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Transport in a chain of asymmetric cavities: Effects of the concentration with hard-core interaction
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We studied the transport process of overdamped Brownian particles, in a chain of asymmetric cavities,
interacting through a hard-core potential. When a force is applied in opposite directions a difference in the drift
velocity of the particles inside the cavity can be observed. Previous works on similar systems deal with the
low-concentration regime, in which the interaction is irrelevant. In this case it was found that large particles
show a stronger asymmetry in the drift velocity when a small force is applied, allowing for the separation
of different size particles [Reguera et al., Phys. Rev. Lett. 108, 020604 (2012)]. We found that when the
interaction between particles is considered, the behavior of the system is substantially different. For example, as
concentration is increased, the small particles are the ones that show a stronger asymmetry. For the case where
all the particles in the system are of the same size we took advantage of the particle-vacancy analogy to predict
that the left and right currents are almost equal in a region around the concentration 0.5 despite the asymmetry of
the cavity.
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I. INTRODUCTION

The diffusion of particles through narrow channels is a
phenomenon vastly seen in nature and in artificial devices.
In systems such as biological cells, ion channels, nanoporous
materials, and zeolites the transport of small particles through
narrow channels is present [1–5]. In particular, the problem of
transport of particles in different kinds of periodic channels
has been studied from several points of view. For example,
analytic solutions were found to one-dimensional reducible
and smoothly corrugated channels, making use of the Fick-
Jacobs equation [6–9]. Feng-guo Li and Bao-quan Ai [10],
studied the transport of overdamped Brownian particles in
channels with curved midlines. When these channels are
not smoothly corrugated they are called compartmentalized
or septate channels. Ghosh et al. numerically investigated
the transport of particles in symmetric septate channels
[11,12]. Marchesoni et al. investigated the flux of particles
in an asymmetric septate channel, with reflecting boundary
conditions [13]. The dependence of the effective velocity on
the period of an external force was analyzed by Zitserman
et al. [14]. Dagdug et al. [15] studied the particle’s mobility
under variation of the asymmetry of the cavities.

In this work we have used an asymmetric cavity, with two
small exits, as shown in Fig. 1. A similar cavity was used
in [16] but using self-propelled Janus particles. Here we deal
with Brownian particles that interact with each other through
a hard-core potential, one of the simplest interactions that can
be considered. We focus on the overdamped regime because
of its relevance in most molecular transport systems.

For small concentration of particles the transport in asym-
metric cavities has been extensively studied using the Langevin
equation (see [17] and references therein). The entropic effects
become relevant, generating an entropic potential which is
responsible for a peculiar behavior. If a force of the same
magnitude is applied to the right or to the left, the magnitude
of the resulting drift velocities to the right or to the left are
different. In these cases the effects of interactions are assumed
irrelevant due to small concentrations. The aim of the present

work was to extend the study of transport of particles for all
concentrations taking into account the hard-core interaction.
We studied the effect of increasing the concentration and
changing the size of the particles. If the concentration is
high enough, it can be expected that the interaction between
particles modifies the flux asymmetry. We found that the flux
asymmetry is not only modified, but also inverted.

We used a simplified model to carry out simulations using
the Monte Carlo method. Even though the cavity chosen is
arbitrary, the arguments and conclusions that we have found
are general and independent of specific details of the shape of
the cavity. Two different sizes of particles were used to analyze
how this feature modifies the transport process.

This work is organized as follows. In Sec. II the details
of the model are explained. In Sec. III we show the results
obtained and in Sec. IV we discuss, using simple arguments,
how a particle-vacancy analogy can be used to describe some
aspects of the dynamics of the system. Some final remarks are
presented in Sec. V.

II. MODEL

To perform the simulations, we used the standard Monte
Carlo method with a square lattice of size Lx × Ly , with a
lattice spacing a = 1. A triangular area, where the particles
can diffuse, was delimited inside, with two exits of size b

on the sides (Fig. 1). Periodic boundary conditions were
set on the exits, to simulate a chain of identical cells repeated
along the x axis.

Two kinds of particles where used. The small ones that
occupy one site of the lattice, and the large ones that occupy
four sites (a square of two sites per side). The particles can
diffuse freely as long as they do not encounter any other particle
or a wall.

When there are no forces applied, all the particles have the
same jumping rate in all directions. The jumps have a length
of a = 1. If there is a force δ acting along the x axis, the
jumping rate will be higher in the direction of the force. Thus,
if the force is applied to the right, the jump rates in different
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FIG. 1. Lattice structure. b = 8a, Lx = 120a, Ly = 128a.

directions are

p↑ = p↓ = p← = p, p→ = p(1 + δ). (1)

Likewise, if the force is applied to the left,

p↑ = p↓ = p→ = p, p← = p(1 + δ). (2)

If a force to the right (left) is applied in the steady-state regime,
the modulus of the mean velocity in the x direction v+δ (v−δ)
is obtained. The difference �v = v+δ − v−δ was used as a
measure of the asymmetric effect of the cavity. If it were
symmetric, then the difference between v+δ and v−δ would be
zero.

We can relate the dimensionless external force δ used in the
model with the force F acting on the particles. The relation
is (1 + δ) = exp(Fa/kT ), where k is the Boltzmann constant.
Considering δ � 1, we have δ ≈ Fa/kT . Nevertheless, we
will also consider the case δ of order 1, in which δ still
represents the force although it is not directly proportional
to it.

We consider that small particles have a diffusion coefficient
D = pa2, and a force δ is applied to them in the x direction.
The diffusion coefficient for large particles is set to D′ = D/2
and the force to δ′ = 2δ. With these values, in a free space (i.e.,
in a full square lattice without any restrictions), both kinds of
particles have the same mean velocity. For example assuming
that the forces are applied to the right,

v′
x = p′

xδ
′a = px

2
2δa = pxδa = vx. (3)

This is the reason why we use the above-mentioned values of
D′ and δ′.

We analyze stationary situations when a constant force,
to the right or to the left, is applied and particles drift in an
array of asymmetric cavities, as the one shown in Fig. 1. With
this constraint, the effective velocity in the steady state might
be much smaller than pxaδ due to collisions with the cavity
walls. A linear relation between effective velocity and force
holds for small values of δ. In this linear regime, there is no
difference between v+δ and v−δ , and �v = 0 [14]. We are
interested in intermediate values of δ, for which the linear
regime does not hold and one expects a difference �v 	= 0
due to the asymmetry of the cavities and entropic effects [17],
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FIG. 2. �v as a function of c for δ = 0.2 (�), δ = 0.5 (◦), and
δ = 1 (♦). Filled symbols represent large particles and empty
symbols, small ones. The inset shows an amplified region in
0 � c � 0.2. Trajectories (number of samples times number of
particles in each sample): 700 000.

at least for small concentrations. More specifically, for the
cavity shown in Fig. 1, �v for large particles would be greater
than �v for small particles, in a range of intermediate values
of δ. The extension to higher concentrations will be discussed
in the next section.

III. RESULTS

In the simulation, we define the concentration c as the
mean number of particles in the cavity in the steady-state
regime divided by S for small particles, and divided by S/4
for large particles, where S is the total number of sites in the
cavity. We use a value of the jump rate p equal to 1. From
now on we denote by c = 0 the case in which there is only
one particle in the cavity. The results of the mean velocity
in the horizontal direction were obtained, analyzing the slope
in a plot of mean displacement against time. The slope is
typically measured in the time range 4000 < t < 10 000 in
order to avoid the transient and to evaluate the velocity in
the steady state. The initial condition is random: particles are
homogeneously distributed in the cell, with probability c.

It is interesting to analyze how �v changes as the concen-
tration increases and the interaction becomes more relevant.
See Fig. 2. For c = 0 the results are in qualitative agreement
with Ref. [17]. That is, first, for a not too small value of the
force, �v > 0. And second, �v for large particles (�vlarge,
filled symbols in Fig. 2) is greater than �v for small particles
(�vsmall, empty symbols). However, when the concentration
gets higher, both �v decrease. Even more, for large enough c,
�v becomes negative. This means that even when the cavity is
designed to favor the transport to the right, the hard-core inter-
action makes the particles move faster, in average, to the left.

Let us now compare �vsmall with �vlarge. As expected, for
c = 0 (and not too large values of δ), �vsmall < �vlarge. For
other concentrations, it can be noticed that there is a value of
c for which both curves intersect (see the inset of Fig. 2), and
the relation is inverted.
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FIG. 3. �vlarge(�) and �vsmall (◦) as a function of δ and c = 0.
Upper inset: �vlarge − �vsmall. Lower inset: zoom of �v against δ for
small values of δ. Number of samples: 30 000.

To determine the value of δ that exhibits the largest entropic
effect, we compared �vsmall and �vlarge for c = 0. The results
are shown in Fig. 3. For small values of δ, �vlarge is higher
than �vsmall, meaning that the entropic effect is bigger for
larger particles when the concentration is small. Nevertheless,
when the force is strong enough, �vsmall > �vlarge. See the
upper inset of Fig. 3. The lower inset in Fig. 3 shows that the
slope of �v against δ tends to zero when the force tends to
zero, indicating a linear relation between velocity and force
for small values of δ [14].

IV. PARTICLE-VACANCY ANALOGY

We begin by defining the average number of particles that
cross the whole cavity per unit of time when a force δ is
applied. Independent of the cavity geometry, we assume that
it has a characteristic length Lx , and that a particle needs
an average time �t to cross the whole cavity. Then, the
mean velocity inside the cavity is v+δ = Lx/�t . After a time
�t , cSeff particles (where Seff = S for small particles, and
Seff = S/4 for large ones) cross the cavity. The mean number
of particles per unit time that leave the cavity is N+δ

c =
cSeff/�t = cv+δ

c Seff/Lx (subindex c is used to indicate the
concentration value for which a given quantity is evaluated).
Defining the average current as I+δ

c = N+δ
c /( Seff

Lx
), we have

I+δ
c = cv+δ

c . (4)

In the following, only small particles are considered and
subscripts “large” and “small” in �v are omitted.

Our system has a frequently found symmetry: holes behave
as particles moving in the opposite direction (see, e.g.,
[18,19]). Making use of this symmetry it is possible to find
an easier way to describe the physics of the problem. We can
think on the vacancies as particles moving in the opposite
direction, bounded to a force of magnitude −δ, in a system
with concentration 1 − c. Because of that, it is possible to
write the average current of vacancies,

I−δ
1−c = (1 − c)v−δ

1−c. (5)
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FIG. 4. I±δ
c as a function of c for δ = 0.2 (�), δ = 0.5 (◦), and

δ = 1 (♦). Filled symbols: force to the right. Empty symbols: force to
the left, only small particles. Trajectories (number of samples times
number of particles in each sample): 700 000.

It is straightforward to notice that the average current of the
particles has to be equal to the one of the vacancies. This is a
consequence of having the number of particles fixed. Finally,
matching Eqs. (4) and (5), we get

cv+δ
c = (1 − c)v−δ

1−c. (6)

The relation (6) is in agreement with what was found
with numerical simulations. It explains the symmetry, between
forces to the right and to the left, of I±δ

c against c shown in
Fig. 4 and of �I in Fig. 5, with respect to c = 0.5. Even more,
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FIG. 5. �I = c�v as a function of c for δ = 0.2 (�), δ = 0.5
(◦), and δ = 1 (♦), only small particles. Note that the same data
are shown in Fig. 2, but now the symmetry with respect to c = 0.5
appears because we plot c�v against c instead of �v against c. The
inset shows �I vs c for large particles only. δ = 0.5 (◦) and δ = 1
(♦). Trajectories (number of samples times number of particles in
each sample): 700 000.
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FIG. 6. (Color online) Average particle density or site occupation frequency P δ,c
p against position in the cavity. Small particles. Level curves

represent equal density. (a) δ = +0.5, c = 0.7; (b) δ = −0.5, c = 0.3. Black: occupied site; white: empty site. Time average of 105 snapshots
in the range 102 < t < 108.

if c = 0.5 then v+δ
0.5 = v−δ

0.5, independently of the magnitude of
the force and the shape of the cavity. However, the actual form
of vδ

c depends on the shape of the cavity. In particular, if the
cell is symmetric then �v = 0 ∀ c ∈ (0; 1). Also, from Fig. 5
we can see that there is an optimal value of c for each value of
δ that maximizes the difference �I = c�v.

Another feature that can be noticed from Fig. 4 is that
I±δ
c is constant in a significant region of values of the

concentration around c = 0.5. This indicates that increasing
the concentration a little does not modify the current of
particles coming out of the cell per unit time. It can be seen
that the extra particles increase the size of the clog but do not
modify the situation close to the exit hole. This situation is
illustrated in Figs. 6(b) (c = 0.3) and 7(b) (c = 0.5), where
the average density is shown in a stationary situation against
position in the cavity. Increasing the concentration c makes
larger the black zone of occupied sites in a region far from the
exit, which does not modify the current I δ

c (see Fig. 4, empty
circles, for values of c close to 0.5).

The average current is a global magnitude that involves
the average of all sites. Now we are going to focus on what
happens locally using the site occupation frequency. Because
each site can be found in two states (occupied or not), we have
that

P +δ,c
p (i,j ) + P

+δ,c
h (i,j ) = 1, (7)

where P +δ,c
p (i,j ) is the probability of finding the site (i,j )

occupied, and P
+δ,c
h (i,j ) is the probability of finding the same

site vacant. Now, knowing that holes are equivalent to particles
moving in the opposite direction, we can write P

+δ,c
h (i,j ) =

P −δ,1−c
p (i,j ), and

P +δ,c
p (i,j ) + P −δ,1−c

p (i,j ) = 1. (8)

Equation (8) implies a relation between two cases with
different values of the force and concentration. The numerical
results of Figs. 6 and 7 confirm this relation. Case (b) in each
figure corresponds to the change δ → −δ and c → 1 − c with
respect to case (a). The plot of the resulting average density in
(a) is the negative picture of (b). Figures 6(b) and 7(b) show that
for a negative force, particles accumulate to the left mainly in
the upper and lower corners of the triangular cavity, producing
a more symmetric effective shape. This effect is responsible
for the symmetric behavior that we observe in Fig. 5, where
�I = 0 for intermediate values of c.

Let us stress that the particle-vacancy analogy is strictly
valid only for small particles due to the particular way to
simulate the diffusion processes where the jump length is equal
to the linear size of the particle. For large particles this analogy
is no longer valid. But even for this case we obtained similar
results. For example, in the inset of Fig. 5 we show �I as
a function of c for large particles. Although the symmetry
with respect to c = 0.5 does not hold exactly, the curves are
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FIG. 7. (Color online) Average density or site occupation frequency. Small particles. Level curves represent equal density. (a) δ = +0.5,
c = 0.5; (b) δ = −0.5, c = 0.5. Black: occupied site; white: empty site. Time average of 105 snapshots in the range 102 < t < 108.
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quasisymmetrical and �I is almost zero around c = 0.5. In
general we expect that the results of the present section are
at least qualitatively right for the transport of overdamped
Brownian particles, independent of the specific rules of the
model definition.

V. CONCLUSION

In this work we investigated the transport of overdamped
Brownian particles in a chain of asymmetric cavities, interact-
ing through a hard-core potential. Although there is an entropic
effect that makes particles of different sizes diffuse differently,
we found that the hard-core interaction diminishes this effect.
We compared the dynamics of small and large particles
and analyzed the difference, �v, between the steady-state
velocities that are obtained when a force to the left or to the
right is applied. This difference is a measure of the asymmetric
behavior of the system. We qualitatively reproduced previous
results for c = 0 and not too small values of the force, for which
the velocity difference for small particles is smaller than the
one for large particles, �vsmall < �vlarge (for δ � 1.25). As
c is increased, the difference not only decreased, but it was
inverted at some point. A similar effect was observed when we
kept c = 0 and increased the force δ.

For the case when only one kind of particle is present in the
system, we took advantage of the particle-vacancy analogy
to show that there should be a symmetry in the behavior
of the average current when the force is inverted and the
concentration c is replaced by 1 − c. This symmetry is strictly
valid only for small particles and it is due to the specific rules
of the model definition. Even with this limitation, the results
obtained are qualitatively right independently of the model
used. That is, the difference �I of the current when the force
is applied to the left or to the right has a maximum for a value
of c close to 0 and a minimum for c close to 1 (see Fig. 5).
These values of the concentration maximize the asymmetric
effect of the cavity. For c close to 0.5, there is a range of values
of the concentration for which �I 
 0, this means that, in this
case, the asymmetry of the cavity has no effect on the particle
current.
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