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Modeling ball possession dynamics in the game of football2
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In this paper, we study interaction dynamics in the game of football–soccer in the context of ball possession
intervals. To do so, we analyze a database comprising one season of the five major football leagues of Europe.
Using this input, we developed a stochastic model based on three agents: two teammates and one defender.
Despite its simplicity, the model is able to capture, in good approximation, the statistical behavior of possession
times, pass lengths, and number of passes performed. In the last section, we show that the model’s dynamics can
be mapped into a Wiener process with drift and an absorbing barrier.
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I. INTRODUCTION16

The statistical analysis of competing games based on data17

gathered from professional competitions is currently a grow-18

ing area of research [1–8]. In the case of team sports games,19

these studies have a potentially high impact. It is boosted by20

commercial interests but also by its intrinsic complexity that21

caught the attention of basic research [1–5]. In the context22

of team sports games, the emergence of complex behavior23

is often observed. It arises from the interplay dynamics of a24

process governed by well-defined spatiotemporal scales. It is25

well known that these scales are important for both individual26

interactions among athletes and collective strategies [9].27

Particularly interesting is the game of football, where28

data analytics have been successfully tackled in recent years29

[10–12]. For instance, in the field of complex systems, Buldú30

et al. used network theory to analyze the Guardiola’s F.C.31

Barcelona performance [13]. In that work, they consider a32

team as an organized social system where players are nodes33

linked during the game through coordination interactions.34

Despite these recent contributions, football analytics seems35

to be relegated as compared to other major team sports,36

like basketball or baseball. That is why football’s team37

management and strategy is far from being recognized as38

analytics-driven. The specific problem with football is con-39

cerned with data collection. Usually, the collection of data40

upon ball–based sports competitions is focused on what is41

happening in the neighborhood of the ball (on-ball actions).42

Nonetheless, in football games, an important part of the dy-43

namics is developed far from the ball (off-ball dynamics),44

and this information is required to analyze the performance45

of football teams [14]. Consequently, in the game of football,46

on-ball actions might provide less insight for strategy and47

player evaluation than off-ball dynamics.48

In this context, a possible solution is to improve the data49

gathering, a possibility often limited by a lack of resources.50

From an alternative perspective, we aim to define a framework51
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based on the use of state-of-the-art statistical tools and model- 52

ing techniques that allow us to characterize the global dynam- 53

ics by studying the local information provided by the data. 54

Based on these ideas and on previous studies [15–17], in 55

the present contribution, we have surveyed, collected, and 56

analyzed information from a database [18] to propose an in- 57

novative agent–based football model. We emphasize that our 58

goal is not to model the full complexity dynamics of a football 59

game, but to model the dynamics of ball possession intervals, 60

defined as the consecutive series of actions carried out by a 61

team. We focus on studying the interactions in the frame of 62

both on-ball and off-ball actions, considered as the main fea- 63

ture to understand the team’s collective performances [19,20]. 64

This paper is organized in three parts: Material and Meth- 65

ods, Results, and Discussion. In Material and Methods, we 66

first introduce the database. In particular, we describe the 67

dataset Events, as well as other information regarding rel- 68

evant fields. Second, we discuss some interesting statistical 69

patterns that we found in this data set to propose the model’s 70

components. Third, we give a formal definition of the model 71

and discuss in detail the key elements, the assumptions, and 72

the dynamical parameters. Lastly, we present a method to 73

systematically search for a suitable set of parameters for the 74

model. The Results section is divided into two parts. First, 75

we evaluate the results of the model. To do so, we focus on 76

analyzing three statistical observables: (i) the distribution of 77

possession time, (ii) the distribution of the distance traveled 78

by the ball in passes (hereafter referred to as the pass length), 79

and (iii) the distribution of the number of passes. The idea is 80

to assess the model’s performance by comparing its outcomes 81

with the data. Second, we place our model in a theoretical 82

framework. This allows, under certain approximations, an in- 83

terpretation of the emergent spatiotemporal dynamics of the 84

model. Finally, our results are discussed in the last section. 85

II. MATERIAL AND METHODS 86

A. The data set 87

In 2019, Pappalardo et al. published one of the largest 88

football–soccer databases ever released [18]. Within the infor- 89
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(a) (b)

FIG. 1. Relevant statistical patterns gathered from the data set Events in Ref. [18]. (a) Frequency by type of event. Blue bars, from the set
of all the events. Red bars, only the events triggering a ball possession change (BPC). (b) The main plot shows the number of different players
involved in a ball possession interval (BPI). The inset shows the number of different types of events in a BPI. (∗) The acronym OOTB stands
for others on the ball.

mation provided in this astounding work, the data set Events90

contains a gathering of all the spatiotemporal events recorded91

from each game in the season 2017-2018 of the following five92

professional football leagues in Europe: Spain, Italy, England,93

Germany, and France. A typical entry in this data set bears94

information on:95

(i) Type of event. Namely, pass, duels, free kicks, fouls, etc.,96

subdivided into other useful subcategories. This field allows97

us to evaluate in detail the correlation between particular98

actions and the consequences in the dynamics.99

(ii) Spatiotemporal data. Each event is tagged with tem-100

poral information, referring to the match period and to its101

duration in seconds. Spatial information, likewise, refers to102

the stadiums’ dimensions as a percentage of the field length103

from the view of the attacking team.104

(iii) Unique identifications. Each event in the data set is105

linked to an individual player in a particular team. This al-106

lows us to accurately determine the ball position intervals,107

and moreover to perform a statistical analysis of the players108

involved.109

In light of this information, we define a ball position in-110

terval (BPI) as the set of consecutive events generated by111

the same team. We gathered 3 071 395 events and 625 195112

BPIs from the data set, totaling 1826 games, involving 98113

teams, and with the participation of 2569 different players.114

Since we aim to study a dynamical evolution, only BPIs with115

two or more events were collected. On the other hand, since116

different games often occur in stadiums of varying sizes, to117

compare distances we normalized all the measured distances118

in a game to the average distance calculated using the whole119

set of measures in that game.120

B. Statistical patterns121

The idea of this section is to present the statistical patterns122

that we have used to propose the main components of our123

football model. First, in Fig. 1(a), we plot the frequency of124

events by type (blue bars) and also the frequency of events that 125

trigger a ball possession change (BPC) (see red bars). By look- 126

ing at the blue bars, we can see that the most common event 127

is the pass, with 1.56 million entries. Notice that passes al- 128

most duplicate the second-most-frequent type of event, duels, 129

which at the same time is the most frequent event triggering 130

possession changes (see red bars). Moreover, by comparing 131

the two bars on duels, we can see that ≈75% of the duels 132

produce possession changes, showing that this type of event 133

is very effective to end BPIs. 134

Second, in Fig. 1(b), the main plot shows the number of 135

different players involved per BPI. As can be seen, the most 136

common case is two players, with 0.27 million observations, 137

duplicating the three-player case, the second-most-commonly 138

observed. The inset shows the number of different types of 139

events per BPI. With 0.4 million cases recorded, we can see 140

the case of two types of events is the most common. No- 141

tice, the data seems to show statistical regularities. Despite 142

the doubtless complexity of the game, there are features that 143

dominate over others. 144

In the following section, we use these observations to pro- 145

pose the main components of a minimalist dynamical model. 146

C. The model 147

We aim to build a model that draws the main features of 148

football game dynamics during ball possession intervals. The 149

idea is to propose a system both simple and minimalist, but 150

also effective in capturing global emergents of the dynamics. 151

To do so, we used the empirical observations made in the 152

previous section. 153

Let us think in a system with three agents (the players), 154

two in the same team having possession of the ball (the 155

teammates), and one in the other (the defender). The players 156

in this system can move in two dimensions and the teammates 157

can perform passes to each other. In this simulated game, 158

the system evolves until the defender reaches the player 159
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FIG. 2. Scheme summarizing the main parameters of the model (not to scale). Green circles represent the teammates and orange circle the
defender. (a) We emphasize the parameters (i) d , the distance between the player with the ball and the defender, (ii) dx , the distance between
the player with the ball and the free player, and (iii) a, the action radius. (b) The circles placed at distance R1 from the origin represent the
initial condition in the dynamics. Distance d0 is the initial distance between the three agents. Radius R2 delimits the agents’ moving area.

with the ball and, emulating a duel, it ends the BPI. Bearing160

these ideas in mind, in the following we propose the rules161

that govern the agents’ motion, and consequently define the162

model’s dynamics.163

Let �ri(t ) be a 2D position vector for an agent i (i = 1, 2, 3)164

at time t . Considering discrete time steps �t = 1, at t + 1 the165

agents will move as �ri(t + 1) = �ri(t ) + �δri(t ). In our model,166

we propose �δri(t ) = (R cos �, R sin �), where R and � are167

two variables taken as follows:168

(1) The displacement R169

The three agents randomly draw a displacement from an170

exponential distribution Pa(r) = 1
a e−r/a, where a, the scale of171

the distribution, is the agent’s action radius [see Fig. 2(a)], i.e.,172

the surroundings that each player controls.173

(2) The direction �174

(a) For the teammates. The agents randomly draw an175

angle in [0, 2π ) from a uniform distribution.176

(b) For the defender. This agent takes the direction of177

the action line between itself and the agent with the ball.178

Then, according to the roles in the game, the players decide179

to accept the changes proposed as follows:180

(3) The player with the ball evaluates if the proposed181

displacement moves it away from the defender. If it does, the182

player changes the position; otherwise, it remains the current183

position.184

(4) The free player and the defender always accept the185

change.186

As we mentioned before, in this model we consider the187

possibility that the teammates perform passes to each other.188

This decision is made as follows:189

(5) If the defender’s action radius does not intercept the190

imaginary line joining the teammates, then the player with the191

ball plays a pass to the other teammate with probability p.192

Since in real football games the player’s movements are193

confined, for instance, by the field limits, in the model we194

introduce two boundary parameters: The inner and external195

radii, R1 and R2, respectively [see Fig. 2(b)].196

(6) The inner radius R1 is used to set the initial conditions.197

At t = 0, each one of the three agents is put at a distance R1198

from the center of the field, spaced with an angular separation 199

of 120 degrees (maximum possible distance between each 200

other). 201

(7) The external radius R2 defines the size of the field. It 202

sets the edge of the simulation. If an agent proposes a new 203

position �x(t + 1), such that ||�x(t + 1)|| � R2, then the change 204

is forbidden and the agent keeps its current position—note this 205

overrules the decision taken from Eqs. (3) and (4). 206

Lastly, a single realization of the model in the frame of the 207

rules proposed above ends when: 208

(8) The defender invades the agent with the ball’s action 209

radius. That is, when the distance d between the player with 210

the ball and defender satisfies d < a. 211

Let us justify the election of the rules and the different 212

elements of the model. First, it is well known that football ex- 213

hibits complex dynamics. Figure 1(a) shows that many events 214

are possible in the context of a BPI. However, we can see 215

that the events pass and duels domain in the frequency of the 216

common events, and events triggering a BPC, respectively. 217

Therefore, a reasonable simplification is to propose a model 218

with only two possible events. This also agrees with the data 219

shown in the inset of Fig. 1(b), regarding the number of 220

different types of events observed during BPI. 221

Second, considering only three players for a football model 222

could be seen as an oversimplification. However, as we show 223

in the main plot of Fig. 1(b), the number of players by BPI 224

is in most of the cases two. Therefore, a system with two 225

teammates and a single defender triggering the BPCs is, pre- 226

sumably, a good approximation; ultimately, to be judged by 227

the model’s predictions on the observed statistics. 228

Third, let us discuss the players’ movement rules. In item 1 229

(see listing above), we propose the agents draw the displace- 230

ments from an exponential distribution, with an action radius 231

a as the scale. The idea behind this is to set a memoryless 232

distribution, in the light that the players’ displacements are 233

commonly related to both evasion and distraction maneuvers, 234

which are more effective without a clear motion pattern [21]. 235

The direction and the adoption of the new movement, on the 236

other hand, are proposed as role dependent. The player with 237
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the ball takes a random direction and adopts the movement238

if the new displacement moves it away from the defender,239

otherwise it stays in the current position. The idea here is to240

slow down the player movement since it is well known that241

the players on ball control are slower than free players. The242

free player, on the other hand, follows a random walk. In this243

regard, our aim is to include in the model the possibility of244

performing passes of different lengths. The defender’s main245

role, in turn, is to capture the player with the ball. Therefore,246

we consider rule 2(b) as the simplest strategy to choose in the247

frame of a minimalist model.248

Lastly, the incorporation of the boundaries R1 and R2 is249

because the development of football games takes place inside250

confined spaces. In particular, R1 brings into the model the251

possibility of capturing short-time ball possession intervals,252

emulating plays occurring in reduced spaces as, for instance,253

fast attacks. The incorporation of R2, on the other hand, is254

straightforward since the real football fields are not limitless.255

The main difference between the real and the model field’s256

bounds is the shape. In this regard, we neglect any possible257

contribution from the fields’ geometry.258

We consider that our model offers an adequate balance259

between simplicity, accuracy, and, as we show in the following260

sections, empirical validation. In the Supplemental Material261

[22], we show the evaluation of both alternative components262

and alternative strategies for the model. In the following sec-263

tion, we propose a convenient method for tuning the main264

parameters ruling the model dynamics: (i) the action radius265

a, (ii) the probability of performing a pass p, and (iii) the266

confinement radii R1 and R2.267

D. On setting the model’s parameters268

The model’s performance depends on the correct choice269

of four parameters: a, p, R1, and R2. In this section, we270

propose a simple method to optimize this tuning procedure.271

For the sake of simplicity, we decided to fix a and refer the272

other radius to this scale, R1 → R1
a and R2 → R2

a . For the273

other parameters, we devised a fitting procedure based on the274

minimization of the sum of the Jensen–Shannon divergences275

(JSDs) between the observed and the predicted probability276

distributions of the studied stochastic variables. To do so, we277

used the following statistical observables: (i) the distribution278

of ball possession time P(T ), (ii) the distribution of passes279

length, P(�r,Y = pass), and (iii) the distribution of the num-280

ber of passes performed P(N ). With this, we can evaluate the281

model’s dynamics by using three macroscopic variables that282

we can observe in the real data, a temporal, a combinatorial,283

and a spatial variable describing the interaction between the284

teammates.285

The method follows the algorithm below.286

(1) Propose a set of parameters ρ = (p, R1, R2).287

(2) Perform 105 realization, calculate P(T ), P(�r,Y =288

pass) and P(N ).289

(3) Compare the three distributions obtained in step 2 with290

the real data, using the JSD [23].291

(4) Propose a new set of parameters ρ, seeking to lower292

the sum of the JSD over the three distributions.293

(5) Back to step 2 and repeat until the JSD is minimized.294

Notice our goal is not to perform a standard non-linear fit 295

but to optimize the search of a realistic set of parameters that 296

simultaneously fit the three distributions. In this frame, the 297

introduction of the JSD allows us to use a metric distance to 298

compare and assess differences between probability distribu- 299

tions with different physical meanings. In the last part of the 300

Supplemental Material in Fig. S4 [22], we discuss in detail the 301

implementation of this method. 302

III. RESULTS 303

A. Statistical observables 304

The idea of this section is to describe the statistical observ- 305

ables that we extracted from the data set, and that we use to 306

evaluate the model performance. The main plot in Fig. 3(a) 307

shows the distribution of possession times. We measured the 308

mean value in 〈T 〉 = 13.72 s. In this case, we performed a 309

nonlinear fit with a function P(T ) ∝ T −γ , from where we 310

found γ = 5.1 ± 0.1. We can conclude, despite that the dis- 311

tribution seems to follow a power-law behavior, the exponent 312

is large to ensure it [24]. The inset in that panel, in turn, shows 313

the distribution P(�t ), the time between two consecutive 314

events. The same heavy-tailed behavior is observed, which 315

seems to indicate that in both plots, extreme events might not 316

be linked to large values of T but of �t . This is probably 317

due to events such as interruptions in the match or similar. 318

On the other hand, in Fig. 5(b), we show the distribution 319

P(�r), the spatial distance between two consecutive events. 320

In this case, we divided the data set to see the contribution 321

of the event tagged as pass since, as we show in Fig. 1(a), 322

these are the most recurrent entries. Let us split P(�r) as fol- 323

lows: P(�r) = P(�r,Y = pass) + P(�r,Y = other), where 324

Y stands for the type of event, the first term is the contri- 325

bution coming from passes and the second one from any 326

other type of event. Moreover, we divided the event pass into 327

two subtypes P(�r,Y = pass) = P(�r,Y = simple pass) + 328

P(�r,Y = other pass), where the first term is the contribution 329

of the subtype simple pass and the second is the contribu- 330

tion of any other subtype (for example, high pass, cross, 331

launch, etc.—cf. Ref. [18] for further details). For the sake 332

of simplicity, hereafter we refer to the type of events pass 333

and the subtypes simple pass and other pass as X , X2, and 334

X3, respectively. Notably, we can see a significant contribu- 335

tion of the event pass to distribution P(�r). The peak at 336

�r ≈ 1 (the mean value) and the hump around �r ≈ 3 is well 337

explained by the contribution of P(�r, X ) and P(�r, X1), 338

whereas P(�r, X2) seems to contribute more to the tail. This 339

multimodal behavior, likewise, might evidence the presence 340

of two preferential distances from where teammates are more 341

likely to interact by performing passes. Panel C shows the 342

distribution P(N ) of the number of passes per BPI. We ob- 343

serve the presence of a heavy tail at the right. The mean 344

value, 〈N〉 = 3.1, indicates that on average we observe ≈3 345

passes per BPI. Concerning this point, in panel D, we show 346

the relation between the number of passes and the possession 347

time. Interestingly, we observe a linear relation for values 348

within 0 < T < 60 (s) (see solid blue line in the panel). From 349

our best linear fit in this region, we obtain 〈N〉(T ) = ωp T 350

with ωp = 0.19 ± 0.03 (R2 = 0.99). This parameter can be 351
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(a)

(c)

(d)

(b)

FIG. 3. Relevant statistical observables found in the data set Events (DS) in Ref. [18], compared with the model outcomes (MO). For the
results shown in the four panels, we have set the parameters of the model with the values a = 1, p = 0.3, R1 = 2.25 and R2 = 16. (a) The main
plot shows the distribution of the possession time T , whereas the inset shows the distribution of the time differences between two consecutive
events, P(�t ). (b) Distribution of the distance between two consecutive events segmented in the groups: (i) the whole set of events P(�r),
(ii) the passes tagging as sub–type simple pass P(�r, X1), (iii) the passes tagging with any other sub-type P(�r, X2), and (iv) all the passes
P(�r, X ). Notice, the plot is in linear–log scale. (c) Distribution of the number of passes in the ball possession intervals, P(N ). (d) Mean value
of the number of passes, as a function of the possession time. The blue dashed line indicates a linear fit 〈N〉 = ωp T performed on this region,
with ωp = 0.19 ± 0.03 (1/s).

thought in overall terms as the rate of passes per unit of time.352

Therefore, we conclude that during ball possession intervals,353

≈0.2 passes per second are performed.354

B. Assessing the model performance355

In this section, we evaluate and discuss the model’s out-356

comes. The results are shown in Fig. 3. Figures 3(a)–3(d)357

show the comparison between the results obtained from358

the dataset (discussed above) and from the model’s simu-359

lations (black solid lines). We used the set of parameters360

(p, a, R1, R2) = (0.3, 1, 2.25, 16).361

For the distribution P(T ) in Fig. 3(a), we obtain a Jensen-362

Shannon distance of DJS = 0.017, which indicates a good363

similarity between the data set and the model results. How-364

ever, we observe a shift in the mean of ≈ −20%, and a365

problem to capture “the hump” of the curve around T ≈366

30 s. For the distribution of passes length, P(�r, X ),shown367

in Fig. 3(b), we observe a very good similarity DJS = 0.008.368

Moreover, we can see the model succeeds in capturing the369

bimodality of the distribution, which seems to indicate that370

the proposed model rules are very effective for capturing both371

nearby and distant passes, two interaction distances. On the372

other hand, the model fails in capturing the tail, possibly be-373

cause these events are related to very long passes (goal kicks 374

or cross passes) not generated by the simple dynamics of the 375

model. In Fig. 3(c), we show the distribution of the number of 376

passes P(N ). The calculation for the Jensen–Shannon distance 377

gives the value DJS = 0.0007, which indicates a very good 378

similarity between the curves. In this case, the value of p 379

seems to be crucial. Note the chosen value for p is near to 380

the rate ωp = 0.19 passes per second, reported in the previous 381

section. Regarding the relation 〈N〉 versus T in Fig. 3(d), the 382

data set shows that, on average, the number of passes cannot 383

indefinitely grow with the possession time, which is likely 384

a finite–size effect. Our simple model, in turn, allows the 385

unrealistic unbounded growth of 〈N〉. 386

Lastly, let us put the parameter values in the context of 387

real football dimensions. Regarding the action radius a, the 388

literature includes reported estimations from kinetic and coor- 389

dination variables [25,26], where speed measurements [27,28] 390

show that professional players are able to move in a wide 391

range within 1.1–4.8 m/s. Thus, it would be easy for a pro- 392

fessional player to control a radius of a ≈ 2 m. If we set this 393

value for a, we proportionally obtain for the internal and the 394

external radii, the values R1 ≈ 5 m and R2 ≈ 32 m, respec- 395

tively. Consequently, in the frame of our model, the dynamics 396

of the possession intervals take place into areas within a range 397
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(b)(a)

FIG. 4. Results of mapping the model to a Wiener process with drift and an absorbing barrier. (a) Distribution of steps δ, segmented in all
the data, P(δ), those steps given in the context of a simple persecution, P(δ, S1), and those steps in the context of a pass, P(δ, S2). (b) Nonlinear
fit performed to distribution P(T ) (MO), using the expression g(t ) given by Eq. (2).

of 78 m2 (approximately a goal area), and 3200 m2 (≈47% of398

the Wimbledon Greyhound Stadium). Therefore, we conclude399

the proposed parameters are in the order of magnitude of real400

football field dimension, and we can confirm that the dynam-401

ics of the model is ruled upon a realistic set of parameters’402

values.403

C. Mapping the model in a theoretical framework404

We propose a theoretical framework to understand the405

distribution of possession times, P(T ), observed from the406

model’s outcomes. Every realization can be thought of as a407

process where the defender must capture the ball. A ball that,408

due to the movements and passes performed by the team-409

mates, may follow a complicated path in the plane. However,410

since the defender always takes the direction toward the ball,411

the process can be reduced to a series of movements in one412

dimension. To visualize this mapping, we fix the origin of413

our 1D coordinate system at the ball position and define the414

coordinate x of the defender as the radial distance d between415

the ball and the defender. In this frame, the defender takes416

steps back and forth depending on whether the radial distance417

between the ball and defender is increasing or decreasing,418

respectively. The step size �d of this random walk is variable,419

and the process ends when the coordinate x of the defender420

reaches the interval (−a, a) (cf. Sec. II C, rule 8). In this421

process, the step size distribution characterizes the random422

walk. Let us define δ = �d/d0 as the step size normalized to423

the initial distance between the players. Then, in Fig. 4(a), we424

plot the distribution P(δ) analyzing two possible contributions425

for the steps: (i) the steps taken when the defender follows the426

player with the ball (S1) and (ii) those generated when a pass427

between teammates occurs (S2). To visualize these contribu-428

tions, we have plotted P(δ), and the joint probabilities P(δ, S1)429

and P(δ, S2), fulfilling P(δ) = P(δ, S1) + P(δ, S2). From this430

perspective, we can see that (S2) explains the extreme events431

whereas (S1) explain the peak.432

On the other hand, if we measure the mean value of both433

contributions, we obtain 〈δ〉P(δ,S1 ) = −0.14, 〈δ〉P(δ,S2 ) = 0.22,434

which means that on average, the first contribution brings the435

defender toward the ball and the second takes it away. How-436

ever, notice that the full contribution is negative, 〈δ〉P(δ) =437

−0.07, which indicates the presence of a drift leading the 438

defender toward the ball. 439

From this perspective, we can map the dynamics to a 440

random walk with drift, and in the presence of an absorbing 441

barrier. Moreover, in the approximation where δ is constant, 442

the process described above is governed by the following 443

Focker–Plank equation: 444

σ 2

2

∂2 p

∂x2
− μ

∂ p

∂x
= ∂ p

∂t
, (1)

subject to the boundary conditions 445

p(d0, x; 0) = δ(x),

p(d0, xb; t ) = 0,

where p(d0, x, t ) is the probability of finding a walker that 446

starts in d0, in the position x at time t . The coefficients μ and 447

σ are the drift and the diffusion, and xb indicates the position 448

where the absorbing barrier is placed. Additionally, it can be 449

proved that the probability distribution of the first passage 450

time τ , for a walker reaching the barrier, is given by [29] 451

g(τ ) = xb

σ
√

2πτ 3
exp

(
− (xb − μτ )2

2σ 2τ

)
, (2)

which can be straightforwardly linked to the distribution of 452

possession times P(T ). 453

In this theoretical framework, we used Eq. (2) to perform 454

a nonlinear fit of P(T ) via the parameters μ and σ . We set 455

xb = a, as the action radius can be thought of as the barrier’s 456

position. The result presented in Fig. 4(b) shows the fitting is 457

statistically significant, yielding a correlation coefficient r2 = 458

0.97, with μ = 0.09 ± 0.02 and σ = 0.39 ± 0.03. Moreover, 459

notice that we achieve a very good agreement between the 460

drift value and 〈δ〉P(δ), in magnitude. Therefore, we can con- 461

clude that, in the context of the model, a random walk with 462

a constant step δ and a drift μ is a good approximation for a 463

walker drawing steps from 〈δ〉P(δ). Furthermore, this approx- 464

imation explains the long tail observed in P(T ) for both the 465

outcomes of the model and the empirical observations. 466
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IV. DISCUSSION467

In this paper, we focused on analyzing the dynamic of ball468

possession intervals. We have performed an empirical study469

of a data set, detected relevant statistical patterns, and on this470

basis, proposed a numerical agent-based model. This model is471

simple and can be easily interpreted in terms of the features of472

the phenomenon under discussion. Moreover, we proposed a473

theoretical interpretation of the numerical model in the frame474

of an even simpler but better-understood physical model: the475

Wiener process with drift and an absorbing barrier. In this476

section, we extend the discussion regarding these results.477

First, we fully characterize BPIs of the extensive data set478

that compiles most of the events during the games, identifying479

the main contributions. Four salient features were identified480

and used later as the input to devise a minimalist football481

model to study the dynamics of ball possession intervals.482

Namely, (i) the most frequent type of events, (ii) events lead-483

ing to a change in possession, (iii) the number of players484

participating in a BPI, and (iv) the different types of events485

during BPIs. We found that the most frequent event is pass,486

which is twice the second-most-common event, duels. The487

latter, in turn, is the most common type of event triggering488

BPCs. In most cases, just two players are involved in a BPI,489

and during a BPI there are usually at most two events.490

Prompted from these findings, we introduced a minimalist491

model composed of two teammates and a single defender492

that, following simple motion rules, emulates both on-ball and493

off-ball actions. This model can be tuned by setting four inde-494

pendent parameters a, p, R1, and R2, which control the action495

radius, the probability of making a pass, and the internal and496

external radii, respectively.497

We evaluated the model’s performance by comparing the498

outcomes with three statistical observables in the possession499

intervals, the distribution of possession time P(T ), the distri-500

bution of passes length P(�r, X ), and the distribution of the501

number of passes P(N ). To this end, we have introduced a502

simple method based on the evaluation of the Jensen–Shannon503

distances as a criterion to fit the simulation’s outcomes to the504

real data. Remarkably, despite the simplicity of the model, it505

approaches very well the empirical distributions.506

Finally, to get a physical insight into the process behind507

ball possession dynamics, we map the model to a one-508

dimensional random walk in which the ball is fixed at the509

origin, and the defender moves taking nonuniform steps of510

length δ. We showed that since 〈δ〉P(δ) < 0 holds, the defender511

moves following a preferential direction toward the ball. Then512

we can use the theoretical framework of a Wiener process513

with drift and an absorbing barrier to describe the model’s514

dynamics. We evaluated this hypothesis by performing an515

nonlinear fit to the distribution of possession times, P(T ), with516

the expression of the first passage time for the Wiener process, 517

finding a very good agreement. The mapping shows that the 518

agents’ dynamics in the numerical model can be understood 519

in the frame of a simple physical system. 520

We can think of the game of football as a complex system 521

where the interactions are based on cooperation and competi- 522

tion. Competition is related to teams’ strategies; it concerns 523

the problem of how to deal with the strengths and weak- 524

nesses of the opponent [30]. Strategies are usually previously 525

planned and are developed during the entire game, hence it 526

could be associated with long-term patterns in the match. 527

Cooperation, on the other hand, can be linked to tactical as- 528

pects into the game, where interactions bounded to a reduced 529

space in the field, short periods into the match, and carried 530

out by a reduced number of players could be associated with 531

short-term patterns. Ball possession intervals are related to 532

cooperative interactions. Therefore, in this paper, we are not 533

studying the full dynamics of a football match but tactical 534

aspects of the game. In this frame, our work should be consid- 535

ered as a step toward a better understanding of the interplay 536

between the short-term dynamics and the emerging long-term 537

patterns within the game of football when studied as complex 538

systems with nontrivial interaction dynamics. 539

From a technical point of view, our model could be used as 540

a starting point to simulate and analyze several tactical aspects 541

of the game. Note that the main advantage of our simple 542

numerical model is that it easily allows the introduction of 543

complexity: more players, different types of interactions, etc. 544

For instance, simulations based on our model can be useful to 545

design training sessions of small-sided games [31–33] where 546

coaches expose players to work out under specific constraints: 547

in reduced space, with a reduced number of players, with 548

coordinated actions guided by different rules, etc. [34]. More- 549

over, by performing simulations, it is possible to estimate the 550

physical demand of the players, which is useful for session 551

planning and postevaluation [35]. 552

Lastly, as we said above, we consider that a full characteri- 553

zation of football dynamics should focus on the study of both 554

competitive and cooperative interactions. In this paper, we 555

focused on the latter; a first step to address the former could 556

focus on analyzing the spatiotemporal correlations between 557

consecutive possession intervals. In this regard, we leave the 558

door open to futures research works in the area. 559
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