as 〈〈σ |ρ〉〉 =
Tr(σ †ρ). In particular, for the identity matrix I , we have
〈〈I |ρ〉〉 = 〈〈ρ|I 〉〉 = Tr(ρ) = 1, the later equality correspond-
ing to the normalization of ρ, which is a conserved quantity.
On the other hand, the norm of the vector |ρ〉〉 is |||ρ〉〉|| =√

Tr(ρ2) � 1. In this notation, we can rewrite the Floquet-
Markov equation as

d|ρ〉〉
dt

= �̂|ρ〉〉. (A17)

The superoperator �̂ is non-Hermitian and has left and right
eigenvectors with complex eigenvalues λμ,

�̂|rμ〉〉 = λμ|rμ〉〉, (A18)

〈〈lμ|�̂ = 〈〈lμ|λμ, (A19)

which are mutually orthogonal, 〈〈lμ|rν〉〉 = δμν . In general,
the number of independent eigenvectors of �̂ can be less than
the dimensionality of �̂. A formal solution of Eq. (A17) for
|ρ(t)〉〉 can be obtained using a similarity transformation to the
Jordan normal form of �̂ [74–76]. In the cases considered in
this work we found numerically that it was always possible to
diagonalize �̂, in which case the solution of Eq. (A17) can be
expressed as

|ρ(t)〉〉 =
∑

μ

cμeλμt |rμ〉〉, (A20)

cμ = 〈〈lμ|ρ(0)〉〉 (A21)

from where we can calculate numerically ραβ(t) ≡ |ρ(t)〉〉αβ .
The probability of a positive current measurement is then
obtained combining Eq. (A16) with Eq. (A21).

The asymptotic state |ρ(t → ∞)〉〉 ≡ |ρ∞〉〉 satisfies

�̂|ρ∞〉〉 = 0.

Therefore the asymptotic state can be constructed from
the right-eigenvectors |rμ〉〉 of �̂ with eigenvalue λ0 = 0
(i.e., the kernel of �̂). If λ0 is nondegenerate, then the
asymptotic state is unique and independent of the initial
condition ρ(0). In the cases considered in this work we found,
within the numerical accuracy, that the eigenvalue λ0 = 0
was nondegenerate, and so the asymptotic state was given
by the eigenvector |r0〉〉, and then ρ∞

αβ = |r0〉〉αβ . The time
independence of the asymptotic ρ∞

αβ implies that quantities
like P+ in Eq. (A16) become time periodic with a period τ in
the asymptotic state. Therefore it is convenient to calculate the
asymptotic P+(t) averaged over one period as

P+ =
∑
α,β

πβα|r0〉〉αβ. (A22)

It is also clear from Eq. (A21) that information about the
relaxation and decoherence rates is contained in the nonzero
eigenvalues λμ of �̂ [74–76]. On one hand, the relaxation rates
are given by the negative real eigenvalues of �̂, where the
long time relaxation rate �r = 1/tr is given by the minimum
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of −Re(λμ) (excluding λ0 = 0). On the other hand, the
decoherence rates are given by the negative real parts of the
complex conjugate pairs of eigenvalues of �̂.

3. Decoherence in the Floquet basis

It is well known that the density matrix becomes diagonal
in the energy basis for times larger than the relaxation time
in undriven systems [72]. In this case, the decay time of the
offdiagonal ρnm defines the decoherence time τnm

φ between the
eigenstates En and Em. For time scales t � τnm

φ , relaxation is
described by the Pauli rate equation for the populations of
the energy levels Pn = ρnn. In the case of a system with a
time periodic drive, it is usually assumed that for large times
the density matrix becomes approximately diagonal in the
Floquet basis [44,67–70]. More precisely, this approximation
can be justified when εα − εβ � Lα′β ′αβ , which is fulfilled
for very weak coupling with the environment and away from
resonances, see Refs. [67,70]. From Figs. 12(c) and 12(d),
it is clear that this condition will be easily satisfied in the
offresonant case considered here, where the Floquet gap
|εα − εβ | is large. On the other hand, near a resonance where
|εα − εβ | ≈ 0, this condition can not be fulfilled, unless the
system-bath coupling is extremely small [70].

In Fig. 13, we show the time evolution of matrix elements of
ρ calculated in the eigenbasis of H0 and in the Floquet basis,
both for an offresonant and for a resonant case. To clarify
notation, for the H0 eigenbasis, we use latin indices i,j with
i = 1,2,3, . . . ordered for increasing eigenenergy E1 < E2 <

E3 < . . .. For the Floquet basis, we use greek indices α,β with
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FIG. 13. Real part of the off-diagonal elements of the density ma-
trix ρ as a function of time. Black lines: off-diagonal matrix element
ρ12 in the basis of eigenstates of the undriven Hamiltonian. Red lines:
off-diagonal element ρab in the Floquet basis. (a) For a resonant state
at fdc = 0.50099 driven with fac = 0.0001 and �ω0/EJ = 0.0003.
(b) For an off-resonant state at fdc = 0.50151 driven with fac =
0.00245 and �ω0/EJ = 0.0003. Insets in (a) and (b) show ρab at
large times.

α = a,b,c, . . ., and ordered such that α = a corresponds to the
state that in the limit fac → 0 maps to the ground state (with
index i = 1); α = b corresponds to the state that in the limit
fac → 0 maps to the first excited state (with index i = 2), and
so on.

The time dependence of the offdiagonal elements ρij in
the H0 eigenbasis are shown in Figs. 13(a) and 13(b), for
the resonant and offresonant cases, respectively. [Here, we
consider the flux qubit in contact with an Ohmic bath with
J (ω) = γω.] We see that for long times ρij (t → ∞) goes
to a finite nonzero value that can not be neglected, showing
explicitly that the driven system density matrix is not diagonal
in the eigenenergy basis. Therefore approaches based on the
use of the Pauli rate equation in the eigenenergy basis will not
be correct for the analysis of the asymptotic long time behavior.
In the case of the Floquet basis, we see in Figs. 13(a) and 13(b)
that the offdiagonal ρab after having oscillations at short time
scales, decreases exponentially to very low values for long
times. We find that ρab(t → ∞) ≈ 10−3 for the offresonant
case [while diagonal elements ραα(t → ∞) ∼ 0.1 − 1]. This
confirms that it is a good approximation to neglect the ρab at
long times in this case. On the other hand, in the resonant case,
we find ρresonant

ab (t → ∞) ≈ 10−2 > ρoffresonant
ab (t → ∞). Thus,

in this case, neglecting ρab is not a good approximation as in
the offresonant case. The results reported in the main body of
the paper correspond to the solution of the full Floquet-Markov
equation (A17). However, we have verified that most of our
results (including the dynamic transition discussed in Sec. III)
are accurately reproduced by the approximation that assumes
an asymptotic density matrix diagonal in the Floquet basis.

Assuming that the density matrix becomes diagonal in the
Floquet basis, one can separate the dynamics of the diagonal
and the off-diagonal density matrix. The off-diagonal part is
dominated by the dependence

dραβ

dt
≈

[
− i

�
(εα − εβ) + Lαβαβ

]
ραβ, α �= β.

In this approximation, the decoherence rate between the |α〉
and the |β〉 Floquet state, is given by �αβ = −Lαβαβ . The
dynamics for the diagonal part of the density matrix gives a
rate equation for the population of the Floquet states Pα = ραα:

dPα

dt
=

∑
β

LααββPβ

= 2
∑

β

RααββPβ − RββααPα, (A23)

where Rααββ = ∑
n gn

αβ |An
αβ |2, after Eq. (A15). It is simple to

solve the above rate equation when we restrict to two levels.
With two Floquet states |a〉,|b〉, the asymptotic populations
are P ∞

a = Raabb/(Raabb + Rbbaa), P ∞
b = 1 − P ∞

a ; and the
relaxation rate is �r = 2(Raabb + Rbbaa). Using Eq. (A15),
we can decompose the relaxation rate as a sum of terms that
describe virtual n-photon transitions [48]:

�r = �(0) +
∑
n�=0

�(n) (A24)

with

�(n) = 2
(
gn

ab

∣∣An
ab

∣∣2 + gn
ba

∣∣An
ba

∣∣2)
. (A25)
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