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Beyond nuclear “pasta” : Phase transitions and neutrino opacity of new “pasta” phases

P. N. Alcain, P. A. Giménez Molinelli, and C. O. Dorso
Departamento de Fı́sica, FCEyN, UBA, and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina

and IFIBA-CONICET
(Received 5 June 2014; published 3 December 2014)

In this work, we focus on different length scales within the dynamics of nucleons in conditions according to
the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at
subsaturation densities. While varying the temperature, we find that a solid-liquid phase transition exists, which
can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we
study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high,
even though the morphology of the structures differ significatively from those of the traditional nuclear pasta.
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I. INTRODUCTION

A neutron star has a radius of approximately 10 km and
a mass of a few solar masses. According to current models
[1], the structure neutron star can be roughly described as
composed of two parts: the crust, of 1.5-km thick and a density
of up to half the normal nuclear density ρ0, with the structures
known as nuclear pasta [2]; and the core, where the structure is
still unknown and remains highly speculative [3]. Most neutron
stars are remnants of core collapse supernovae. This kind of
supernovae happen when the hot and dense Fe core of a dying
massive star (known as a protoneutron star) collapses. During
the collapse, several nuclear processes take place in the inner
core of the star—electron capture, photodisintegration, Urca,
and so on. These processes, apart from increasing the overall
neutron number of the system, produce a large amount of
neutrinos which flow outwards. The interaction between the
neutrinos streaming from the core of the protoneutron star and
its outer layers play an important role in reversing the collapse
that causes the supernova.

However, neutron stars are born hot, but cool down
by means of neutrino emission. Therefore, the interaction
between the neutrinos and neutron star matter is key in
comprehending two aspects of a neutron star history: its
genesis and its thermal evolution.

The neutron star’s crust is composed of neutrons and
protons embedded in a degenerate electron gas. Protons
and neutrons in the crust are supposedly arranged in struc-
tures that differ substantially from the “normal” nuclei—the
nonhomogeneous phases collectively known as nuclear pasta.
The structure of this nuclear pasta is related to the neutrino
opacity of neutron star’s crust, neutron star quakes, and
pulsar glitches. Specifically, the neutron star quakes and pulsar
glitches are related to the mechanical properties of the crust
matter [4], while the neutrino opacity is enhanced by coherent
scattering. This enhancement of the crust’s opacity is related
to the static structure factor of nuclear pasta [5]
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Since neutron stars’ cooling is associated with neu-
trino emission from the core, the interaction between the

neutrinos and the particular structure of the crust would
dramatically affect the thermal history of young neutron
stars.

Several models have been developed to study nuclear pasta
and they have shown that these structures arise due to the
interplay between nuclear and Coulomb forces in an infinite
medium. Nevertheless, the dependence of the thermodynamic
observables has not been studied in depth.

The original works of Ravenhall et al. [2] and Hashimoto
et al. [6] used a compressible liquid drop model, and proposed
what are now known as pasta phases: lasagna, spaghetti, and
gnocchi. From then on, different approaches have been taken,
that we classify roughly as mean field or microscopic

Mean field works include the liquid drop model by Lattimer
et al. [1], Thomas-Fermi by Williams and Koonin [7], among
others [8–13]. Microscopic models include quantum molecular
dynamics, used by Maruyama et al. [14,15] and by Watanabe
et al. [16], simple semiclassical potential by Horowitz et al.
[17], and classical molecular dynamics, used in our previous
works [18]. The work by Nakazato et al. [13], inspired by
polymer systems, found also gyroid and double-diamond
structures, with a compressible liquid drop model. Dorso et al.
[18] arrived at the pasta phases differently from those already
mentioned with molecular dynamics, studying mostly their
characterization at very low temperatures.

In this work, we study the neutron stars with molecular
dynamics, using the classical molecular dynamics (CMD)
model [19]. We use morphologic and thermodynamic tools
to characterize symmetric neutron star matter at different
temperatures, focusing on the static structure factor. We
characterize the morphology of the emerging structures with
the pair distribution function and the Minkowski functionals
[16], a complete set of morphological measures. The possible
existence of a solid–liquid phase transition is explored via the
Lindemann coefficient [20].

With these tools at very low temperatures, we find a phase
transition that is both morphologic and thermodynamic: a
discontinuity in the Minkowski functionals shows the mor-
phologic transition, while a coincident discontinuity in both
energy and the Lindemann coefficient show a thermodynamic
solid–liquid transition. At temperatures slightly higher, we
find stable structures that do not belong to the usual pasta
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TABLE I. Classification of NSM shapes based on Minkowski
functionals.

B < 0 B ∼ 0 B > 0

χ > 0 Anti-Gnocchi Gnocchi
χ ∼ 0 Anti-Spaghetti Lasagna Spaghetti
χ < 0 Anti-Jungle Gym Jungle Gym

menu. Moreover, these unusual shapes absorb neutrinos more
efficiently than the typical nuclear pasta.

This work is structured as follows. In Sec. II we review
the interaction model, along with the tools used to analyze the
results we obtained. In Sec. III A we present and characterize
the solid–liquid phase transition in nuclear pasta. Then, in
Secs. III B and III C we study the very-long-range order of
the pasta phases, focusing on their influence on the opacity
of the crust to low-momentum neutrinos. We discuss the
appearance of some unusual pasta shapes and how these
newfound structures may enhance the opacity of the crust
more than traditional pasta in Sec. III D. Finally, in Sec. IV
we draw conclusions about the results presented.

II. CLASSICAL MOLECULAR DYNAMICS MODEL

Of the many models used to study nuclear pasta, the advan-
tage of classical or semiclassical models is the accessibility
to position and momentum of all particles at all times. This
allows the study of the structure of the nuclear medium from a
particle-wise point of view. Many models exist with this goal,
like simple-semiclassical potential [17], quantum molecular
dynamics [14], and classical molecular dynamics [19]. In these
models the Pauli repulsion between nucleons of equal isospin
is either hard-coded in the interaction or as a separate term [21].

In this work, we model the interaction between nucleons
with a CMD model to study nuclear reactions. Dorso

FIG. 1. (Color online) Energy as a function of temperature for
different densities. We see that there is a discontinuity in the range
of Tl = 0.35 to Th = 0.65 MeV, depending on the density, a signal
of a first-order phase transition. In the figure, densities range from
ρ = 0.03 and ρ = 0.13 fm−3, increasing �ρ = 0.01 fm−3 upwards.

et al. provided justification for its use in the stellar crust
environment [18].

The CMD, as introduced in Ref. [22], has been success-
fully used in heavy-ion reaction studies to help understand
experimental data [23], to identify phase-transition signals and
other critical phenomena [24–27], and to explore the caloric
curve [28] and isoscaling [29,30]. CMD uses two two-body
potentials to describe the interaction of nucleons, which are a
combination of Yukawa potentials

Vnp(r) = vr exp(−μrr)/r − va exp(−μar)/r,

Vnn(r) = v0 exp(−μ0r)/r,

where Vnp is the potential between a neutron and a proton
and Vnn is the repulsive interaction between either nn or pp.
The cutoff radius is rc = 5.4 fm and for r > rc both potentials
are set to zero. The Yukawa parameters μr , μa , and μ0

were determined to reproduce infinite systems with realistic
binding energy, density, and compressibility and to reproduce
experimental cross sections in nucleon-nucleon collisions.

To simulate an infinite medium, we used CMD under
periodic boundary conditions, symmetric in isospin (i.e., with
x = Z/A = 0.5, 2500 protons and 2500 neutrons) in cubical
boxes with sizes adjusted to have densities between ρ =
0.03 fm−3 � ρ � 0.13 fm−3. Although in the actual neutron
stars the proton fraction is low (x < 0.5), we choose to work
with symmetric matter because that way we can study the
neutron stars without having a symmetry term in the energy.
We use this model to provide a classical framework for the
analysis of the neutron star crust. As such, the model lacks
many quantum effects, but it is easy to understand, instead of
the more theoretically sound, but also more obscure models.

A. Coulomb interaction in the model

Since a neutralizing electron gas embeds the nucleons in
the neutron star crust, the Coulomb forces between protons

FIG. 2. (Color online) Lindemann coefficient and energy as a
function of temperature for a chosen density ρ = 0.05 fm−3. The
sudden change in their value is a signal of a solid–liquid phase
transition. We can see that both discontinuities are at the same
temperature.
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(a) Radial distribution function for ρ = 0.03 fm−3 (b) Snapshot of the system in the liquid
phase for ρ = 0.03 fm−3

(c) Radial distribution function for ρ = 0.05 fm−3 (d) Snapshot of the system in the liquid
phase for ρ = 0.05 fm−3

(e) Radial distribution function for ρ = 0.08 fm−3 (f) Snapshot of the system in the liquid
phase for ρ = 0.08 fm−3

FIG. 3. (Color online) Radial distribution function for different densities, both below and above the transition temperature, and snapshots
of the system in the liquid phase. Although the first peaks of the distribution are in the same position for both temperatures, the following
peaks, which exhibit a long-range order typical of solids, are only present below the transition temperature.

are screened. One of the many ways to model this screening
effect is the Thomas-Fermi approximation, used with various
nuclear models [5,14,18]. According to this approximation,
protons interact via a Yukawa-like potential, with a screening

length λ

VTF(r) = q2 e−r/λ

r
.
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Theoretical estimations for the screening length λ are λ ∼
100 fm [31], but we set the screening length to λ = 20 fm.
This choice is based on previous studies [32], where we show
that this value is enough to adequately reproduce the expected
length scale of density fluctuations for this model.

B. Simulation procedure

The trajectories of the nucleons are then governed by the
Pandharipande and the screened Coulomb potentials. The
nuclear system is cooled from T = 0.8 to T = 0.2 MeV
using isothermal molecular dynamics with the Nosé-Hoover
thermostat procedure [33], in the LAMMPS package [34].
Systems are cooled in small temperature steps (�T = 0.01),
decreasing the temperature once both the energy and the
temperature, as well as their fluctuations, are stable.

C. Other tools

1. Minkowski functionals

The Minkowski functionals [35] are a set of independent
functionals that satisfy three properties: motion invariance,
additivity, and continuity. The morphological and topological
properties of any given closed and oriented surface can
be completely characterized by these Mikowski function-
als [32,36]. According to Hadwiger’s theorem [37], for a
body in a d-dimensional Euclidean space, there are d + 1
Minkowski functionals. For three-dimensional bodies, these
four functionals are as follows: volume V , surface area S,
Euler characteristic χ , and integral mean curvature B.

While the volume and surface area have an easy intuitive
interpretation, we will explain further the other two function-
als. The Euler characteristic χ is a topological measure that
can be interpreted as

χ = (isolated regions) + (cavities) − (tunnels).

The integral mean curvature, known as mean breadth, is a
measure of the typical width of the body.

Using these functionals, we propose a classification for
the structures obtained in simulations of neutron star matter
(NSM) within the CMD framework that is summarized in
Table I [18].

2. Lindemann coefficient

The Lindemann coefficient [20] is based on the idea
of particle “disorder,” used mostly to study solid–liquid
transitions in infinite systems like crystals [38] and is defined
from the standard deviation of the positions of the particles
�r2

i as follows:

�L =
√∑

i

〈
�r2

i

/
N

〉
a

,

where a is the lattice constant of the crystal and N is the total
number of particles. In our case, we set a = (V/N )1/3, the
typical length of each particle.

FIG. 4. (Color online) Euler number and mean breadth for ρ =
0.05 fm−3. We observe a sharp transition for both Minkowski
functionals.

III. RESULTS AND DISCUSSION

In what follows, we present the results obtained cooling
down a system of approximately 5000 particles.

A. Phase transition

1. Thermodinamical phase transition

Figure 1 presents the energy as a function of temperature
(caloric curve), for several densities. Each of these densities
exhibit a discontinuity in the energy at certain temperatures—a
signal of a first-order phase transition. This transition can
be confirmed and further characterized as a solid–liquid
phase transition by looking at the Lindemann coefficient. The
Lindemann coefficient for ρ = 0.05 fm−3 as a function of
temperature can be seen in Fig. 2, along the energy. This figure
shows that the discontinuities in the Lindemann coefficient and
in energy are at the same temperature. These two factors are,
effectively, the signature of a solid–liquid phase transition.

FIG. 5. (Color online) Critical temperature as a function of den-
sity. We see the overlap between the Minkowski and the Lindeman
critical temperatures.
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FIG. 6. (Color online) Spatial distribution for ρ = 0.05 fm−3, both above and below the transition temperature. The structures are similar,
but much more disordered above the transition.

In Fig. 3 we show the radial distribution function for three
different densities: ρ = 0.03 (spaghetti), ρ = 0.05 (lasagna),
and ρ = 0.08 fm−3 (tunnels), just above and below the tran-
sition temperature, as well as a snapshot of the system at the
high temperature phase. Since the first peaks (corresponding
to the nearest neighbors) are at the same position regardless
of the temperature, we conclude that the short-range order is
present both above and below the transition. However, the
peaks for third- and higher-order neighbors, distinctive of
solid phases, disappear as the temperature is increased through
the transition. The very-long-range order also survives the
transition, as is discussed further in Sec. III B.

2. Morphological phase transition

When we look at the Minkowski functionals, particularly
the Euler characteristic and the mean breadth, we can see
that there is again a “critical” temperature at which both
the Euler characeristic and the mean breadth show a sharp

FIG. 7. (Color online) Peak of S(k) for low momenta as a
function of the temperature, for ρ = 0.05 fm−3. We see two behaviors,
for T < 0.5 MeV and T > 0.5 MeV.

transition. We show, as an example, these magnitudes as a
function of temperature for density ρ = 0.05 fm−3 in Fig. 4.
As this transition is signaled by morphological observables,
we conclude that this transition is morphological.

These signals of a solid–liquid phase transition (energy
and Lindemann’s coefficient discontinuity) and morphological
transition (Minkowski functionals discontinuity) point at the
same transition temperature, as can be seen in the phase dia-
gram of Fig. 5. This means that as the systems are cooled down
at fixed volume, they undergo a thermodinamical and a morho-
logical phase transition, and they do so at the same temperature.

B. Very long-range behavior

On top of the disappearance of the long-range-order charac-
teristic of solids, another feature becomes evident from Fig. 3.

FIG. 8. (Color online) Peak of S(k) for low momenta: zoom into
the temperature region between T = 0.5 and T = 0.7 MeV. The
labels of the different curves correspond to those of the Fig. 9, where
we can see that the structures obtained for these runs are different
among each other and they yield different absorption peaks for low
momenta.
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As temperature increases through the solid–liquid transition,
a very-long-range modulation in the pair correlation function
survives. This very long-range ordering is characteristic of the
pasta phases. In Fig. 6, a visual representation of the spatial
configuration for ρ = 0.05 fm−3 is shown for temperatures
both below and above the transition. In it, we show that not only
the solid phase has the usual pasta shape, but the liquid phase
preserves it. Below the transition, we have “frozen pasta.” Just
above it, nucleons may flow, but are confined to a certain pasta
or pasta-like structure, as we shall see in the following sections.

C. Neutrino transport properties

This very long-range order, evident from Fig. 3, is responsi-
ble for a peak at very low momentum k (∼ 10 fm wavelength)
in the static structure factor S(k), proportional to the particle

scattering probability. With this in mind, we now put the focus
on the very long-range order of our structures.

In Fig. 7 we plot the height of the low momenta peak
S(k < 0.5 fm−1) (λ � 13 fm) as a function of the temperature
for ρ = 0.05 fm−3, thus comparing the structure factor among
different structures in the region of interest. The most clear
and intuitive way to read this figure is backwards, from
high to low temperatures, tracing the cooling procedure each
system undergoes in our simulations. Each line in the figure
corresponds to evolutions with different initial conditions, but
following the same protocol for cooling down and the same
criteria for stability.

At high temperatures the nucleons are rather uniformly
distributed and no structure is evidenced by S(k): the “peak”
vanishes as its height tends to 1, the value for homogeneous

FIG. 9. (Color online) Spatial distribution for ρ = 0.05 fm−3 for different initial conditions at temperature T = 0.6 MeV. We see that we
obtain the usual lasagna, but also intertwined lasagnas and other structures that are not of the usual past type. Despite being different from the
usual pasta phases, these shapes have a peak for low momentum in the structure factor. In Fig. 8 we see the corresponding absorption peaks
for each structure. The unusual pasta phases show a larger absorption than the usual lasagna in the range of temperatures shown in the figure
mentioned above.
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systems. As the temperature is decreased, a peak at low
momentum develops. The transition described in Secs. III A
and III A 2, manifests in Fig. 7 as the vanishing of fluctu-
ations below the transition temperature T � 0.5 MeV. Even
at temperatures as high as T = 1.0 MeV there is still a
recognizable low momentum absorption peak (with height
well over 1), but it does not always correspond to a usual
pasta (gnocchi, spaghetti, or lasagna) in our simulations. At
such high temperatures and for most densities the system is
in a “sponge-like” structure, which is, nevertheless, ordered
enough to produce a recognizable peak in S(k).

Interestingly, when the cooling procedure drives the system
at temperatures below T ∼ 0.7 MeV, we observe that in
different runs the system may collapse into several distinct
structures, in addition to the usual lasagna which is the ground
state at this density. A zoom into the S(k) peak’s height for this
region of temperatures can be found in Fig. 8, and snapshots of
the structures corresponding to each of those runs can be seen
in Fig. 9. When we compare the absorption of each structure,
we see that not only the usual lasagna has a peak on the
low momenta region, but also unusual pasta phases: two that
resemble an intertwined lasagna and another one that does not
look like any other pasta (see captions for details).

D. Properties of nontraditional pasta

Usual pasta shapes are ground states (potential energy
minima). The nontraditional structures described in the
previous section are likely to be local potential energy
minima, which abound in frustrated systems like this. The
complexity of the energy landscape (many local minima
separated by energy barriers) makes it difficult to reach the
actual ground state by simple cooling in molecular dynamics
simulations. However, since we are working at fixed number
of particles, volume, and temperature [(N,V,T ) ensemble],
the equilibrium state of the system at finite temperatures is
not that which minimizes the internal energy, but that which
minimizes the Helmholtz free energy, A = E − T S. All of
these structures may then be actual equilibrium solutions, as
long as they are free energy minima.

The accurate calculation of free energies from MD simu-
lations is computationally very expensive [39, pp. 167–200],
especially at low temperatures when overcoming energy bar-
riers become very improbable events. However, we can easily
compute the internal energy distributions over a long evolution
at constant temperature. In Fig. 10 we show internal energy
histograms constructed from very long thermalized evolutions
at T = 0.6 MeV using three of the systems shown in nine as
initial conditions. We see that, although the histograms clearly
differ, they overlap significantly. This fact indicates that the
full ensemble of equilibrium configurations at T = 0.6 MeV
contains all of these structures, not only lasagna. In light of this
we propose that at low but finite temperatures, the state of the
system should be described as an ensemble of both traditional
and nontraditional structures rather than by a single one.

When we heat up the system to T = 0.8 MeV, these three
histograms become indistinguishable, hinting that, for this
temperature, the free energy barriers can be overcome and
the system is more likely to be ergodic.

(a) Distribution of energies for T = 0.6 MeV

(b) Distribution of energies for T = 0.8 MeV

FIG. 10. (Color online) Energy distribution for a canonical en-
semble. It can be seen that, for T = 0.8 MeV, all three distributions
overlap completely. However, in T = 0.6 MeV, the histograms, albeit
split, still overlap significatively.

These observations are relevant because all of these
structures show peaks in S(k) at the same wavelength (within
the uncertainty), although of different heights. And more
importantly, we find from our calculations that the seemingly
amorphous, sponge-like structures can be more efficient in
scattering neutrinos of the same momentum that any usual
pasta (i.e., have higher peaks), usually invoked as a necessity
for coherent neutrino scattering. This result shows that unusual
pasta shapes should also be considered when studying the
structure of a neutron star’s crust.

IV. DISCUSSION AND CONCLUDING REMARKS

In this work we use a classical molecular dynamics model
to study neutron star matter for different temperatures. We find
a solid–liquid phase transition takes place for every density at
very low temperatures. This transition was characterize with
the Lindemann coefficient and by a discontinuity in the caloric
curves. The transition is also signaled by a discontinuity in the

065803-7
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Minkowski functionals as a function of the temperature, and
all three indicators give the same transitions temperature. This
phase transition does not alter the typical pasta shape (lasagna
and spaghetti in the cases shown): the liquid phase preserves
the pasta shape found in the solid phase (the ground state).

As we increase the temperature beyond T = 0.7 MeV,
the typical pasta shapes become unstable and the system
adopts slightly less ordered but still inhomogeneous struc-
tures. However, the low momentum absorption peak of this
structures remains quite high. This implies that the existence of
traditional pasta shapes—which are only obtained at extremely
low temperatures—is not a necessary condition for the en-
hancement of the neutrino absorption in a neutron star’s crust.

Furthermore, we also find that at T ∼ 0.7,MeV the system
can exist in various stable states, all of them with different
morphology, and, consequently, different structure factor, but
very close in internal energy. From our simulations at fixed
(N,V,T ), these states appear to be separated by relatively
high energy barriers, which make the spontaneous transition
between them a very improbable event, and unlikely to be
observed within a single simulation run. However, the energy

distributions obtained from long-enough runs starting from
different states overlap significantly, indicating that all of them
are members of the full ensemble of equilibrium states at
that temperature. At T ∼ 0.8 MeV the energy barriers become
surmountable and the energy histograms completely overlap.

We obtain these results for the special case of symmetric
neutron star matter. We are currently extending these calcula-
tions to lower proton fractions, in the range of 0.3 < x < 0.5,
where these new structures arise as well. All this suggests that
the actual state of these systems at low, but finite temperatures,
is better described as an ensemble of shapes rather than by a
single pasta-like structure.
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47-Sup. 2, 93 (2001).
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[27] C. O. Dorso and J. A. López, Phys. Rev. C 64, 027602 (2001).
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