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Turbulence comes in bursts in stably stratified flows

C. Rorai,1,2 P. D. Mininni,3 and A. Pouquet4
1Nordita, Roslagstullsbacken 23, 106 91 Stockholm, Sweden

2ICTP, Strada Costiera 11, 34151 Trieste, Italy
3Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053ABJ Buenos Aires, Argentina

and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina
4Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA

(Received 13 April 2013; revised manuscript received 10 February 2014; published 2 April 2014)

There is a clear distinction between simple laminar and complex turbulent fluids; however, in some cases, as
for the nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts
of turbulent activity that disappear slowly in time. This phenomenon is ill understood and poorly modeled and yet
it is central to our understanding of weather and climate dynamics. We present here data from direct numerical
simulations of stratified turbulence on grids of 20483 points that display the somewhat paradoxical result of
measurably stronger events for more stable flows, not only in the temperature and vertical velocity derivatives
as commonplace in turbulence, but also in the amplitude of the fields themselves, contrary to what happens
for homogenous isotropic turbulent flows. A flow visualization suggests that the extreme values take place in
Kelvin-Helmoltz overturning events and fronts that develop in the field variables. These results are confirmed by
the analysis of a simple model that we present. The model takes into consideration only the vertical velocity and
temperature fluctuations and their vertical derivatives. It indicates that in stably stratified turbulence, the stronger
bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid nonlinear
amplification of energy stored in waves and are associated with energetic interchanges between vertical velocity
and temperature (or density) fluctuations in a range of parameters corresponding to the well-known saturation
regime of stratified turbulence.
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I. INTRODUCTION

Large fluctuations are common in physical systems with
long-range correlations and have been found to be linked to
so-called 1/f noise [1]. They take the form of sporadic and
localized events, as observed in many instances in critical
phenomena and in turbulent flows, and are diagnosed through
non-Gaussian probability distribution functions (PDFs) [2]. In
turbulence, strong events occur in field gradients such as the
vorticity field or in the presence of fronts in passive tracers
such as chemical pollutants, with the velocity itself being
nearly Gaussian. There are however exceptions to this last
rule for shear flows [3], quantum fluids [4,5], and subtropical
current systems [6]. In all three cases, the velocity itself is
observed to develop strong values that are responsible for the
non-Gaussian wings of their PDFs. Also in the mesosphere and
lower troposphere [7] and in the solar wind [8,9], the velocity
field and the density were observed to be non-Gaussian in the
presence of large-scale fronts.

The occurrence of strong events in field gradients, the
so-called internal intermittency, is viewed as a signature of
fully developed turbulence and is therefore more surprising
in stable flows. Internal intermittency is often associated with
spatially localized coherent structures such as vortex filaments
in hydrodynamics or current sheets in magnetohydrodynamics.
Intermittency can also be associated with the transition in a
flow to the turbulent regime [10,11].

Intermittency makes the stable nocturnal planetary bound-
ary layer (PBL) highly unpredictable: As night sets in, this
layer between the atmosphere and land or sea stabilizes due to
the radiative cooling of the ground and of the ocean masses. It
is still unclear how stable the nocturnal PBL becomes. Three
regimes have been observed [12]: very stable, weakly stable

with turbulent motions persisting and competing with internal
gravity waves, and transitory. Even in the very stable case, the
PBL is subject to intense sporadic bursts of turbulence that die
out after many wave periods [12,13].

Numerical simulations play an increasing role in the
understanding of these complex processes and in quantifying
the dual problem of the increased stability [14] and the
spontaneous generation of bursts. However, modeling of
the PBL in weather and climate codes is often inadequate,
resulting, for example, in an inaccurate evaluation of the
extension of the ice sheet, as is the case over Greenland
[15], and in a faulty estimate of the overall energy balance
in long-term climate systems. Indeed, the PBL affects, for
example, mixing, frost occurrence, aerosol dispersion, and air
quality [16].

The complex behavior of geophysical flows can be at-
tributed to a variety of external factors, including moisture
in the atmosphere, salinity in the oceans, and boundaries.
However, the question remains as to what the simplest system
is that can display such a behavior. This is the approach we take
in this paper, using large-scale direct numerical simulations
and modeling in the framework of the Boussinesq system in
which the potential temperature (or density) variations enter
only in the buoyancy force, as the flow remains otherwise
incompressible.

II. EQUATIONS AND MODELS

In this section we introduce the Boussinesq equations
(which are later solved explicitly in the direct numerical
simulations) and derive from these equations a very simple
model for the evolution of field variations in a stratified flow.
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A. Boussinesq equations

We start from the Boussinesq equations, which describe a
stably stratified flow with gravity in the vertical direction. For
the velocity u = (u,v,w) and potential temperature fluctua-
tions θ , the equations are

∂u
∂t

+ u · ∇u = −∇P − Nθ ez + ν�u + fV , (1)

∂θ

∂t
+ u · ∇θ = Nw + κ�θ, (2)

∇ · u = 0, (3)

where P is the pressure, κ = ν the diffusivity, and fV a velocity
forcing term. The square Brunt-Väisälä frequency is given by
N2 = −(g/θ )(dθ̄/dz), where θ̄ is the imposed background
stratification, assumed to be linear, and g is the gravity.

B. Simple model

We are interested in a simple model for the evolution of
the field variations. Estimating the pressure forces in Eq. (1),
which for an incompressible fluid are highly nonlocal, is dif-
ficult since one has to consider the coupling between vorticity
and shear. A simple one-dimensional model of such behavior
was developed in Ref. [17]. This model, sometimes called
restricted Euler dynamics, has proven useful in analyzing the
development and the statistical and geometrical properties of
intermittent structures in a variety of turbulent flows (see [18]
for a recent review).

For simplicity, in the absence of stratification one can
consider only vertical velocity differences δw in the vertical
velocity w at scale �, defined as δw(�) = 〈w(x + �ẑ) −
w(x)〉 ≈ �∂zw. Taking the spatial derivative of Eq. (1) in
the one-dimensional (1D) case, with θ = 0, and neglecting
pressure, forcing, and viscous forces yields

∂t (∂zw) + w∂z(∂zw) = dt (∂zw) = −(∂zw)2.

Then, for the velocity differences dtδw = −δw2/�, this
equation immediately shows the temporal enhancement of
negative values of δw, as observed, for example, for isotropic
turbulent fluids for which the skewness of velocity gradients
is negative and of order unity.

When the flow is stably stratified, gravity acts as a
restitutive force allowing for oscillatory solutions (internal
gravity waves). Nonlinear coupling tends to transfer energy
towards modes with vertical spatial dependence, resulting
in the creation of horizontal layers in the fluid, and further
justifying the reduction to a 1D system. Under the same
hypothesis, for δθ ≈ �∂zθ , and from Eqs. (1) and (2) we obtain

dδw

dt
= −δw2

�
− Nδθ, (4)

dδθ

dt
= −δwδθ

�
+ Nδw. (5)

These equations can be considered as a crude 1D (vertical)
model of a stratified flow.

We can define the dimensionless Froude number Fr =
U/NL (with U and L characteristic velocity and length);
it quantifies the ratio between nonlinear and linear effects.
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FIG. 1. Evolution in time of vertical velocity variations δw in the
model of Eqs. (4) and (5) for � = 0.2 and N = 0 (no stratification,
solid line), 2 (dotted line), 4 (dashed line), 12 (dash-dotted line), 20
(dash–triple-dotted line), and 30 (long-dashed line). Note the faster
evolution towards negative and strong vertical gradients at interme-
diate values of N , as it increases from 2 to 12, before oscillatory
behavior takes over for large enough N (here, corresponding to
N = 20 and 30).

The system of Eqs. (4) and (5) has only one fixed point
(δw = δθ = 0). For weak stratification (large Froude number),
one recovers the Euler behavior of strong negative gradients
and in the opposite case (N � 1, or small Froude number),
the model has oscillatory solutions in the vertical velocity and
temperature fluctuations (see Fig. 1).

The terms governing both (nonlinear and linear) behaviors
become comparable when δw ∼ δθ ∼ N�. When this is
satisfied in a range of scales, it corresponds to the balanced
energy spectrum E(kz) ∼ δw2/kz ∼ N2k−3

z , which has been
predicted and observed in many instances in the atmosphere
and the oceans (see, e.g., Ref. [19] and Fig. 2).

In Fig. 1 an interesting evolution is observed. In an
intermediate regime (specifically, here � = 0.2 and N = 2,
4, and 12) and for initial δw and δθ > 0, δw becomes negative
(and diverges) unlike the case N = 0 and it does so faster
for larger values of N . In other words, the effect of waves
is rapidly amplified by the nonlinear term, resulting in a
catastrophic behavior. The runaway occurs as N increases
and before oscillations take over, in Fig. 1 for N > 12. Note
that, for N = 0 and initial δw < 0, large negative gradients do
eventually occur: This is the essence of the Vieillefosse model
[17,18], written to study the development of strong negative
gradients in homogeneous isotropic turbulence. However, they
do so more slowly than in the presence of gravity waves, as
shown in Fig. 1.

The large negative values of δw can be interpreted as the
signature of strong intermittent bursts. Note that for even
larger values of N , although the solutions become oscillatory,
they still display skewness (i.e., they have a tendency towards
more negative values of δw). On the other hand, if the initial
conditions are negative (δw,δθ < 0), the divergence is delayed
by increasing stratification.

The coupling of this evolution to that of the horizontal
velocity damps the runaway evolution of δw (because of
incompressibility) but strong gradients still form. For such
extensions, see Ref. [20], which presents a similar model
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FIG. 2. (Color online) The top plot shows the parallel total
energy spectrum for the run with N = 12. Times correspond to
t = 4.94 (triangles, red), t = 7.54 (squares, magenta), and t > 12
(the remaining curves), when small scales have reached a turbulent
steady state. A ∼ k−3

z scaling is shown as a reference. The inset shows
the time evolution of the potential energy EP and of the kinetic energy
EK in runs with N = 4 (solid line) and N = 12 (dashed line). Note
the oscillations associated with internal gravity waves for N = 12.
The middle plot shows the time evolution of the potential energy for
k =10 (squares, black), 20 (triangles, blue), 30 (dash-dotted, green),
40 (dashed, red), and 80 (solid, magenta) in the run with N = 4. The
bottom plot is the same as the middle but for the run with N = 12.
Note the larger fluctuations and bursts for large k in this run reflected
by the values of the standard deviation: σN=4(k = 10) = 1.0 × 10−3

and σN=12(k = 10) = 8.4 × 10−4, whereas, for larger values of k,
σN=4(k = 40) = 4.2 × 10−5 and σN=12(k = 40) = 1.1 × 10−4.

for nonstratified flows with a passive scalar, and Ref. [21],
which presents a model for rotating flows that display less
extreme events than isotropic homogeneous turbulence. This
latter model is also more complex in the sense that it takes
into account the angle between the directional field variation
and the direction of the imposed rotation. It leads to very good
agreement between the model, experiments, and numerical
simulations in terms of the lesser degree of intermittency
in rotating flows, although positive skewness is observed in

the horizontal plane linked to the inverse cascade of energy
in these quasi-two-dimensional flows, with a nonmonotonic
dependence on the Rossby number. Note also that this kind
of model can be extended to consider the effects of shear
in the flow (see, e.g., [22]); it is easy to see that in our
model shear results in a stronger amplification of velocity
variations.

The runaway toward strong gradients in Fig. 1 can be inter-
preted somewhat differently: For a given level of stratification
as measured by N , there exists a scale � at which strong
negative tails in the velocity fluctuations will occur. For N

not too large, extreme events can develop even at large scale,
where waves prevail, and thus be visible in the PDFs of the
fields themselves. This behavior could be associated with the
phenomenon of nonlinear amplification of waves observed in
the nocturnal PBL [12,13], which could be directly related to
the destabilization of vertical layers and in flows with internal
shear and density fluctuations, as in the solar wind [9] (see
also [23] for a similar solar wind observation of fat tails, but
this time in the magnetic induction).

The model presented in this section is quite simple and
similar models have proven useful in the analysis of turbulent
flows, in the occurrence of quasisingular structures in the
homogeneous isotropic case, and in the development of
positive skewness of cyclonic vortices in rotating flows. In
the next section we study the occurrence of extreme events
in direct numerical simulations of fully developed turbulence
using the Boussinesq equations.

III. NUMERICAL SIMULATIONS

A. Description of the simulations

We now examine the dynamics of stratified turbulence using
direct numerical simulations (DNSs) at high resolution. To
sustain the flow in a turbulent state, we use a three-dimensional
large-scale random isotropic forcing on the right-hand side of
Eq. (1). The forcing is applied in Fourier shells with wave
numbers k = 2 and 3 (i.e., the forced wave vectors kF are such
that |kF | ∈ [2,3]). Equations (1) and (2) are solved on grids of
20483 points with the pseudospectral geophysical high-order
suite for turbulence (GHOST) code, which is parallelized with
hybrid MPI-OpenMP programming and has been tested on
over 98 000 compute cores [24]. As the amplification in the
simplified model above can happen within the fluid, as opposed
to near the boundaries, we consider for simplicity triperiodic
boundary conditions within a [0,2π ]3 box, with a second-order
explicit Runge-Kutta temporal scheme and with dealiasing
using a standard 2/3 rule.

Two simulations were conducted for over 20 turnover times
τNL = U/L. In both simulations, the flow was started from
random Gaussian isotropic initial conditions for the velocity
and with no temperature fluctuations (θ = 0 at t = 0). The
viscosity is such that the Reynolds number (the ratio of
nonlinear to viscous effects) is Re ≈ 2.5 × 104 for both runs.
The simulations have either Fr ≈ 0.1 (N = 4) or Fr ≈ 0.03
(N = 12). The buoyancy Reynolds number RB = Re Fr2 is
found to be 250 and 22, respectively. Data for the statistical
analysis are extracted after the peak of dissipation is reached
and in the turbulent steady state of the flow.
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B. Overall statistics

Figure 2 gives the total energy spectrum in terms of vertical
wave number when N = 12 for different times; it is found to be
compatible, after the peak of dissipation, with a ∼k−3

z scaling
for wave numbers larger than ≈ 20, whereas at larger scales a
flat spectrum is obtained, as found in other studies [25,26]. This
flat spectrum is associated with the accumulation of stratified
layers in the vertical and ends for wave numbers larger than the
so-called buoyancy wave number kB ∼ N/U ≈ 15 for U ≈
0.8. This characteristic scale is thought to be of the order of
the thickness of the stratified layers in the vertical direction
(see, e.g., [25]).

In Fig. 2 we also show the time evolution of the kinetic and
potential energies in both runs, defined here as EK = 〈|u|2〉
and EP = 〈θ2〉, respectively. The run with stronger stratifica-
tion shows oscillations associated with internal gravity waves.
The time evolution of the potential energy at different wave
numbers is given in the middle and bottom panels of Fig. 2. At
the smallest scales (small � ∼ 1/k, i.e., larger wave numbers),
the time series of the run with N = 12 is more bursty than for
the run with N = 4. By measuring the standard deviation of the
time series, we verified that the time series at large scales in the
run with N = 4 have larger fluctuations than for N = 12 (i.e.,
stratification smooths the evolution for sufficiently large �),
while at small scales the opposite happens, in agreement with
the qualitative behavior observed in the model. In particular,
note that at k = 30 and 40, the potential energy as a function
of time is almost constant after t ≈ 10 in the run with N = 4,
while it shows bursts and fluctuations in the run with N = 12.
In other words, there is measurably more excitation at small
scale in the potential energy for the higher value of N .

C. Extreme values and internal intermittency

We examine now more closely the occurrence of extreme
events in these high-resolution runs. As stratification increases,
the flow is expected to become more stable and predictable,
developing weaker events in the velocity and temperature.
However, the opposite is observed. A better quantification
of the strength of these events can be obtained from spatial
information.

In Fig. 3 we show the PDFs for vertical velocity and
temperature fluctuations and their vertical gradients for one
snapshot of the fields in a time shortly after the peak of
dissipation. We observe that (i) for a given field, the more
stratified case is more bursty, as illustrated by the heavy tails
of the histograms, which indicate a larger probability of the
fields taking extreme values; (ii) the vertical velocity can take
larger extreme values than the temperature; and conversely,
(iii) the spatial derivative of the temperature takes larger
extreme values than the derivative of the vertical velocity.
Although non-Gaussian tails have been reported in PDFs of
the field gradients of stratified flows, both numerically [27]
as well as observationally [28,29], note that here the PDFs
of the fields themselves are non-Gaussian, with the pointwise
temperature and vertical velocity taking extreme values.

The non-Gaussianity in the PDFs of the field gradients is
often associated with the usual internal intermittency observed
in turbulent flows. However, the non-Gaussian tails in the PDFs
of θ and w indicate the development of extreme values in the
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FIG. 3. (Color online) The top plot shows normalized histograms
(in semilogarithmic coordinates) evaluated shortly after the peak of
dissipation, for the temperature fluctuations θ and for the vertical
component of the velocity w for high-resolution simulations of a
stratified flow with Froude number Fr ≈ 0.1 (N = 4) and Fr ≈ 0.03
(N = 12). A normal distribution is shown (inner black curve) as a
reference. The bottom plot shows PDFs of vertical derivatives for
the same quantities. In all cases, the more strongly stratified flow
with N = 12 has larger probability of developing extreme events, as
illustrated by the wider wings in the PDFs. For the fields themselves,
the velocity has stronger tails than the temperature and the converse
is true for their vertical derivatives.

amplitudes of the fields. These values are less extreme for
the fields than for their gradients: At a probability of 10−5,
one can observe gradients ≈20 times the mean at this value
of Reynolds number, but for the velocity one obtains a more
modest fivefold increase, which nevertheless represents a huge
acceleration of the flow. Such an increase is compatible with
results from numerical simulations of frontal dynamics in the
framework of the California current system [30].

Note also that the PDFs of the fields display asymmetries
and bumps in the tails that may be the result of transient
phenomena right after the peak of dissipation is reached. To
verify this and improve statistical convergence of the data, we
studied the PDFs at different times and computed PDFs of θ

and w integrated over three snapshots of the fields between
t ≈ 10 and 16. The individual PDFs are similar to those
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FIG. 4. (Color online) The top plot shows integrated in time
PDFs (in semilogarithmic coordinates) of the temperature θ for
three snapshots after the peak of enstrophy and for the simulations
with Froude number Fr ≈ 0.1 (N = 4) and Fr ≈ 0.03 (N = 12). The
bottom plot is the same but for the vertical velocity w. In both panels,
the inner black solid line corresponds to a normal distribution.

shown in Fig. 3. In Fig. 4 the integrated in time PDFs for
θ and w are shown. Each of these PDFs was constructed using
≈2.5 × 1010 data points and the tails of the PDFs are better
defined. The more stratified case is still more bursty, with large
values for both the vertical velocity and the temperature. Also,
the asymmetry and bumps in the PDF of the temperature still
persists after the time integration.

Unlike the unusual behavior found in θ and w, the two
horizontal components of the velocity field behave as expected
and as observed in homogeneous isotropic turbulence. This can
be seen in Fig. 5, which shows the PDFs of the perpendicular
velocity v⊥, which do not display strong tails. The curves
are close to Gaussian, although the tails have slightly smaller
amplitude than a Gaussian with the same dispersion.

D. Accumulated moments

In order to verify the convergence of the PDFs in the
previous section, we also computed the accumulated moments

Cp(x̄) =
∫ x̄

0
|x|pPr(x)dx, (6)

−10 −5 0 5 10
10

−6

10
−4

10
−2

10
0

v⊥

Pr(v⊥)

 

 

vN=12
⊥

vN=4
⊥

FIG. 5. (Color online) Integrated in time PDFs (in semilogarith-
mic coordinates) of the perpendicular velocity v⊥ in the simulations
with Froude number Fr ≈ 0.1 (N = 4) and Fr ≈ 0.03 (N = 12). As a
reference, the outer black curve corresponds to a normal distribution.

where x can be u, v, w, or θ and Pr(x) is the probability density
function of the field x. As discussed, for example, in Ref. [31],
the convergence of these moments with increasing values of x

gives an indication of the highest order p for which moments
of the PDF can be computed with good statistics.
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FIG. 6. (Color online) The top plot shows accumulated moments
Cp(w) for the vertical velocity in the simulation with Fr ≈ 0.1 (N =
4). The curves, from top to bottom, correspond to moments of order
p from 1 to 8. The bottom plot is the same but for the simulation with
Fr ≈ 0.03 (N = 12).
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FIG. 7. Shown above the grayscale bar are two-dimensional cuts
in a [0,2π ]3 box in the x and z directions for the flow with Fr ≈ 0.1
(N = 4, top row) and Fr ≈ 0.03 (N = 12, bottom row). The white
segment is of unit length. The left-hand column corresponds to the
temperature and the right-hand column to the vertical velocity. Note
the strata in the temperature (the more strata, the higher the value of
N ). For Fr ≈ 0.03, sporadic overturning in the vertical cut is clearly
visible. The flow with stronger stratification is less complex, but
extreme values of the fields and their gradients are higher, leading
to the development of turbulent bursts and localized mixing. Shown
below the grayscale bar are details of some extreme events: Kelvin-
Helmholtz (KH) instability in the velocity field for Fr ≈ 0.03 (N =
12, top), eddies in the temperature field for Fr ≈ 0.1 (N = 4, bottom
left), and KH instability in the temperature field for N = 12 (bottom
right).

Figure 6 shows the accumulated moments for the vertical
velocity w in the runs with N = 4 and 12, using the integrated
in time PDFs. The vertical velocity has the PDF that shows the
slowest convergence of high-order moments; all other fields
show a faster convergence up to p = 8. Good convergence is
observed up to eighth order in the run with N = 4, while
convergence in the N = 12 run is only marginal for the
highest moment, with the rest of the moments showing better
convergence.

E. Intermittent structures

Figure 7 displays vertical slices of temperature and vertical
velocity for the same two flows. As expected, in the less
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FIG. 8. Two-dimensional cuts in a [0,2π ]3 box in the x and y

(horizontal) directions for the flow with Fr ≈ 0.1 (N = 4, top row)
and Fr ≈ 0.03 (N = 12, bottom row). The white segment is of unit
length. The left-hand column corresponds to the temperature and the
right-hand column to the vertical velocity. Note the stripes in the
fields in the run with N = 12, associated with the overturning events
in Fig. 7, this time shown from the top.

stratified flow, turbulence in the form of multiple eddies is
ubiquitous. The more stratified flow seems more ordered, with
multiple layers and strong vertical gradients. Moreover, strong
small-scale Kelvin-Helmholtz-type instabilities develop and
dominate the small-scale dynamics as seen in several locations
(see Fig. 7); in this flow, turbulence comes in localized bursts
with strong values of the fields. Figure 7 indicates that the
maxima of the vertical velocity and temperature take place
in the Kelvin-Helmholtz overturning events, suggesting that
the extreme values in the PDF of θ and w are associated
with these instabilities. On the other hand, maxima of the
temperature gradients take place in the sharp fronts that are
known to develop in stratified turbulence.

Note also the layered structures in the vertical, especially
in the temperature. The number of layers depends on the
stratification, with vertical correlation lengths �b of ≈ 1/8
of the box in the flow with Fr ≈ 0.1 (N = 4) and ≈1/26 of
the box for Fr ≈ 0.03 (N = 12). If these values are used for
� in the model given by Eqs. (4) and (5) together with the
corresponding values of N , a faster growth of the fields is
obtained for the linearly more stable flow, in good agreement
with the DNSs and as indicated by observations. The vertical
correlation length is defined as

�b = 2π

∫
E(kz)dkz∫

kzE(kz)dkz

,

where E(kz) is the total energy parallel spectrum.
Figure 8 shows a similar visualization of the temperature

and the vertical velocity for both flows, but this time with a
cut in the (x,y) plane. In the simulation with N = 12, stripes
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can be seen in both fields. These stripes are associated with
the overturning events in Fig. 7, but this time shown from the
top.

IV. CONCLUSION

A. Summary of results

The main result of this paper is the occurrence of non-
Gaussian wings in the probability distribution functions of
vertical velocity and temperature fluctuations in strongly
stratified turbulence in the Boussinesq framework, obtained
by analyzing data from large direct numerical simulations
on grids of 20483 points. We also showed evidence that
internal intermittency is larger in the simulation with stronger
stratification, a flow that was instead expected to be more
stable.

The extreme events in the fields, as well as the small-
scale internal intermittency associated with the non-Gaussian
wings in the field gradients, are compatible with a simplified
model mimicking vertical variations of the vertical velocity
and of temperature fluctuations in the spirit of singularity
development in homogeneous isotropic turbulence [17] and
of strong gradients in the vertical as predicted in Ref. [32]. As
mentioned in the Introduction, such strong gradients have been
observed in a variety of geophysical flows. Both our model and
the computations point to stably stratified flows spontaneously
developing long-lasting bursts that are stronger for stronger
stratification, but possibly with a nonmonotonic behavior in
terms of variation with Froude number, a known feature of
stratified turbulence (see, e.g., [33,34] and references therein).

We can infer from our model, as well as from the spatial
visualizations of the fields, that propagating gravity waves
are nonlinearly amplified, resulting in their breaking and the
generation of turbulence when the linear and nonlinear effects
are balanced. The nonlinear tendency to develop negative
gradients occurs at all scales, including large scales. This
would explain why non-Gaussian statistics are observed even
in the velocity and temperature fields. Although the model
presented here is very simple, it correctly captures that only the
temperature and the vertical velocity display extreme values,
associated with their coupling through gravity waves; indeed,
gravity acts only in the vertical and the horizontal velocity
will be only affected by it through its nonlinear coupling to
the vertical velocity by the advection term (and pressure). Our
simple model is also compatible with the so-called saturation
spectrum E(kz) ∼ N2k−3

z , which is broadly observed in the
atmosphere and the oceans, where such strong bursty events
are also commonly observed. Note that for E(kz) ∼ N2k−3

z ,
the eddy turnover time is proportional to 1/N , validating the
hypothesized dynamical balance across all scales [32,35].

One central tenet of this dynamical balance developed first
in Ref. [32] is that the Froude number based on a vertical
length scale, the so-called buoyancy length scale LB ∼ 1/kB ,
is of order unity however small the global Froude number of
the flow is. This implies that turbulence must be strong in the
vertical for strongly stratified flows, provided some nonlinear
interactions can develop. In that case, it seems plausible that
a model based on the development of strong fields with a
quadratic nonlinearity but including the effect of oscillatory

motions should capture the fundamental behavior of such
flows.

B. Discussion

It is known that waves in turbulence can lead to intermit-
tency, such as with rogue waves in the ocean; anomalous
concentrations of particles in large-scale waves [36] and
enhancement of non-Gaussian initial conditions [37] have been
observed as well. In a turbulent flow, internal intermittency has
also been related to a global correlation between interacting
scales and as such may be indicative of a system close to
criticality [38]. Similarly, nonlocality of interactions between
small-scale and large-scale eddies is advocated in Ref. [39] as
directly related to the bursting phenomenon of the nocturnal
PBL. Our model indicates a different origin for the strong
localized events, associated with a positive feedback in the
vertical between nonlinear steepening and wave motions, and
is consistent with the simulations that indicate that a more
stably stratified flow has stronger bursts.

Of course, other mechanisms could be envisaged for our
result of extreme events in the fields and in the field gradients.
A possible example is a parametric instability, the forcing
being provided by a spectrum of nonlinear eddies which arise
from nonlinear coupling and can have frequencies comparable
to the imposed Brunt-Väisälä frequency N due to stratification.
Note that such an explanation leads us again to Froude numbers
based on vertical length scales of order one, as discussed above
in the context of the model, as the Froude number can be
interpreted as the ratio of the wave period to the turnover time.

Another explanation for intermittency in strongly stratified
flows may be linked to the phenomenon of on-off intermittency
[40]. In that case, one can envisage two quasi-invariant
subspaces for the dynamics, say, two quasigeostrophic layers,
which are nevertheless slightly coupled through vertical
gradients. As the respective representative points of these two
subsystems become closer in phase space, strong interactions
develop for a few characteristic times before the quasilinear
behavior is recovered. Our model does not preclude these
effects from playing a role. However, note that in the cases
of parametric instability, on-off intermittency, and subcritical
transitions, the systems that are often envisaged are quite well
ordered with only a few spatial modes excited. In our case,
the simulations have a well developed inertial range spectrum
and the extreme events develop in the turbulent steady
state.

In particular, the study of subcritical transitions in a
variety of classical configurations such as Taylor-Couette or
shear (pipe) flows is well developed (see, e.g., [10,11] for
reviews). They tend to appear at lower Reynolds number than
supercritical ones, due to the effect of nonlinear coupling. The
coexistence of structures implies the existence of fronts as
barriers between the quiescent and active regions of the flow
undergoing the transition. These problems can, e.g., be studied
by analogy to percolation (between quiet and active sites)
[41]. Intermittency and hysteresis are systematically invoked
in these transitions and may be linked to the sharp boundaries
between laminar and turbulent spots, identified early on as
spiral bands [42]. However, fat wings in the PDFs of the
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velocity have not been identified in the specific context of
subcritical transitions.

From the model and the simulations, we thus conclude
that the intermittent bursts in our case are associated with
the direct coupling between vertical velocity and temperature
fluctuations, providing a possible explanation for the intriguing
observation of strong intermittency in the more stably stratified
nocturnal planetary boundary layer. This study may thus lead
to more useful parametrizations of stably stratified flows in
weather and climate models by formulating a stochastic eddy
noise [43] that explicitly incorporates the nonlinear coupling
described herein (for a quasinormal closure, see [44]). In the
context of strongly stratified turbulence, a path was recently
described in detail between the large scales in quasigeostrophic
equilibrium and the small scales that provide the dissipation,
the link between the two scales being provided by the existence
of fronts that are reminiscent of the passive tracer case [45]. It

was also shown in Ref. [46] that such flows, in the presence
of moderate rotation, can display both a direct and an inverse
cascade of energy, both with a constant flux. The role of these
effects in the flow intermittency is left for future studies.
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