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We present an approach to calculating the quantum resonances and resonance wave functions of chaotic
scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the
dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits
�with periods up to the Ehrenfest time�, we obtain approximations to the longest-living states, avoiding com-
putation of the background of short living states. This makes our approach considerably more efficient than
previous ones. The number of long-lived states produced within our formulation is in agreement with the
fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the
open quantum baker map as an example.
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Quantum scattering in chaotic systems is a very active
field in the area of quantum chaos, with current experimental
realizations in ballistic quantum dots �1�, microlasers �2� and
microwave cavities �3�, among others �4�. The fractal Weyl
law �5�, which relates the counting of resonances in the com-
plex plane to the dimension of the trapped set of the corre-
sponding classical dynamics, has attracted considerable at-
tention �6–9� because resonances �or Gamow states� are
central to the description of many aspects of wave scattering.

The decaying eigenstates associated with these quantum
chaotic resonances are far from being fully understood. They
have recently been shown �8,10� to display fractal structures
in phase space when the resonance is long lived, that is,
when the decay rate � /� remains finite as �→0, and to be
localized when the resonance is short lived, that is when
� /�→0. However, the semiclassical limit is much richer for
scattering systems than for closed ones, for which the quan-
tum ergodicity theorem �11� states that almost all states be-
come uniform. Owing to the existence of different decay
rates, nothing of this kind is available for scattering systems
and we are still far from a complete description.

Our purpose here is to establish an approach to reso-
nances and resonance wave functions based on short classi-
cal periodic orbits. The idea is to use the proliferation of
periodic orbits in the phase space of chaotic systems to build
an approximate basis of functions for the quantum Hilbert
space. These functions are constructed in such a way as to
contain dynamical information up to Ehrenfest time. This
formulation has several virtues. First, the fractal Weyl law
emerges very naturally from the theory and is seen to have a
direct connection with periodic orbits. Second, we have an
approximation to the quantum propagator that provides the
long-lived states �which are usually dominant� without hav-
ing to calculate short-lived states, therefore very significantly
reducing the dimension of the matrices involved in the
theory. Specifically, we achieve a power saving in the matrix
dimension. Third, it turns out that usually only a few of our
states are required to produce a quantum resonance, provid-
ing a way to quantitatively analyze scarring effects �anoma-
lous localization of chaotic eigenstates around periodic orbits

�12��. Finally, it opens a new and promising avenue for semi-
classical approaches to resonance wave functions, which
have so far been elusive.

A corresponding theory exists for closed systems in the
form of scar functions �13,14�, which have proved efficient
in providing semiclassical approximations for quantum spec-
tra and eigenstates of billiards �14� and quantum maps �15�.
In the open systems considered here, the efficiency gain is
considerably greater. An alternative periodic orbit approach
to resonances already exists in terms of the semiclassical zeta
function �16�. However, the orbits used are in general much
longer than the ones considered here and the final result is an
approximation to the spectral determinant that does not pro-
vide the wave functions.

For simplicity, we restrict ourselves to quantum maps, in
which time evolution is discrete, the quantum Hilbert space
has finite dimension N=1 / �2��� and the classical phase
space is a torus. Open maps are defined by identifying a
region of phase space—usually a strip of width M /N parallel
to one of the axis—with a “hole” so that particles falling into
that region are lost. This is a simplified but effective model
for chaotic cavities with leads like the ones used in experi-
ments with quantum dots. Quantum mechanically, the intro-
duction of the hole corresponds to setting M rows �or col-
umns� in the quantum propagator U to zero. Since it is no

longer unitary, the new matrix Ũ has left and right eigen-
states

Ũ��n
R� = zn��n

R�, ��n
L�Ũ = zn��n

L� �1�

and we may choose the following normalization and or-
thogonality conditions:

��n
R��n

R� = ��n
L��n

L�, ��n
L��m

R� = �nm. �2�

The eigenvalues lie in the unit disk, �zn�2=e−�n �1, and the
quantity �n�0 is interpreted as the decay rate. It was shown
in �8� that in the semiclassical limit the long-lived left and
right eigenstates localize on the stable and unstable mani-
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folds, respectively, of the classical trapped set �strange repel-
ler�.

We associate with every primitive periodic orbit � of pe-
riod L a total of L scar functions, as was done in �15� for
closed maps. One starts by associating with each point of the
orbit �qj , pj� a coherent state �qj , pj�. In general, these states
may have arbitrary deformations �squeezing� and this may be
exploited �14�. For simplicity, we consider only circular
states. One then builds a linear combination called “tube
function,” or periodic orbit mode,

�	�
k� =

1
�L

	
j=0

L−1

exp
− 2�i�jA�
k − N
 j���qj,pj� . �3�

Here k is any positive integer up to L, while 
 j =	l=0
j Sl where

Sl is the action acquired by the lth coherent state in one step
of the map. The total action of the orbit is 
L�S�. The quan-
tity A�

k = �NS�+k� /L is a Bohr-Sommerfeld-like eigenvalue,

U�	�
k� 


e2�iA�
k

�cosh �
�	�

k� . �4�

We denote by � the Lyapounov exponent of the system.
The right and left scar functions associated with the peri-

odic orbit are defined through the propagation, under the
open map, of the tubes until around the Ehrenfest time TE

= 1
� ln N. Namely,

���,k
R � =

1

N�
R	

t=0




Ũte−2�itA�
k

cos��t

2

��	�

k� , �5�

and

���,k
L � =

1

N�
L	

t=0




�	�
k �Ũte−2�itA�

k
cos��t

2

� . �6�

The constants NR,L are chosen such that ���,k
R ���,k

R �
= ���,k

L ���,k
L � and ���,k

L ���,k
R �=1. The cosine is used to intro-

duce a smooth cutoff, and the propagation time 
 is taken of
the order of TE. In contrast to what is done for closed sys-

tems, we do not use negative powers of the matrix Ũ; i.e., the
tubes are propagated in only one direction in time. This im-
plies that the phase-space support of right and left scar func-
tions becomes localized on the unstable and stable mani-
folds, respectively, of the periodic orbit, in consonance with
the properties of resonances. It is natural to order these reso-

nant scar functions according to the modulus of ���,k
L �Ũ���,k

R �
so that longest-living ones come first. Finally, we note that it
is convenient to impose the symmetries of the map on these
functions �if two orbits are related by symmetry, we build
symmetric and antisymmetric scar functions�.
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FIG. 1. Husimi representation of symmetrized right scar func-
tions corresponding to a period 3 orbit of the triadic baker map, at
�a� N=81 and �b� N=243. In panel �b� white crosses show the
location of periodic points of the trajectory, and reflection by the
diagonal produces a symmetric partner. Absolute value grows from
white to black.
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FIG. 2. �Color online� In �a� we show the spectrum of the open
triadic baker map for N=81 �circles� and the spectrum of the scar
matrix �crosses�. Their moduli �ordered by decreasing value� are
displayed in panel �b�.
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It is by now established �13–15� that it is only necessary
to use short periodic orbits to obtain good approximations to
quantum spectra and eigenstates. By ‘short’ we mean orbits
with periods up to around the Ehrenfest time of the system.
This is not unexpected, because TE is the time when quantum
interference effects become important. In the present case,
since all periodic points are on the trapped set, the theory
approximates only the long-lived states. Using the ordering

mentioned above we construct the matrix ��n
L�Ũ��m

R�, which
we call the scar matrix, as an approximation to the “long-

lived sector” of Ũ. This matrix is by construction almost
diagonal �in the sense that it equals a diagonal matrix plus a
sparse one�.

What is the dimension of the scar matrix? For chaotic
systems the number of periodic points grows with the period
L like ehL where h is the topological entropy. Taking orbits
with periods up to TE we have ehTE periodic points and cor-
responding scar functions. However, for small openings h is
related to the fractal �information� dimension of the trapped
set by d=2h /� �17,18�. Since e�TE =N we conclude that the
matrix dimension �and the number of long-lived states�
scales with N as Nd/2, in agreement with the fractal Weyl law

�5,7�. Note that the dimension of Ũ is N, so our approach
leads to a power saving in the size of the matrices used. This
therefore represents a considerable improvement in effi-
ciency.

The above reasoning is in a sense complementary to the
one presented in �6�. There the authors considered quantum
states which escape from the system before the Ehrenfest

time �short-lived states�. As a consequence they were led to
regions of phase space that are preimages of the hole. Con-
versely, we are attempting to construct the quantum states
which do not escape from the system before the Ehrenfest
time �long-lived states� and are thus lead to short periodic
orbits on the repeller. Consistently, both approaches result in
the fractal Weyl law.

As an example of the formalism, we use the triadic baker
map, as in �8�. For this map the Lyapounov exponent is �
=ln 3, and we choose the quantum dimension to be N=3k so
that TE=k. The trapped set is the Cartesian product Can
�Can where Can is the usual middle-third Cantor set of
dimension ln 2 / ln 3. The fractal Weyl law therefore predicts
that the number of long-lived states should grow like
Nln 2/ln 3=2k �this is actually the exact number if Walsh quan-
tization �8� is used�. Let us take for instance k=4 and build
scar functions for orbits with period up to 5 �there are 51
periodic points in total�. We illustrate this construction in
Fig. 1, where we show the Husimi plots of a symmetrized
right scar function corresponding to an orbit of period 3, at
N=81 and N=243. It can clearly be seen that the probability
extends along the unstable manifolds of this periodic orbit
�q-axis direction�. We have used 
=TE.

In Fig. 2 we present the exact quantum spectrum and the
spectrum of the scar matrix �solution of a generalized eigen-
value problem since ��n

L ��m
R���nm�, both for N=81. We see

that the latter provides excellent approximations to the first
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FIG. 3. Husimi representation of two exact right resonances, for
the triadic baker map at N=81.
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FIG. 4. Husimi representation of two symmetrized right scar
functions corresponding to the same orbit of period 5, at N=81.
White crosses show the periodic points of the orbit, and reflection
through the diagonal produces a symmetric partner.
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30 resonances: they are all reproduced accurately and more-
over there are no spurious eigenvalues among them. We have
verified that for N=35 and using orbits up to period 6 �matrix
dimension 106� the first 55 resonances are reproduced accu-
rately and without spurious eigenvalues. We have also veri-
fied that the method works well for other baker maps.

Figure 3 shows the Husimi functions of the right reso-
nances number 3 and 12 �ordered according to decreasing
moduli of eigenvalues�, again for N=81. They are both
strongly localized around periodic orbits, i.e., they are
scarred. The corresponding eigenstates of the scar matrix are
indistinguishable from the exact ones, showing that this ma-
trix is indeed a good approximation to the long-lived sector

of Ũ.
In Fig. 4 we show two symmetrized scar functions built

from the same periodic orbit, of period 5. Because some of
the periodic points are very near the symmetry lines in phase
space �the diagonals of the square�, we see that interference
between the orbit and its symmetric partner makes the func-
tions look rather different. Note the similarity between Fig.
3�a� and the scar function of Fig. 4�a�. A single element of
our base captures almost all the structure of an exact quan-
tum eigenstate. On the other hand, the resonance shown in
Fig. 3�b� results essentially from the combination of the scar
function in Fig. 1�a� and the one in Fig. 4�b�.

We postpone a more detailed analysis to a future publica-

tion, but the convenience of our approach to the study of the
phase-space morphology of quantum resonances is clear. In-
deed, scar functions have proved extremely useful in the
study of scarring effects, providing for example ways to
quantify scarring and to understand the influence of ho-
moclinic motion on scars �19�. We expect it will also permit
a more systematic study of scarring effects in open systems
�20�, a subject still in its infancy. For instance, there is cer-
tainly an interesting interplay between scarring and the decay
rate, so that more scarred states are expected to live longer.
We believe our approach will shed some light on this issue.

To conclude, we have introduced a theory based on short
periodic orbits for quantum chaotic scattering. It may be ar-
gued that the use of the scar matrix offers no real advantage
since its construction makes use of the quantum propagator.
However, previous studies of closed systems �14� suggest
that semiclassical approaches can be successfully imple-
mented within this framework, because the propagation
times involved are not longer than TE. We are currently
working in this direction. Another direction to follow is to
adapt the theory to dielectric boundary conditions in order to
treat microlasers, an application where spectacular manifes-
tations of scarring can be observed �2�.
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