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The role of Killing and Killing-Yano tensors for studying the geodesic motion of7

the particle and the superparticle in a curved background is reviewed. Additionally,8

the Papadopoulos list [G. Papadopoulos, Class. Quantum Grav. 25, 105016 (2008)]9

for Killing-Yano tensors in G structures is reproduced by studying the torsion types10

these structures admit. The Papadopoulos list deals with groups G appearing in the11

Berger classification, and we enlarge the list by considering additional G structures12

which are not of the Berger type. Possible applications of these results in the study13

of supersymmetric particle actions and in the AdS/CFT correspondence are outlined.14

C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698087]15

I. INTRODUCTION16

Killing and Killing-Yano tensors1, 2 and their conformal generalizations3, 4 are a powerful tool17

in general relativity. When a given space time does admit such tensors, a classical constant of motion18

for particle probes moving in the background appears. This is a reminiscent of the isometries, and it19

is often said that Killing and Killing-Yano tensors are the generators of hidden symmetries for the20

background. In fact, for the rotating black hole the separability of the Hamilton-Jacobi equation for21

a particle probe in the background5, 6 is closely related to the presence of a conformal Killing tensor22

of rank two. This tensor admits a square root which is Killing-Yano,7, 8 and which is a key ingredient23

for the separability of the Dirac equation corresponding to the rotating background.924

At the quantum level, Killing-Yano tensors are generators for non-anomalous symmetries,25

while for Killing tensors this is not the case. It is well known that when a bosonic particle in a given26

background is quantized then, for every globally defined Killing vector the background admits there27

corresponds an operator which commutes with the Hamiltonian (the curved Laplacian). But this28

assertion is false for Killing tensors in general, as the commutator of the corresponding operator29

with the Hamiltonian may not vanish.9 Nevertheless, when a Killing tensor admits a square root30

which is Killing-Yano, the anomaly vanish identically.10 This is true for the rotating black hole31

discussed above, as well as for other geometries.32

The similarities between the usual isometries and hidden symmetries discussed above raise33

the question whether or not Killing-Yano tensors do form an algebra. This issue was investigated34

in Refs. 11 and 12 where it was argued that the natural generalization of the Lie bracket for35

Killing vectors is the Schouten-Nijenhuis bracket for Killing tensors. The outcome is that Killing-36

Yano tensors do not form a Lie algebra in general, at least with this particular operation, but they37

do when some extra conditions are satisfied. An example is the requirement for the metric to38

be of constant curvature. For Killing tensors instead, an associated graded algebra was reported39

in Ref. 13 (see also Ref. 64).40

The presence of hidden symmetries in a given background may give information about41

the algebraic type of the curvature. In four dimensions, the presence of a conformal and non-42

degenerate Killing-Yano tensor of rank two in a generic space time implies that the curvature is43

of type D in the Petrov classification.14–17 The local form of these metrics is known explicitly.18 The44
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generalization of the Petrov classification to higher dimensions was obtained in Refs. 19 and 127 45

and this classification allowed the authors of Ref. 20 to prove that any space admitting a closed 46

non-degenerate conformal Killing-Yano (CKY) tensor is of type D. This was based in previous work 47

done in Ref. 29. Furthermore, when the Einstein equations are imposed, these metrics become the 48

Kerr-Taub-Ads family22 which generalize the old Myers-Perry solution.23 But the converse of this 49

statement is an open question, though some suggestions in this direction appear in Ref. 21. 50

Soon after the appearance of Ref. 20, the geodesic motion and the Hamilton-Jacobi and Dirac 51

equations in these spaces were studied in Refs. 24–29. The outcome is that both equations are 52

separable. Additionally, the role of conformal Killing-Yano tensors for studying geodesic motion in 53

double spinning black rings was pointed out in Ref. 30, and a method for constructing conserved 54

charges in asymptotically flat spaces by use of Killing-Yano tensors was given in Ref. 11 and in 55

anti-de Sitter space times in Ref. 32. 56

Killing-Yano tensors also appear in other contexts of mathematical physics. For example, in the 57

theory of gravitational instantons, they are known to generate Runge-Lenz type symmetries.33–38
58

The separability of the Dirac equation in the Kerr-Taub-Nut background was studied in Ref. 39, 59

and formal properties of Dirac operators for spaces with hidden symmetries were pointed out in 60

several works such as Refs. 40–43 Additionally, Killing-Yano tensors are generators for exotic 61

supersymmetries in the spinning particle motion in a curved background.44–46 These are symmetries 62

which mix bosonic and fermionic coordinates but whose square does not give the Hamiltonian.47, 48
63

Further research related to the motion of particles of Abelian and non-Abelian charges in the 64

presence of external fields have been performed in Refs. 47,49–54 and these techniques were further 65

applied to derive N = 4 supersymmetric mechanics in a monopole background in Ref. 55. The 66

relation between Killing-Yano and integrable systems was subsequently studied in Refs. 56–60, 67

and applications related to string movement were found in Refs. 61 and 62. Novel geometries not 68

neccessarily Einstein were also obtained in Ref. 63. 69

Although their importance was understood long ago, till recent times few examples of spaces 70

admitting Killing-Yano tensors were known. This situation changed in the last years. The problem 71

of finding Killing-Yano tensors on spherically symmetric space times was studied in Ref. 68 and on 72

pp-wave backgrounds in Ref. 69. The Killing tensors for the Melvin universe were characterized in 73

Ref. 70. The local form of certain Lorentzian metrics admitting Killing-Yano tensors of higher order 74

was studied in Ref. 71, and the presence of hidden symmetries in the Plebanski-Demianski family 75

was studied in Ref. 72. 76

Recently, the problem of classifying the G structures do admit Killing-Yano tensors was inves- 77

tigated by Papadopoulos in Ref. 73. It is interesting that all the examples Papadopoulos is finding 78

are Einstein or Ricci-flat. Furthermore, these spaces can be uplifted to an AdS supergravity solution. 79

Since the constant of motions of rotating string configurations in these backgrounds are related to 80

quantum numbers in a conformal dual quantum field theory, the study of hidden symmetries in these 81

backgrounds may be of theoretical interest. The aim of the present work is to reproduce and enlarge 82

this list. 83

The present work is organized as follows. In Sec. II, the role of Killing and Killing-Yano 84

tensors as generators for hidden symmetries for the particle and the spinning particle in a given 85

space time is reviewed. It also emphasized the fact that when a Killing tensor has a Killing-Yano 86

“square root” the classical symmetries it generates are non-anomalous. In Sec. III, the conformal 87

generalizations of Killing and Killing-Yano tensors and their role in finding solutions of Dirac 88

equations in the curved background are briefly described. In Sec. IV, an attempt to generalize both 89

notions for the motion of the Polyakov string and spinning string is presented. We are unable to find 90

such a generalization unless some extra information about the string movement is given, and some 91

examples realizing this situation are given explicitly. In Sec. V, the main features of G structures 92

and their relation to special holonomy manifolds are briefly discussed, and all the cases of the 93

Papadopoulos list are reproduced by means of the torsion formalism developed in Refs. 82–92. In 94

addition, we analyze the presence of Killing-Yano tensors in almost contact structures and in SO(3) 95

structures in SO(5) and in structures Hk ⊂ SO(nk), with H1 = SO(3), H2 = SU(3), H4 = Sp(3) and 96

H8 = F4, following Refs. 116–118. Section VI contains the discussion of the results and their possible 97

applications. 98
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II. KILLING-YANO TENSORS AS EXOTIC SUPERSYMMETRIES99

In the present section, some important aspects of Killing and Killing-Yano tensors and their role100

in finding conserved quantities for motion of a particle and spinning particle in a curved background101

are reviewed. It also emphasized the role of Killing-Yano as generators of exotic supersymmetries.102

Clear introductory notes are given for instance in Ref. 65, and this reference can be consulted for103

further details.104

A. Killing tensors and the freely falling particle105

A bosonic particle falling freely in a geodesically complete background (M, gμν) is described106

by the following action:107

S =
∫ τ1

τ0

Ldτ =
∫ τ1

τ0

gμν(x)ẋμ ẋνdτ, (2.1)

ẋμ = dxμ/dτ being the derivative with respect to the proper time τ of the particle coordinate xμ.108

The variation of (2.1) with respect to arbitrary infinitesimal transformations δx and δẋ is109

δS =
∫ τ1

τ0

[
δL

δxμ
− d

dτ

(
δL

δ ẋμ

)]
δxμdτ +

∫ τ1

τ0

d

dτ

(
δL

δxμ
δxμ

)
dτ

=
∫ τ1

τ0

[
− δxμgμν

Dẋν

Dτ
+ d

dτ

(
δxμ pμ

)]
dτ, (2.2)

pμ being the momentum of the particle110

pμ = gμν ẋν . (2.3)

When the end points are fixed, i.e, when δxμ = 0, the total time derivative in (2.2) may be discarded.111

Then variation (2.2) is zero when the Euler-Lagrange equations112

Dẋμ

Dτ
= ẍμ + �μ

να ẋν ẋα = 0, (2.4)

are satisfied. Here, �μ
να denote the usual Christoffel symbols constructed in terms of the metric gμν113

�k
i j = gkl

2
(gil, j + g jl,i − gi j,l). (2.5)

The first two members of the equations of motion (2.4) are the definition of the derivative Dẋν

Dτ
.114

The vanishing of this derivative implies that the particle moves along a geodesic line in the curved115

background.116

When the variations δxμ = Kμ do not have fixed end points the total derivative in (2.2)117

should not be discarded. In this case, by taking (2.4) into account it follows that the total variation118

of (2.2) is119

δL = d

dτ

(
K μ pμ

)
. (2.6)

If additionally δxμ = Kμ is such that this variation is zero, then it will be called a symmetry120

transformation of L. The formula (2.6) implies that the quantity121

EK = Kμ ẋμ, (2.7)

is a constant of motion for the particle.122

The most celebrated example of symmetries for (2.2) are those of the forms δxμ = Kμ(x), that123

is, the ones in which the variations are functions of the coordinates. The vanishing of (2.6) gives124

d

dτ

(
Kμ ẋμ

)
= ẋν∇ν Kμ ẋμ + Kμ

Dẋμ

Dτ
= 0.



000000-4 O. P. Santillan J. Math. Phys. 53, 000000 (2012)

But the last term is zero by (2.4) and the first one gives 125

∇(ν Kμ) = 0, (2.8)

where the parenthesis denote the usual symmetrization operation. Equation (2.8) shows that the 126

vector field Kμ is Killing, that is, a local isometry of gμν . Thus, for a particle moving along a 127

geodesic in a given background (M, gμν), there is a constant of motion for every isometry the 128

background admits. 129

The isometries considered above are not the whole set of symmetries. The most general ones are 130

of the form δxμ = K (x, ẋ), that is, transformation which are local with respect to the phase space 131

coordinates (xμ, ẋμ). The generality of this ansatz follows from the fact that a dependence on higher 132

order time derivatives such as ẍ will reduce to combinations of (x, ẋ) by means of the equations of 133

motion (2.4) and thus this dependence is redundant. If a Taylor-like expansion of the form 134

δxμ = K μ + K μ
α ẋα + K μ

αβ ẋα ẋβ + · · · , (2.9)

with velocity independent tensors K μ
μ1..μn

(x) is proposed, then a calculation analogous to the one 135

leading to (2.8) shows that if (2.9) will be a symmetry of the Lagrangian (2.1) when 136

∇(μKμ1..μn ) = 0, (2.10)

a condition which generalize (2.8). These tensors are known as Killing tensors and the quantities 137

cn = Kμ1..μn ẋμ1 ..ẋμn , (2.11)

are constants of motion for the particle moving in the background. An obvious Killing tensor is the 138

metric itself, that is, Kμν = gμν . The corresponding conserved charge 139

H = 1

2
gμν pμ pν, (2.12)

is the Hamiltonian for the particle. 140

A remarkable difference between Killing vectors and Killing tensors is that the first generate 141

symmetries even for the quantum version of (2.2), while for tensors an anomaly may appear. The 142

simplest quantum version of the particle motion is obtained by replacing the momentum pμ with the 143

operator ∇μ and, for the scalar fields, the classical Hamiltonian (2.12) is replaced with the operator 144

bH = �
2∇μ(gμν∇ν), (2.13)

which coincides with the Laplacian acting on scalar functions. Furthermore, any vector field Kμ is 145

in correspondence with a quantum mechanical operator bK = K μ∇μ whose commutator with the 146

Hamiltonian is 147

[bH , bK ] = −2�
2 K(μ;ν)∇μ∇ν − �

2(2K ;ν
(μ;ν) − K ν

;ν;μ)∇μ + �
2

4

(
n − 2

n − 1

)
K μ R,μ. (2.14)

From the last equation, it follows that for space times for which the vector Kμ is Killing the 148

corresponding quantum mechanical operator will commute with the Laplacian. This means that 149

Killing vectors generate true quantum symmetries. The situation is different for Killing tensors. 150

As an example, consider operators of the form bK (2) = ∇μ(K μν∇ν). Then a lengthy calculation 151

performed in Refs. 9 and 128 shows that 152

[bH , bK (2)] = 2�
2 K μν;σ∇(σ∇μ∇ν) + 3�

2 K (μν;σ )
;σ∇ν∇ν

+�
2

(
1

2
gμν(K (μν;λ);σ − K (μν;σ );λ) − 4

3
K [λ

μ Rσ ]μ

)
;σ

∇λ. (2.15)

If Kμν is assumed to be a Killing tensor all the terms above will vanish except the last one. This 153

can be paraphrased by saying that the classical symmetry that a Killing tensor generates will be 154

anomalous, unless the integrability condition 155

(K [λ
μ Rσ ]μ);σ = 0, (2.16)
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is satisfied. This condition holds for instance when the metric is Einstein Rij = 
gij, in particular,156

this is true for Ricci-flat metrics. This is also true when the Killing tensor is the square Kμν = f α
μ fαν157

of a Killing-Yano tensor fμν . The last situation will be discussed in Secs. II B–II E.158

B. Supersymmetric extension of the bosonic particle159

A supersymmetric generalization of the particle action (2.1) is the spinning particle.44–46 This160

was introduced as a suitable semi-classical approximation to the dynamics of a massive spin-1/2161

particle such as the electron. Its construction involves a fermionic extension Mξ of the manifold M,162

which requires the introduction of a new set of Grassmann variables ξμ with μ = 1, . . . , D with163

D being the dimension of the background in which the particle lives. For a particle moving in an164

Euclidean space with its flat metric g = δabdya ⊗ dyb, a supersymmetric extension is165

L = 1

2
δab ẏa ẏb + i

2
δabξ

a ξ̇ b. (2.17)

The corresponding action is invariant under the supersymmetry transformations166

δya = −iε ξ a, δξ a = ẏaε, (2.18)

with ε being an anti-commuting (Grassmann) number. More precisely, the transformation given167

above induce a variation on the Lagrangian which is proportional to a total time derivative and168

therefore it does not affect the equations of motion. The Euler-Lagrange equations derived from169

(2.17) are170

d ẏa

dτ
= 0,

dξ a

dτ
= 0. (2.19)

Their meaning is transparent, the first one shows that the bosonic coordinates parameterize a line171

and that the fermionic variables ξμ are constant in time.172

The Lagrangian (2.17) and the supersymmetry transformations (2.18) are referred to Cartesian173

coordinates ya. For curvilinear coordinates xμ (such as polar ones), one may write the metric in an174

n-bein basis ea = ∂μyadxμ as g = δabea ⊗ eb. Then in a new coordinate system ξ a defined through175

the relation ξμ = eμ
a ξ a the action may be rewritten as176

L = 1

2
gμν ẋμ ẋν + i

2
gμνξ

μ Dξν

Dτ
, (2.20)

and the supersymmetry transformation becomes177

δxμ = −i ε ξμ, δξμ = ε ẋμ. (2.21)

In the last equation, the fermionic time derivative178

Dξμ

Dτ
= ξ̇ μ + ẋν�

μ
νλξ

λ, (2.22)

has been introduced. With this definition it is straightforward to check that the Lagrangian (2.20)179

is invariant under (2.21). Furthermore, the fact that the curvature of the metric is trivial plays no180

role in this checking and thus the extension is valid for any metric gμν . Therefore, (2.21) is a181

supersymmetric extension of the bosonic particle Lagrangian (2.1) in any background. The change182

of the action (2.20) with respect to a variation δxμ and δξ a is183

δS =
∫

dτ

[
− δxμ

(
gμν

Dẋν

Dτ
+ i

2
ξλξκ Rλκμν ẋν

)
+ i�ξμgμν

Dξν

Dτ

+ d

dτ

(
δxμ pμ − i

2
δξμgμνξ

ν

)]
, (2.23)

184
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where the momentum 185

pμ = gμν ẋν − i

2
�μνλξ

νξλ, (2.24)

has been introduced, together with the variations 186

�ξμ = δξμ + δxν�
μ
νλξ

λ, (2.25)

and the curvature tensor 187

Rκ
μνλ = ∂μ�κ

νλ − ∂ν�
κ
μλ + �

ρ
λμ�κ

ρν − �
ρ
λν�

κ
ρμ. (2.26)

The equations of motion derived from (2.20) generalize (2.19) and can be casted in the following 188

form: 189

Dξμ

dτ
= 0,

Dẋμ

dτ
= − i

2
ξλξκ R μ

λκ ν ẋν . (2.27)

The last (2.27) in fact can be rewritten in terms of the “spin tensor” Sab = ξ aξ b as 190

Dẋμ

dτ
= − i

2
Sab R μ

ab ν ẋν, (2.28)

which is analogous to the electromagnetic force with the tensor Sab replacing the electric charge as 191

coupling constant. Additionally, the first (2.27) imply that 192

DSab

Dτ
= 0, (2.29)

i.e, the tensor Sab is covariantly constant. 193

C. Symmetries of the phase superspace 194

The next task is to characterize the symmetries of the spinning particle action (2.20). By analogy 195

with (2.9), one may consider a general symmetry transformation of the superphase space (x, ẋ , ξ ). 196

Higher order derivatives such as ξ̇ should be absent due to the equation of motion (2.27), which are 197

of first order in time derivatives of ξ . The generalization of (2.9) in this situation is an expansion of 198

the form 199

δxμ = K μ(x, ẋ, ξ ) = K (1)μ(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn K (n+1)μ

ν1....νn
(x, ξ ), (2.30)

200

�ξμ = Sμ(x, ẋ, ξ ) = S(0)μ(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn S(n)μ

ν1....νn
(x, ξ ), (2.31)

with �ξμ defined in (2.25). If the end points are not fixed, as it is usually the case, the variation 201

(2.23) will vanish if and only if 202

d

dτ

(
δxμ pμ − i

2
δξμgμνξ

ν

)
= 0. (2.32)

Note that in order to obtain this result the equations of motion (2.27) should be taken into account. 203

By denoting the quantity in parenthesis (2.32) as M, it follows from (2.30) and (2.31) that it has an 204

expansion of the form 205

M = M0(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn M (n)

ν1....νn
(x, ξ ),
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and is such that206

K (n)
μ1....μn

= M (n)
μ1....μn

, n ≥ 1 (2.33)

207

S(n)
μ1....μnν

= i
∂K (n)

μ1....μn

∂ξν
, n ≥ 0. (2.34)

Additionally, for an arbitrary function M(x, ẋ, ξ ) of the superphase space, a simple chain rule208

together with the equations of motions (2.27) shows that209

d M

dτ
= ẋμ

(
∂ M

∂xμ
− �ν

μλ(ẋλ ∂ M

∂ ẋν
+ ξλ ∂ M

∂ξν
) − i

2
ξλξκ Rνμλκ

∂ M

∂ ẋν

)
. (2.35)

With the use of (2.33)–(2.35), the following recurrence relations are obtained for n ≥ 1:210

K (n)
(μ1...μn ;μn+1) + ∂K (n)

(μ1...μn

∂ξλ
�λ

μn+1)κ ξ κ = i

2
ξλξκ Rλκν(μn+1 K (n+1)ν

μ1...μn ), n ≥ 1. (2.36)

For n = 0, one may define the quantity K(0) by the relation211

S(0)
μ = i

∂K (0)

∂ξμ
, (2.37)

and the equation for S(0)
μ is equivalent to212

K (0)
, μ + ∂K (0)

∂ξλ
�λ

μκ ξκ = i

2
ξλξκ Rλκνμ K (1)ν . (2.38)

Note that, different for the bosonic case, the scalar K(0) is not an irrelevant constant, as it may depend213

non-trivially on (x, ξ ) by (2.38). Equations (2.34)–(2.38) characterize the local form of the symme-214

tries for the superparticle action. These equations were derived, to the best of our knowledge, in215

Refs. 47 and 48. The deduction given on those references relies in the Hamiltonian formalism, in216

which the symmetries are interpreted in terms of quantities which commute with the Hamiltonian.217

The Hamiltonian formalism is suitable for generalizing the notion of hidden symmetries when the218

particle is in presence of gauge fields. This fact was exploited particularly in Refs. 47, 49–55.219

D. Exotic supersymmetries220

Although Eqs. (2.34)–(2.38) given above characterize the symmetries of the action (2.20), it221

may be very hard to find explicit solutions for a given background. In the following some simple222

cases will be considered, namely, the supersymmetries already introduced in (2.21) and the exotic223

supersymmetries generated by the Killing-Yano tensors.224

The simplest solution of the system (2.34)–(2.38) are symmetries which do not depend on the225

fermionic variables. In this case, it is immediate to check that the resulting symmetry generators are226

Killing tensors. One is the metric tensor itself gμν for which the associated conserved quantity is the227

Hamiltonian228

H = 1

2
gμν Pμ Pν, (2.39)

with Pμ = gμν ẋν . In the Hamiltonian formalism, the time evolution of any dynamical quantity F(x,229

p, ξ ) is given in terms of the Poisson bracket with (2.39)230

d F

dτ
= {F, H}. (2.40)

The fundamental Poisson brackets of the theory (2.20) are given by231

{xμ, pν} = δν
μ, {ξμ, ξν} = −igμν. (2.41)
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From these brackets it is straightforward to find that 232

{pμ, ξν} = 1

2
gκνgκλ,μξλ, {pμ, pν} = − i

4
gκλgκρ,μgλσ,νξ

ρξσ . (2.42)

In these terms, the following Poisson bracket for the tensor Sab are found 233{
Sab, Scd

} = δad Sbc + δbc Sad − δac Sbd − δbd Sac, (2.43)

which justify the name “spin tensor”. The space-like components Sab represent the magnetic mo- 234

mentum and the time-like components are the electric momentum. Since it is expected that for free 235

particles such as electrons, the electric momentum in the rest frame vanish identically, the time-like 236

components should vanish identically. This condition may be imposed by requiring by implementing 237

the subsidiary condition 238

ẋμξμ = 0, (2.44)

after solving the equations of motion.47, 48
239

Another example of symmetries described by the system (2.34)–(2.38) are the supersymmetry 240

transformations (2.21), and it will be instructive to check this out explicitly. By comparison between 241

(2.21) and (2.30)–(2.31), it is found that the non-zero supersymmetry generators are 242

K (1)
μ = −i gμνξ

ν, S(1)
μν = gμν, (2.45)

and the relation (2.34) is satisfied for all of them. Moreover, one has that 243

K (1)
μ; α = gμν, α ξ ν − gλν �λ

μαξν = gμλ�
λ
ναξν,

where in the last the equality has been used that gμν; α = 0. With the use of the last formula it is 244

deduced that (2.36) is satisfied. In addition, the left hand side of (2.38) is zero and by using the first 245

(2.45) the right hand side vanish by the first Bianchi identity Rμ[ναβ] = 0. Thus, the supersymmetry 246

transformations (2.45) are solutions of Eqs. (2.34)–(2.38), which give an interesting consistency 247

check. The conserved quantity related to the supersymmetry (2.21) is obtained from (2.32), the 248

resulting Noether charge 249

Q = pμξμ, (2.46)

is known as the supercharge. 250

One may consider, in addition to the above examples, symmetries which mimics the 251

supersymmetry property of mixing bosonic and fermionic coordinates. A natural ansatz for these 252

symmetries is 253

δxμ = −iε f μ
a (x) ξ a . (2.47)

When the 1-forms f μ
a are an n-bein eμ

a basis for the metric, then the previous formula will represent 254

a true supersymmetry (2.21). Otherwise, it will be a new type of symmetry, whose composition does 255

not necessarily close to the Hamiltonian. For this reason, these are known as exotic supersymmetries. 256

By comparing (2.30) and (2.31) with (2.47) and taking into account (2.34) the following generator 257

are obtained: 258

K (1)
μ = −i gμν f ν

a (x) ea
α ξα, S(1)

μα = gμν f ν
a (x) ea

α. (2.48)

In these terms, Eq. (2.36) is equivalent to 259

Dμ f a
ν + Dν f a

μ = 0. (2.49)

On the other hand, these cannot be the whole generators. If this were the case then the left hand side 260

of Eq. (2.38) would be zero, but the right hand side is not unless f a
ν = ea

ν . Thus, a non-zero K(0)
261

generator is present, and should be of the form 262

K (0) = i

3!
cabc ξ aξ bξ c, (2.50)
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the cubic dependence in ξ a follows by noticing that the right hand of (2.38) is multiplied by a263

quadratic expression in the ξ a variables and the generator K (1)
μ in (2.48) is linear in the Grassmann264

variables. With this new generator Eq. (2.38) turns to be equivalent to265

Dμcabc = − Rμνab f ν
c − Rμνbc f ν

a − Rμνca f ν
b . (2.51)

In these terms, the new symmetry transformations are266

δ f xμ = −i ε f μ
a (x) ξ a, (2.52)

267

δ f ξ
μ = ε f μ

a (x) ea
ν ẋν + 1

2
ε cμνα ξνξα. (2.53)

A further simplification is obtained with the requirement that the transformations δf are superinvari-268

ant. This requirement means that the Poisson bracket between the supercharge and the generators of269

the exotic supersymmetry is zero. This condition imply that270

f a
μ eνa + f a

ν eμa = 0. (2.54)

The last formula implies that the tensor fμν = f a
μ eνa is completely antisymmetric, thus a 2-form.271

Equation (2.49) is in this case equivalent to the following one:272

fμν;λ + fλν;μ = 0. (2.55)

Tensors satisfying (2.55) are known as Killing-Yano tensors. In brief, it may be stated that Killing-273

Yano tensors are the generators for superinvariant exotic supersymmetries. By taking into account274

(2.55) and the complete antisymmetry of fμν , it follows that the gradient275

fμν;λ = 1

3
( fμν;λ + fνλ;μ + fλμ;ν) = Hμνλ

is completely antisymmetric and thus it defines a 3-form Hμνλ. Then, the second covariant derivative276

of the last equation together with the Ricci identity and the antisymmetry of fμν give the following277

identity:278

Hμνλ;κ = 1

2

(
Rσ

μνκ fσλ + Rσ
νλκ fσμ + Rσ

λμκ fσν

)
. (2.56)

The comparison between (2.56) and (2.51) shows the following identification:279

cabc = −2Habc = −2eμ
a eν

beλ
c Hμνλ. (2.57)

In conclusion, the most general supersymmetry such as symmetries of the form (2.47) are obtained280

by the generators of the forms (2.52) and (2.53) and if these symmetries are superinvariants then they281

are completely determined in terms of Killing-Yano tensors of second rank, which are antisymmetric282

tensors satisfying (2.55). The exotic supersymmetry is defined by the formulas (2.54) and (2.57).47, 48
283

E. Squares of exotic symmetries284

In the Hamiltonian formalism, where the fundamental brackets are (2.41) and (2.42), the action285

of symmetry transformation over a function of the superphase space F(x, p, ξ ) is given as286

δF = i{F, Qs}ε, (2.58)

Qs being the conserved constant of motion. In particular, it can be checked that (2.30) and (2.31)287

are direct consequences of (2.58) together with the definition of the supercharge (2.46) and the288

fundamental Poisson bracket (2.41) and (2.42), which gives a consistency check. By using (2.42), it289

is seen that the supersymmetry generator Q satisfy290

{Q, Q} = −2 i H, (2.59)

which is a well-known feature of the supersymmetry transformations. When r symmetries trans-291

formations δi with i = 1, . . . , r are present, then there exist r conserved supercharges Qi defined292
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by (2.32). Let us denote by Zij the following Poisson bracket: 293

{Qi , Q j } = −2 i Zi j . (2.60)

The time derivative of this quantity is 294

d Zi j

dτ
= {H, Zi j } = −2 i {H, {Qi , Q j }} = 2 i {Q j , {H, Qi }} + 2 i {Qi , {Q j , H}} = 0,

(2.61)
where in the last step the Jacobi identity together has been taken into account, together with the fact 295

that {Qi, H} = 0. The quantity Zij is the “charge” corresponding to the transformation δij = {δi, 296

δj} and the relation (2.61) imply that δij is a symmetry transformation as well. In particular, if the 297

symmetries δi are exotic supersymmetries of the form (2.52) and (2.53), then 298

δi j xα = K αμ

i j ẋμ + i

2
I α
i jab ξ aξ b, (2.62)

299

δi j ξ a = i I aμ

i jb ẋμξ b − Ga
i jbcd ξ bξ cξ d , (2.63)

the new quantities being defined as 300

K μν

i j = K νμ

i j = 1

2

(
f μ

ia f νa
j + f μ

j a f νa
i

)
,

301

I μ

i jab =
(

f ν
i b Dν f μ

j a + f ν
j b Dν f μ

i a + 1

2
f μc
i c j abc + 1

2
f μc

j ci abc

)
, (2.64)

302

Gi jabcd =
(

Rμνab f μ

ic f ν
jd + 1

2
ce

i abc jcde

)
.

The Killing-Yano equations (2.34)–(2.38) for f ν
jd and cabc imply the following relations for the new 303

quantities:47, 48
304

K(μν;λ) = 0,

305

D(μ Iν)ab = Rab(μKν), (2.65)

306

DμGabcd = Rλμ[ab I λ
cd].

The first (2.65) shows that the entries of the matrix Kijμν;λ are all Killing tensors. This result is well 307

known, the “square” of two Killing-Yano tensors gives a Killing tensor, a result which was obtained 308

in the context of general relativity in Ref. 8. Furthermore, it can be shown by taking into account 309

(2.55) that this Killing tensor satisfies the integrability condition (2.16) and therefore give rise to a 310

symmetry which is free of anomalies, a result that was anticipated by Carter in Refs. 9 and 10. 311

III. CONFORMAL GENERALIZATIONS OF KILLING AND KILLING-YANO TENSORS 312

The relations described above between Killing and Killing-Yano tensors can be generalized to 313

tensors of higher order. Additionally, conformal generalizations of these tensors may be constructed 314

as well.66 For example, the conformal generalization of a Killing vector is a vector field K which 315

satisfy 316

L K gμν = λgμν,

with λ being a constant and LK the standard Lie derivative along K. These are vectors with a flow 317

preserving a given conformal class of metrics. When λ goes to zero, the usual definition of a Killing 318

vector is obtained. Similarly, a conformal Killing tensor is 319

∇(ν Kμ1...μn ) = gν(μ1
eK μ2...μn ), (3.1)

with eK μ2..μn is the tensor defined by taking the trace on both sides. The limit λ → 0 reduce to the 320

usual definition of a Killing tensor. 321



000000-11 O. P. Santillan J. Math. Phys. 53, 000000 (2012)

Killing-Yano tensors also admit a generalization to orders higher than two, and conformal322

generalizations.3, 4 To see this one may note that Eq. (2.55) defining Killing-Yano tensors may be323

rewritten as324

∇X f = 1

p + 1
iX d f, (3.2)

with p = 2 and X an arbitrary vector field. For an arbitrary p-form, we will say that is Killing-Yano if325

(3.2) is satisfied. The conformal generalization are the tensors f defined by the following equation:3, 4
326

∇X f = 1

p + 1
iX d f − 1

n − p + 1
X � ∧ d∗ f, (3.3)

which are known as conformal Killing-Yano tensor. Here, X� is the dual 1-form to the vector field X327

and d* is the adjoint of d. This adjoint operation can be defined in terms of the Hodge star ∗, whose328

square is ± 1 depending on the values of p and n and the signature of the metric. More precisely,329

∗ ∗ X = (−1)p(n−p)εX ε = det g

| det g| .

In these terms, the adjoint of d is given by d* f = ( − 1) p ∗− 1d ∗ f with ∗− 1 = ( − 1) p(n − p)ε∗. Note330

that if d*f = 0, the CKY tensor reduces to a usual KY tensor. In terms of two CKY tensors of the331

same order one may construct a symmetric 2-tensor332

Kμν = ( f 1)μμ1..μn ( f 2)μ1..μn
ν + ( f 2)μμ1..μn ( f 1)μ1..μn

ν , (3.4)

which, by virtue of (3.2), is a conformal Killing tensor. This relation generalize the first (2.65) for333

the conformal case. In particular, if the f i are Killing-Yano, then (3.4) will be Killing and we will334

recover results mentioned above.335

A particular and important example realizing (3.3) are principal conformal Killing-Yano tensors336

for p = 2, which are relevant in black hole physics. These are non-degenerate and closed p-forms,337

i.e, df = 0, and are solutions of the following equation:338

∇X f = X � ∧ ξ �, ξν = 1

n − 1
∇μ f μ

ν . (3.5)

Here, the vector ξμ satisfies the following equation:339

ξ(μ;ν) = − 1

n − 2
Rλ(μ fν)

λ,

with Rλμ the Ricci tensor of the background. It follows that for Ricci-flat or Einstein spaces this340

vector will be Killing. These tensors were considered in Ref. 20 and it was proved in that reference341

that any space admitting a conformal and principal Killing-Yano tensor of order two is of type342

D in the generalized Petrov classification of Ref. 19. Furthermore, when the Einstein equations343

are imposed, these metrics become the Kerr-Taub-Ads family.22 Higher dimensional Killing-Yano344

tensors were considered in the context of black holes physics in Ref. 67.345

A. Quantum symmetries from Killing-Yano tensors346

In view of the results discussed in Secs. II A–II E, Killing-Yano tensors seem to be more347

fundamental than Killing tensors as they generate true symmetries for the movement of the free348

particle in a given curved background. In other words, they generate operators which commute with349

the wave operator on the curved background. An additional property, which makes them specially350

interesting, is that they also generate operators which commute with the Dirac operator for the given351

background, thus they generate quantum symmetries for spin 1/2 particles moving in the space352

time40–43 (see also Ref. 74).353

Let us assume that it is possible to define a Dirac spinor structure in the curved background.354

These spinors carry an irreducible representation of the Clifford algebra. The elements of this algebra355

are identified with forms and the following convention is adopted:356

eaeb + ebea = gab.
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With this in hand, the Dirac operator on a curved background is defined as 357

D = ea∇Xa , (3.6)

with ea a tetrad basis for the metric gab of the background. In these terms one may construct the 358

following operators acting on spinors: 359

D f = L f − (−1)p f D, (3.7)

with 360

L f = ea f ∇Xa + p

p + 1
d f − n − p

n − p + 1
d∗ f

being an operator constructed in terms of a p-form whose components are fμ1...μp . The graded 361

commutator 362

{D, D f } = DD f + (−1)p D f D,

calculated between the operators (3.7) and (3.6) is given by 363

{D, D f } = RD, R = 2(−1)p

n − p + 1
d∗ f D. (3.8)

For a Killing-Yano tensor, one has that d*f = 0 and thus R = 0. This means that there exist operator 364

for which the graded commutator with the Dirac operator is zero for every Killing-Yano tensor the 365

background admits. These properties were extensively studied for instance in Ref. 41. 366

IV. KILLING-YANO TENSORS IN STRING AND SUPERSTRING BACKGROUNDS 367

As Killing and Killing-Yano tensors are generators for hidden symmetries for the particle and 368

superparticle one may ask if there exist the analogous structures for the movement of a string or a 369

superstring in a given background. The present section deals with this problem. 370

A. Hidden symmetries for the bosonic string 371

The movement of the bosonic string is described in terms of the Polyakov action. Consider 372

a D-dimensional space time M with metric gμν a two-dimensional worldsheet � parameterized 373

by coordinates (σ 1, σ 2), and suppose that there is an embedding φ from φ: � → M such that 374

xμ = xμ(σ i). The Polyakov action is then expressed as 375

Sp = T
∫

d2�
√

hhabgμν∂a xμ∂bxν, (4.1)

where hab is a metric in the two-dimensional worldsheet �. By use of the equation of motion of hab
376

and replacing the result into (4.1), the Nambu-Goto string is obtained. By denoting σ 1 = τ , σ 2 = σ , 377

ẋμ = ∂τ xμ, and x′μ = ∂σ xμ the Nambu-Goto action reads 378

SN G = −T
∫

d2�

√
(gμν ẋμx ′ν)2 − (gμν ẋμ ẋν)(gμνx ′μx ′ν). (4.2)

The Polyakov action (4.1) is invariant under diffeomorphisms and Weyl transformations 379

hab → �2hab. The content of the theory are the bosonic coordinates xμ and the three-components 380

hab of the Riemann surface metric, which depends functionally on the two coordinates (σ 1, σ 2) 381

parameterizing the surface. 382

In order to find the general symmetries for the Polyakov action, one should consider a variation 383

δσ and δτ and field variations δhab and δxμ of the bosonic fields defined at the same point. The total 384

variation of the bosonic fields is 385

�hab = δhab + ∂i h
abδσ i , �xμ = δxμ + ∂i x

μδσ i . (4.3)
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The variation of the action (4.1) with respect to (4.3) inside a region R is given by386

δS =
∫

R
d2�

{[
δL

δxμ
− ∂a

(
δL

δ(∂a xμ)

)]
δxμ + δL

δhab
δhab

}

+
∫

R
d2� ∂a

(
δL

δ(∂a xμ)
δxμ + Lδσ a

)
. (4.4)

Explicitly this variation is387

δS =
∫

R
d2�

[
2
√

hhabgνκ,μ∂a xν∂bxκ − ∂a

(√
hhabgμν∂bxν

)]
δxμ

+
∫

R
d2�

√
h(gνκ∂a xν∂bxκ − 1

2
habhcd gνκ∂cxν∂d xκ ) δhab

+
∫

R
d2� ∂a

(√
hhabgνκ∂bxκ�xν

)
. (4.5)

The Euler Lagrange equations are obtained by considering variations that vanish on the boundary388

∂R of the region R. For Riemann surfaces, one may bring hab to a diagonal metric ηab by a conformal389

transformation. The equations of motion then are390

ηab∂a∂bxν + ηab�ν
κμ∂a xκ∂bxμ = 0, (4.6)

which generalize the geodesic equation for a two-dimensional motion. Alternatively, the last system391

of equations may be expressed as392

η11 Dẋμ

Dτ
+ η22 Dx ′μ

Dσ
= 0, (4.7)

and the conformal constraints reduce to393

gνκ (ẋνx ′κ + x ′ν ẋκ ) = 0,

394

η11gνκ ẋν ẋκ + η22gνκ x ′νx ′κ = 0. (4.8)

If instead one consider coordinate dependent variations δxμ = Kμ which do not vanish on the395

boundary and which leave the action invariant, then the vanishing of the variation (4.5) together with396

the equations of motion (4.7) imply that397

η11∂τ (ẋμKμ) + η22∂σ (x ′μKμ) = 0.

By use of the equation of motions (4.7), the last formula reduce to398

η11 ẋν ẋμ∇(ν Kμ) + η22x ′νx ′μ∇(ν Kμ) = 0. (4.9)

By comparing this with the second (4.8), it follows directly the following solution of this equation399

∇(ν Kμ) = λgμν, (4.10)

λ being an arbitrary constant. For λ = 0, the vector Kμ is Killing, otherwise it is a conformal Killing400

vector. Thus, conformal Killing vectors generate constants of motion for the Nambu-Goto string.401

In order to find generalizations of Killing tensors for the Polyakov string, one may postulate402

a symmetry transformation which depends also on the worldsheet derivatives of the background403

coordinates, that is, δxμ = Kμ(x, · x, x′). Then, by performing a Taylor-like expansion of the form404

δxμ = K μ + K μ
να ẋνx ′α + · · · , (4.11)

the vanishing of the action (4.5) gives the following system to solve:405

η11∂τ (ẋμ ẋνx ′α Kμνα) + η22∂σ (x ′μ ẋνx ′α Kμνα) = 0.
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We attempted to solve this system and unfortunately, we find it very difficult to deal with. Recall 406

that the main task is to find a geometrical object which give rise to a conserved quantity for any 407

solution of the equation of motions. But we have found that, due to the mixing of derivatives in τ and 408

σ , additional conditions on the equations of motion should be imposed in order to find conserved 409

charges. This difficulty suggest, at least to us, that in order to find a hidden symmetry for a string 410

movement, one should partially specify the way that the string evolves. For instance, one may be 411

studying a spinning or a rotating string, or other similar configurations such as a wound string, and 412

after specifying this behavior one may search for hidden symmetries. 413

To give an example about specifying the string movement let us consider again the Nambu-Goto 414

string (4.2), which can be rewritten in equivalent fashion as 415

S =
∫

σ

d2�
√− det(gμν∂a xμ∂bxν). (4.12)

When the background metric gμν admits a globally defined Killing vector field V, then one may 416

rewrite the induced metric ĝμν on M/G, with G being the orbits of the Killing vector, as follows: 417

ĝμν = gμν − ξμξν

g00
. (4.13)

If additionally, it is assumed that the string world surface is foliated by the orbits G of the Killing 418

vector,61 then the Nambu-Goto action reduce to 419

S =
∫ σ1

σ0

(
1

N
egμν(x)x ′μx ′ν + N

)
dσ, (4.14)

where the lapse function N has been introduced and which, under a reparameterization σ ′ = σ ′(σ ), 420

transforms as 421

N → N ′ = dσ

dσ ′ N . (4.15)

The behavior (4.15) insures the action (4.14) to be reparameterization invariant. Here, we have 422

denoted egμν = g00ĝμν . From here it follows that when the string world surface is foliated by the 423

orbits of a Killing vector the action reduce to a one-dimensional effective one with an induced metric 424

egμν = g00ĝμν .61 This is a particle limit, and the Killing and Killing-Yano induced metric admits will 425

generate hidden symmetries for the motion of such particle, or massless string. 426

B. Hidden symmetries for the spinning string 427

Considerations analogous to the above hold for the movement of the spinning string, whose 428

action in the conformal gauge is 429

S =
∫

dσ 2

(
1

2
ηabgμν∂a xμ∂bxν − i

2
ψ

A
ρa DψA

Dσa

)
, (4.16)

with ρa being the usual Dirac matrices in two dimensions. The action given above is supplemented 430

with the vanishing on the worldsheet of the energy momentum tensor Tab 431

Tab = gμν∂a xμ∂bxν + i

2
gμνψ

μρ(a
Dψν

Dσ b)
− ηab

2

(
gμν∂cxμ∂cxν + i

2
ψ Aρc DψA

Dσ c

)
= 0, (4.17)

and the supercharge Qa 432

Qa = 1

2
ρbρaψμ Da xμ = 0. (4.18)

In presence of a Killing vector Vμ, the induced metric on M/G is (4.13). In order to reduce the action 433

to a particle, one may assume that the spinning string movement is foliated by the orbits of the 434
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Killing vector, as done above. Also the further requirement435

Vμ∂σ xμ = 0, £V ψμ = 0, (4.19)

436
ψμVμ = g00ϒ,

ϒ being a constant spinor, implies the decomposition ψμ = ξμ + Vμϒ . Under these assumptions437

the action (4.16) reduce to S = I�τ with438

I =
∫

dσ

(
1

2
egμν ẋμ ẋν + i

2
egμνξ

μ Dξν

Dσ

)
,

with the dots denoting derivatives with respect to σ .62 The last expression is equivalent to (2.20)439

with the induced metricegμν . We have then reproduced the particle limit of the spinning string found440

in Ref. 62 and the Killing-Yano tensors, the induced metric admits will generate hidden symmetries441

for the motion of this configuration of the spinning string.442

V. KILLING-YANO TENSORS AND G-STRUCTURES443

Our next task is to investigate the presence of Killing-Yano tensors in G structures. These444

structures play an important role for constructing supergravity solutions and appear naturally when445

studying special holonomy manifolds. As is well known, the holonomy group of a metric g defined446

over an oriented n-dimensional manifold M is SO(n) or a subgroup G ∈ SO(n). The possible holonomy447

subgroups were classified by Berger in Ref. 76. The groups we will be concerned with are Spin(7),448

G2, Sp(n), Sp(n) × Sp(1), U(n), and SU(n) and it turns out that metrics with these holonomy groups449

are always Einstein or Ricci-flat. For the Ricci-flat case, the reduction of the holonomy to G is450

equivalent to the presence of a set of p-forms, which will be denoted from now as σ G
p , which are451

constructed in terms an n-bein basis ea for g and each of which is invariant under the action of G and452

also covariantly constant with respect to the Levi-Civita connection. The situation is a bit different453

for the Einstein case, as we will see below.454

To give an example, consider a 7-metric g7 = δabeb ⊗ eb with ea a 7-bein basis and a, b = 1,455

. . . , 7. Then the following three form456

φ = cabcea ∧ eb ∧ ec, (5.1)

constructed in terms of the multiplication constants cabc of the imaginary octonions, is invariant457

under a G2 rotation of the basis ea. This follows from the fact that G2 ∈ SO(7) is the automorphism458

group of the imaginary octonions. The set composed by the metric g7 and the 3-form (5.1) is called459

a G2 structure. In general, s G structure is composed by a Riemannian metric g together with a460

complete set of G invariant p-forms σ G
p . For G = G2, the additional condition ∇Xφ = 0 for an461

arbitrary vector field X implies that the parallel transport of the ea around a closed loop will induce462

a rotation e′a = Ra
b eb which leaves φ invariant. Thus, in this case the holonomy will be G2 or a463

subgroup of G2. The resulting equations are equivalent to the differential system dφ = d*φ = 0.77, 78
464

Similar consideration follows for Ricci-flat G structures. The condition ∇σ G
p = 0 will imply that465

the holonomy is reduced to G or to a smaller subgroup.466

An important tool for studying G holonomy manifolds is the torsion formalism, which is a467

method for studying obstructions for a metric g to be of G holonomy and was reviewed in Ref. 82468

(see also Ref. 102). The roots of this formalism dates, to the best of our knowledge, from the work75
469

about hypercomplex structures, and it can briefly be described as follows. The Berger holonomy470

groups G are embedded in SO(n) and this imply algebra so(n) can be represented schematically as471

so(n) = g ⊕ g⊥. For Ricci-flat holonomy groups, this induce the following decomposition of the472

Levi-Civita connection:473

∇ = ∇g + ∇g⊥ = ∇g + 1

2
T, (5.2)

the component ∇g satisfying ∇Xσ
g
p = 0. The equality (5.2) can be taken as the definition of the474

torsion tensor T i
jk , which corresponds to the component ∇g⊥

. When this tensor vanish identically475
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the holonomy is G or a smaller subgroup, as the connection ∇g will coincide with the Levi-Civita 476

connection. Heuristically, the torsion measures the failure of the holonomy for being G. 477

The torsion Tijk will play a significant role in the following discussion and it may be instructive 478

to describe it with an explicit example. Let us recall that in four dimensions the isomorphism SO(4) 479

� SU(2)L × SU(2)r induces the decomposition 6 → 3 + 3 of a Maxwell tensor Fab into self-dual 480

and anti-self dual components. Consider now the analogous for the group G = G2 discussed above. 481

An antisymmetric tensor Aab transform as the adjoint of group SO(7), which has 21 generators, 482

and the embedding of G2 into SO(7) induce the decomposition 21 → 14 + 7 of Aab, with 14 483

corresponding to the adjoint and 7 to the fundamental representation of G2. This implies that Aab 484

can be decomposed as 485

Aab = A+
ab + A−

ab, (5.3)

corresponding to 14 and 7, respectively. These components are explicitly 486

A+
ab = 2

3
(Aab + 1

4
cabcd Acd ), (5.4)

487

A−
ab = 1

3
(Aab − 1

2
cabcd Acd ). (5.5)

In particular, the spin connection ωab of a given seven-dimensional metric can be expressed as ωab 488

= (ωab)+ + (ωab)− in the same way as (5.3). This induce a decomposition of the form (5.2) for 489

the Levi-Civita connection, the torsion part being related to (ωab)− . When this component is zero, 490

then the torsion will also vanish and the holonomy will be in G2. 491

Although the torsion may be interpreted as an obstruction of the holonomy to be reduced, the 492

following detail should be remarked. Even in the case when the forms σ G
p corresponding to a G 493

structure are not covariantly constant, it may be incorrect to conclude that the holonomy is not 494

reduced. As there is a local SO(n) freedom for choosing the frame ea, it may be the case that by a 495

suitable rotation of the ea one may construct a new G structure corresponding to the same metric 496

and which, in addition, is covariantly constant. Thus, the holonomy will be G although the initial 497

structure was not preserved by the Levi-Civita connection. An useful criteria for deciding whether 498

or not a given metric is of G holonomy is the fact that metrics with reduced holonomy are always 499

Ricci-flat or Einstein. This criteria is independent on the choice of the G structure. 500

In addition to the G2 case discussed above, other well-known example of Ricci-flat manifolds 501

of reduced holonomy are hyper-Kahler ones, which encode several non-compact gravitational in- 502

stantons and also K3 surfaces. By definition a hyper-Kahler manifold is 4n dimensional and admits 503

a metric g4n whose holonomy group is in Sp(n). For these manifolds, there always exist a triplet Ji 504

(i = 1,2,3) of (1, 1) tensors with quaternion multiplication rule J iJ j = δijI + εijkJk such that the 505

metric is Hermitian with respect to any of them. The Lie algebra sp(n) of Sp(n) is generated by (1, 1) 506

tensors A of so(4n) which commute with the J i, i.e, satisfying [A, Ji] = 0. In other words, the action 507

of Sp(n) leave the tensors Ji invariant. The generalization of the discussion given in the previous 508

paragraph implies that when 509

∇X J i = 0, (5.6)

the holonomy will be included in Sp(n). The last formula together with ∇Xg = 0 imply that the Sp(n) 510

invariant 2-forms ωi(X, Y) = g(X, J iY) are also covariantly constant with respect to the Levi-Civita 511

connection. These are known as Kahler forms, and this condition implies that the metric is Kahler 512

with respect to any of the ωi. It can be shown that this system is equivalent to dωi = 0, and the ωi 513

together with the metric g4n compose the Sp(n) structure. 514

For the Einstein case, the classical examples are quaternion Kahler manifolds of dimension 515

higher than four, which are 4n > 4 dimensional manifolds endowed with a metric g4n whose 516

holonomy is in Sp(n) × Sp(1) ∈ SO(4n).79, 80 The set Ji together with the set A satisfying that [A, Ji] 517

= 0 are the generators of the Lie algebra sp(n) ⊕ sp(1), and the action of Sp(n) leave the J i invariant 518

but the action of Sp(1) mix them due to the non-trivial commutator [J i, J j] = εijkJk. As a result, 519
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if the condition520

∇X J i = εi
jk J j

eωk
−, ∇Xωi = εi

jkω
j
eωk

−, (5.7)

then the manifold will have holonomy in Sp(n) × Sp(1). Here,eωk
− is the Sp(1) part of the connection.521

In different way than for hyper-Kahler manifolds, in the quaternionic case the triplet of 2-forms ωi522

are not covariantly constant. Still their specific behavior (5.7) imply a reduction of the holonomy523

from SO(4n) to Sp(n) × Sp(1). Alternatively, it may be shown that the condition for being quaternion524

Kahler imply that525

dωi = εi
jkω

j ∧eωk
−, d� = 0, (5.8)

where the 4-form � = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3 has been introduced. The Sp(n) × Sp(1)526

structure is composed by the metric, the three 2-forms ωi and the 4-form �.527

A. A check of the Papadopoulos list528

The present subsection deals with the problem of classifying which G structures do admit some529

of their G invariant p-forms σ G
p as Killing-Yano tensors. This was investigated already in Ref. 73530

with G being the Berger groups. The purpose of the present section is to reproduce by use of the531

torsion languages developed in Refs. 82–92. The Killing-Yano condition (3.2) is translated for σ G
p532

as533

∇Xσ g
p = 1

p + 1
iX dσ g

p . (5.9)

All the forms σ
g
p composing a Ricci-flat structure are Killing-Yano, as both the left and the right534

hand side vanish identically. Our task is to find non-trivial examples, when possible. The left hand535

side of the last equation involves the torsion T i
jk introduced (5.2). The right hand is also determined536

in terms of T k
i j by the well-known formula537

d
 = 1

(p − 1)!
∇[μ1
μ2...μp]dx1 ∧ . . . ∧ dx p, (5.10)

together with (5.2). Therefore, the Killing-Yano equation is essentially reduced to a constraint for538

the torsion. The interesting point is that several solutions for these constraints involve structures539

which are relevant for constructing supergravity solutions with conformal field theory duals. The540

task to find hidden symmetries in these structures is therefore of theoretical interest.541

1. Kahler and Calabi-Yau structures542

Consider first U(n) structures, which are defined in d = 2n dimensions.86 These are composed543

by a 2n-dimensional metric g defined over a manifold M2n and an almost complex structure J. The544

last is an automorphism of the cotangent space satisfying the complex imaginary unit multiplication545

rule J2 = − I2n × 2n, and the metric g is assumed to be Hermitian with respect to it. The Hermiticity546

condition means that the tensor ω(X, Y) = g(X, J, Y) is a 2-form, commonly known as almost Kahler547

form. The Nijenhuis tensor corresponding to J may be expressed as548

N ρ
μν = J λ

μ(∂λ J ρ
ν − ∂ν J ρ

λ ) − J λ
ν (∂λ J ρ

μ − ∂μ J ρ
λ ), (5.11)

and the vanishing of this tensor implies that M2n is complex with respect to J. If in addition there549

exists a connection ∇u(n) with torsion for which ∇u(n)g = ∇u(n)J = 0, then the Nijenhuis tensor may550

be expressed entirely in terms of J and the torsion. This condition is explicitly551

∇u(n)
μ J ρ

ν = ∂μ J ρ
ν + γ

ρ
λμ J λ

ν − γ λ
νμ J ρ

λ = 0, (5.12)

with γ ρ
μν defined in terms of the Christoffel symbols �ρ

μν and the torsion T ρ
μν as follows:552

γ ρ
μν = �ρ

μν − 1

2
T ρ

μν. (5.13)
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From (5.12) and (5.13), it follows that (5.11) can be expressed as 553

N ρ
μν = T ρ

μν − J λ
μ J σ

ν T ρ
λσ + (J λ

μT σ
λν − J λ

ν T σ
λμ)J ρ

σ , (5.14)

which express the Nijenhuis tensor entirely in terms of the torsion and the almost complex structure. 554

The decomposition so(2n) = u(n) ⊕ u(n)⊥ induce a decomposition of the space 
2 of 2-forms on 555

M2n as 556

1

2
2n(2n − 1) −→ n2 ⊕ 1

2
n(n − 1) ⊕ 1

2
n(n − 1). (5.15)

This can be expressed as 
2 = 
(1, 1) ⊕ 
(2, 0) + (0, 2). Denote as ϒ ijk the following covariant 557

derivatives: 558

∇iω jk = ϒi, jk . (5.16)

The torsion belongs to T*M ⊗ u(n)⊥ and by representing the cotangent space as T*M = T*(1, 0)
559

M ⊕ T*(0, 1)M and taking into account (5.15), it follows that the non-zero covariant derivatives are 560

ϒα,βγ , ϒα,βγ , ϒα,βγ , ϒα,βγ . (5.17)

These components can be divided into four irreducible representations Wi with i = 1, . . . , 4 of 561

T*M ⊗ u(n)⊥ on u(n) given by Ref. 129, 562

(W1)αβγ = ϒ[α,βγ ], (W2)αβγ = ϒα,βγ − ϒ[α,βγ ]

563

(W3)αβγ = ϒα,βγ − 2

n − 1
ϒμ,

μ

[γ gβ]α, (W4)γ = ϒμ,μγ . (5.18)

The component W3 is traceless. 564

For SU(n) structures one has, in addition to the Kahler form ω, an invariant (n, 0) form � whose 565

square is proportional to the volume form of g, namely, 566

(−1)
n(n−1)

2

(
i

2

)n

� ∧ � = 1

n!
ωn = dvol(g). (5.19)

The additional covariant derivative 567

∇α�βγ δρ = (W5)αβγ δρ, (5.20)

determines a new class W5. 568

The SU(3) case is of particular importance in the context of compactifications of II supergravity 569

down to four dimensions. These structures are classified as follows. As the components of the 570

Nijenhuis tensor are expressed entirely in terms W1 and W2, when these torsion components are 571

zero the manifold is complex. Particular subcases are structures for which the unique non-vanishing 572

classes are W3 and W5 which are known as balanced. When W3 is the unique non-vanishing torsion 573

the structure is known as special Hermitian, while when W5 is the only non-vanishing component 574

the structure is Kahler. Other important examples are those for which ∂∂ J = 0 and dJ �= 0 which 575

are known as strong Kahler structures. If instead W1 or W2 are not zero, then the manifold is non- 576

complex. When W1 is the unique non-zero component, the manifold is known as nearly Kahler. 577

When W2 is the unique non-zero component, then the manifold is known as almost Kahler. Finally, 578

when the torsion belongs to W −
1 ⊕ W −

2 ⊕ W3 the manifold is known as half flat. 579

The torsion classes Wi not only determine the covariant derivatives of ω(X, Y) and of �, but 580

also their differentials dω and d�.91 This follows from the elementary formula (5.10) and the final 581

result for SU(n) structures may be schematically stated as 582

W1 ←→ dω(3,0) + dω(0,3),

583W3 + W4 ←→ dω(2,1) + dω(1,2),

584W1 + W2 ←→ d�(n−1,2) + d�(2,n−1), (5.21)

585W4 + W5 ←→ d�(n,1) + d�(1,n).
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For example, the first (5.21) is explicitly586

dω(3,0) + dω(0,3) = 3W1. (5.22)

By comparing this formula with the first (5.18), it follows easily that when W2 = W3 = W4 = W5587

= 0 one has that588

∇Xω = 1

3
iX dω, (5.23)

and this implies that for these types of manifolds the almost Kahler form ω is a Killing-Yano tensor.589

As it was discussed above, structures with these types of torsion are nearly Kahler.83 These manifolds590

are characterized by the condition ∇XJ(X) = 0 and some applications in physics can be found in591

Refs. 93–95. Additionally, the last (5.21) together with the definition (5.20) shows that when592

W4 = W5 = 0 the components �(n, 1) and �(1, n) are covariantly constant, thus Killing-Yano. These593

structures are balanced and Hermitian.594

2. Quaternion Kahler and hyper-Kahler structures595

The next structures we would like to consider are Sp(n) × Sp(1) ones, which are known as596

quaternion Kahler. In this case, the p-forms defining the structure are the triplet of almost Kahler597

2-forms ωi together with the 4-form598

� = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3. (5.24)

For these structures, there exist an useful formula derived in the Proposition 4.3 of Ref. 87 which599

relate the covariant derivatives of the almost Kahler forms ωi with their differentials. The explicit600

form of this formula is601

∇Xω1(Y, Z ) = dω1(X, Y, Z ) − dω1(X, J 1Y, J 1 Z ) + dω2(J 2 X, Y, Z ) + dω2(J 2 X, J 1Y, Z )

+ dω2(J 2 X, Y, J 1 Z ) + dω3(J 2 X, Y, Z ) − dω3(J 2 X, J 1Y, J 1 Z ), (5.25)

and the analogous formula holds for cyclic permuted indices. Clearly, if ω1 is required to be Killing-602

Yano, then (5.9) implies that dω2 = dω3 = 0. Furthermore, 3dω1(X, J1Y, J1Z) = − 2dω(X, Y, Z).603

But if two of the almost Kahler form are required to be simultaneously Killing-Yano, then the same604

analysis shows that dω1 = dω2 = dω3. Therefore, if these forms are Killing-Yano then the metric is605

hyper-Kahler and thus the holonomy is Sp(n) or even a smaller subgroup. In addition, the covariant606

derivatives of the 4-form (5.24) can be calculated by direct use of (5.25), the result is given in the607

formula (5.1) of Ref. 88608

∇� = 2εi jkα[k j] ∧ ωi . (5.26)

In formula (5.26), the tensor αkj has been introduced, and is explicitly609

αk j (X, Y, Z ) = αk(X, J j Y, Z ), (5.27)

with610

αi = −λi ⊗ g + εi jk

4

(
∇ωk(·, J j ·, ·) − ∇ωk(·, ·, J j ·)

)
.

In the last formula, the 1-forms λi are expressed as611

λ1(X ) = 1

2n
< ∇Xω2, ω3 >,

up to cyclic permutations. We see from (5.26) that � is a Killing-Yano tensor when � is covariantly612

constant. Thus, the metric is quaternion Kahler for this to be the case.613

3. Spin(7) structures614

Other structures with particular physical interest are the Spin(7) structures.90 These are defined615

on eight-dimensional manifolds with metric g8 = δabea ⊗ eb. The holonomy will be in Spin(7) if the616
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following octonionic form 617

� = e8 ∧ φ + ∗7φ (5.28)

is closed. Here, φ = cabcea ∧ eb ∧ ec and cabc are the multiplication constants of the imaginary 618

octonions. This form satisfy the self-duality condition ∗� = �. In addition, we have that 619

d� = θ ∧ � + W1, (5.29)

that is the differential of � has a part which is proportional to � and a part W1 which is not. The 620

form θ is known as the Lee form. The covariant derivative of the fundamental 4-form is 621

∇m�i jkl = Tmipg pq�q jkl + Tmjpg pq�iqkl + Tmkpg pq� j iql + Tmlpg pq� jklq , (5.30)

with T given by 622

T = − ∗ d� − 7

6
∗ (θ ∧ �). (5.31)

By checking explicitly the condition (5.9) in this situation, we were able to find a solution only when 623

d� = ∇� = 0. This corresponds to manifolds with holonomy in Spin(7). 624

4. G2 structures 625

Let us now analyze the presence of Killing-Yano tensors on G2 structures (φ, ∗φ).84, 89 In this 626

case, one may find non-trivial examples, as it will be seen below. The torsion classes τ i for the 627

differential are given by91
628

dφ = τ0 ∗ φ + 3τ1 ∧ φ + ∗τ2, (5.32)

629

d ∗ φ = 4τ1 ∧ ∗φ + ∗τ3.

When the torsion classes vanish, the holonomy will be G2 or a subgroup of G2. The covariant 630

derivative of the 3-form can be expressed as92
631

∇lφabc = Tlm gmn(∗φ)nabc, (5.33)

with the torsion tensor given by 632

Tlm = τ0

4
glm − (τ3)lm + (τ1)lm − (τ2)lm . (5.34)

The Killing-Yano condition 4∇Xφ = iXdφ implies iX∇Xφ = 0. This together with (5.33) and (5.34) 633

show that for φ being a Killing-Yano tensor only a non-zero τ 0 component is allowed. These 634

structures are known as nearly parallel. Thus, for every nearly parallel G2 structure the octonionic 635

3-form φ is a non-trivial Killing-Yano tensor of order three. 636

B. Further examples 637

1. Almost contact structures 638

The calculations performed above show the validity of the Papadopoulos list for Killing-Yano 639

tensors in G structures of the Berger type. Below we will focus on cases which are not of this type, 640

and which consequently do not appear in the Papadopoulos list. This is the case for the almost 641

contact structures. 642

Almost contact structures are defined in d = 2n + 1 dimensions114 and are intimately ligated to 643

almost Kahler structures in dimension d = 2n + 2. In fact, the cone of an almost contact structure 644

defines an almost Kahler structure and when the structure is Kahler the almost contact structure 645

is known as Sasakian. Sasakian structures are reviewed for instance in Refs. 96–101. When the 646

Kahler cone metric is Ricci-flat, thus Calabi-Yau, then the odd dimensional metric is known as 647

Einstein-Sasaki. 648

In formal terms, an almost contact structure is a U(n) × 1 ∈ SO(2n + 1) structure. It is 649

composed by a metric g2n + 1 defined over a space M2n + 1 together with a selected vector field 650
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ξ ∈ TM2n + 1 whose dual form will be denoted as η ∈ T*M2n + 1, and a morphism φ: TM2n + 1651

→ TM2n + 1 satisfying the conditions652

g2n+1(φX, φY ) = g2n+1(X, Y ) − η(X ) ⊗ η(Y ),

653

φ2 = −I + η ⊗ ξ. (5.35)

The fundamental form for this structure is � = g2n + 1(X, φY). The cone over an almost contact654

structure,655

g2n+2 = dr2 + r2g2n+1, (5.36)

is defined over M2n + 2 = R>0 × M2n + 1. This manifold admits an almost complex structure J656

described by the following actions:657

J∂r = −1

r
ξ, J X = φX + rη(X )∂r . (5.37)

By decomposing a vector field eX ∈ R>0 × M2n+1 into a radial and angular part as eX = (a, X ), it is658

found from (5.35) and (5.37) that the action of the almost complex structure over eX is659

J (a, X ) = (rη(X ), φX − a

r
ξ ). (5.38)

The lifted Levi-Civita connection e∇ over the cone is defined through660

e∇∂r ∂r = 0, e∇X∂r = e∇∂r X = X

r
,

661
e∇X Y = ∇X Y − rg(X, Y )∂r . (5.39)

Here, ∇ is the Levi-Civita connection for the metric g2n + 1 of the almost contact structure. From662

(5.39) and (5.37), it is deduced that663

(e∇∂r J )∂r = (0, 0), (e∇∂r )X = (0, 0),

664

(∇X J )∂r = (0,
1

r
(−∇Xξ + φX )), (5.40)

665
(e∇X J )Y = (r∇Xη(Y ) − rg2n+1(X, φY ), (∇Xφ)Y − g2n+1(X, Y )ξ + η(Y )X ).

The Kahler condition is equivalent to the vanishing of all the covariant derivatives (5.40) and this666

holds when667

∇Xξ = φX,

668 ∇Xη(Y ) = g2n+1(X, φY ), (5.41)

669
(∇Xφ)Y = g2n+1(X, Y )ξ − η(Y )X.

The last three conditions define a Sasakian structure. Alternatively, the second (5.41) implies that ξ670

is Killing and the first and the third ones may combine to obtain671

∇X (dη) = −2X∗ ∧ η. (5.42)

This equation implies in particular that d*dη = (n − 1)η and, by taking this into account, it follows672

that (5.42) can be expressed as673

∇X (dη) = − 1

n − 1
X∗ ∧ d∗dη. (5.43)

Since dη is closed the last equation shows that dη is a conformal Killing tensor.126 This, together674

with the fact that η is also a conformal Killing 1-form, implies that the combinations675

ωk = η ∧ (dη)k, (5.44)

are all Killing tensors of order 2k + 1.126
676
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There exist other almost contact structures, different from Sasaki ones, which also admit Killing- 677

Yano tensors. Generic almost contact structures are characterized by the irreducible components of 678

the covariant derivative ∇� of the fundamental form.103, 104 In representation theoretical terms this 679

derivative belongs to T*M ⊗ u(n)⊥. One may decompose the cotangent space as 680

T ∗M = Rη + η⊥, (5.45)

from where it follows that 681

so(2n + 1) � 
2T ∗M = 
2η⊥ + η⊥ ∧ Rη

= u(n) + u(n)⊥|ξ⊥ + η⊥ ∧ Rη. (5.46)

From (5.46), it is obtained that 682

u(n)⊥ = u(n)⊥|ξ⊥ + η⊥ ∧ Rη. (5.47)

Therefore, the covariant derivative ∇� belongs to 683

∇� ∈ T ∗M ⊗ u(n)⊥ = η⊥ ⊗ u(n)⊥|ξ⊥ + η ⊗ u(n)⊥|ξ⊥

+η⊥ ⊗ η⊥ ∧ η + η ⊗ η⊥ ∧ η. (5.48)

The respective components are 684

∇iφ jk, ∇mφ jk, ∇iφmk, ∇mφmk, (5.49)

with the indices i, j, k corresponding to the η⊥ directions and m to the η direction. But these 685

components are not irreducible, and in fact it was shown in Refs. 103 and 104 that there is a further 686

decomposition into 12 irreducible classes given schematically as 687

η⊥ ⊗ u(n)⊥|ξ⊥ = C1 + C2 + C3 + C4,

688
η⊥ ⊗ η⊥ ∧ η = C5 + C6 + C7 + C8 + C9 + C10,

689
η ⊗ u(n)⊥|ξ⊥ = C11, η ⊗ η⊥ ∧ η = C12. (5.50)

More precisely, the space C(V) of 3-form tensors with the same symmetries of ∇� is 690

C(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (x, z, y) = −T (x, φy, φz) + η(y)T (x, ξ, z) + η(z)T (x, y, ξ )},
and can be decomposed as 691

C(V ) =
12⊕

i=1

Ci (V ),

with the irreducible components Ci(V) given by 692

C1(V ) = {T ∈ C(V ) | T (x, x, y) = −T (x, y, ξ ) = 0},
693

C2(V ) = {T ∈ C(V ) | T (x, y, z) + T (y, z, x) + T (z, x, y) = 0, T (x, y, ξ ) = 0},
694

C3(V ) = {T ∈ ⊗3V | T (x, y, z) = T (φx, φy, z),
∑

c12T (x) = 0},
695

C4(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n − 1

[
(g(x, y) − η(x)η(y))c12T (z)

− 1

2n − 1
(g(x, z) − η(x)η(z))c12T (y) − g(x, φy)c12T (φz)

+g(x, φz)c12T (φy)

]
, c12T (ξ ) = 0},
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696

C5(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n

[
g(x, φz)η(y)c12T (φξ ) − g(x, φy)η(z)c12T (φξ )

]
},

697

C6(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n

[
g(x, y)η(z)c12T (ξ ) − g(x, z)η(y)c12T (φξ )

]
},

698

C7(V ) = {T ∈ ⊗3V | T (x, y, z) = T (y, x, ξ )η(z) − T (φx, φz, ξ )η(y), c12T (ξ ) = 0},
699

C8(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (y, x, ξ )η(z) − T (φx, φz, ξ )η(y), c12T (ξ ) = 0},
700

C9(V ) = {T ∈ ⊗3V | T (x, y, z) = T (y, x, ξ )η(z) + T (φx, φz, ξ )η(y)},
701

C10(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (y, x, ξ )η(z) + T (φx, φz, ξ )η(y)},
702

C11(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (ξ, φy, φz)η(x)},
703

C12(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (ξ, ξ, z)η(x)η(y) − T (ξ, y, ξ )η(x)η(z)},
where the following quantities704

c12T (x) =
∑

T (ei , ei , x),

705

c12T (x) =
∑

T (ei , φei , x),

have been introduced, with ei an arbitrary orthonormal basis.706

It should be remarked that some of the classes Ci may vanish for lower enough dimensions. For707

n = 1, the covariant derivative ∇� belongs to C5 ⊕ C6 ⊕ C9 ⊕ C12. The case n = 2 corresponds to708

the structures studied in Refs. 120 and 121, and for this dimension almost contact structures belongs709

to C2 ⊕ C4 ⊕ C6 ⊕ C8 ⊕ C10 ⊕ C12. Only for n ≥ 3 all the classes may not vanish.710

The classification of the structures goes as follows. When all the classes vanish the structure711

is known as cosympletic, C1 structures are nearly K-cosympletic, C5 are α-Kenmotsu manifolds,712

C6 are α-Sasakian and in particular, Sasakian structures belong to this class. Other structures are713

C5 ⊕ C6 which are known as trans-Sasakian, C2 ⊕ C9 which are almost cosympletic, C6 ⊕ C7 which714

are quasi-Sasakian, C1 ⊕ C5 ⊕ C6 which are nearly trans-Sasakian and C1 ⊕ C2 ⊕ C9 ⊕ C10 which715

are quasi K-cosympletic and C3 ⊕ C4 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 which are normal ones. Properties of716

these structures may be found in Refs. 105 and 106 and references therein.717

The class for which � is Killing-Yano is the one for which ∇� is totally antisymmetric, and718

this is the case when the unique non-vanishing class is C1. Therefore, for nearly K-cosympletic719

structures are the ones for which the fundamental form � is a Killing-Yano tensor of order two.720

These structures are characterized by the condition ∇XφX = 0, i.e, ∇XφY + ∇YφX = 0. Properties721

of these structures were studied for instance in Refs. 107–113.722

2. SO(3) structures in SO(5) and higher dimensional generalizations723

Let us consider now SO(3) structures in five dimensions. Given a five-dimensional manifold M5724

with a metric g5 an SO(3) structure is the reduction of the frame bundle to a SO(3) sitting in SO(5).115
725

One has the decomposition so(5) = so(3) ⊕ V with V the unique seven-dimensional fundamental726

representation of so(3). The space R5 is isomorphic to space of 3 × 3 symmetric traceless matrices727

S2
0 R3, the isomorphism can be expressed by means of the mapping728

(x1, x2, x3, x4, x5) ←→ X =
( x1√

3
− x4 x2 x3

x2
x1√

3
+ x4 x5

x3 x5 − 2x1√
3

)
. (5.51)
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These matrices define the unique irreducible representation ρ of SO(3) in R5 given as follows: 729

ρ(h)X = h Xh−1, h ∈ SO(3). (5.52)

For an element X, its characteristic polynomial PX(λ) invariant under the action of ρ, i.e, Pρ(h)X(λ) 730

= PX(λ), is given by 731

PX (λ) = det(X − λI ) = −λ3 + g(X, X )λ + 2
√

3

9
ϒ(X, X, X ), (5.53)

with 732

g(X, X ) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ,

733

ϒ(X, X, X ) = 3
√

3

2
det X = x1

2
(6x2

1 + 6x2
2 − 2x2

3 − 3x2
4 − 3x2

5 ) + 3
√

3x4

2
(x2

5 − x2
3 ) + 3

√
3x2x3x5.

By introducing a 3-tensor ϒ ijk by the relation ϒ(X, X, X) = ϒ ijkxixjxk, it follows that 734

ϒi jk = ϒ(i jk),

735

ϒi j j = 0, (5.54)

736

ϒ jkiϒlni + ϒl j iϒkni + ϒkliϒ jni = g jk gln + gl j gkn + gkl g jn,

where the tensor gij is defined through the relation g(X, X) = gijxixj. In these terms for a given 737

manifold M5 with a metric g5, an SO(3) structure is given in terms of a tensor ϒ of rank three for 738

which the associated linear map constructed in terms of Z ∈ TM5 given by 739

ϒi j = (ϒk
i j Zk) ∈ End(T M5),

satisfying the following conditions: 740

T r (ϒZ ) = 0,

741

g(X, ϒZ Y ) = g(Z , ϒY X ) = g(Y, ϒX Z ), (5.55)

742

ϒ2
Z Z = g(Z , Z )Z .

There always exist a basis ea such that 743

g5(X, X ) = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4 + e5 ⊗ e5, (5.56)

which is defined up to an SO(3) transformationeea = ρ(h)ea , and such that 744

ϒ = e1

2
⊗ (6e1 ⊗ e1 + 6e2 ⊗ e2 − 2e3 ⊗ e3 − 3e4 ⊗ e4 − 3e5 ⊗ e5)

+3
√

3e4

2
⊗ (e5 ⊗ e5 − e3 ⊗ e3) + 3

√
3e2 ⊗ e3 ⊗ e5.

This defines a SO(3) structure over (M5, g5). 745

The types of possible SO(3) structures are defined in terms of the covariant derivative of ϒ ijk. The 746

situation is different from the other G structures considered above, as this tensor is totally symmetric, 747

and one may try to study in which situations ϒ ijk is a Killing tensor instead a Killing-Yano one. The 748

Killing condition ∇(iϒ jkl) can be rewritten as 749

∇Xϒ(X, X, X ) = 0. (5.57)

Fortunately, structures satisfying this condition have been considered in Refs. 116 and 117 and we 750

can just borrow the description from that references. The condition (5.57) resembles the nearly 751

Kahler one ∇XJ(X) = 0, and for this reason SO(3) structures satisfying this condition are known as 752
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nearly integrable in the terminology of Refs. 116 and 117. For example, there exist only three nearly753

integrable structures with eight-dimensional symmetry groups754

M+ = SU (3)/SO(3), M0 = (SO(3) ×ρ R5)/SO(3), M− = SL(3, R)/SO(3).

Further examples with the symmetry and lower dimensional groups were found in Refs. 116 and755

117 and on five-dimensional Lie groups in Ref. 119.756

In addition to these examples, it was shown in Ref. 118 that tensors satisfying the conditions757

(5.54) exist in distinguished dimensions nk = 3k + 2, where k = 1, 2, 4, 8, as observed also758

by Bryant. The numbers k = 1, 2, 4, 8 are the dimensions of the division algebras and in these759

dimensions the orthogonal group may be reduced to the subgroups Hk ⊂ SO(nk), with H1 = SO(3),760

H2 = SU(3), H4 = Sp(3), and H8 = F4. Nearly, integrable geometries can be defined in all these761

dimensions by the condition (5.57) and it turns out that for all these geometries ϒ is a Killing tensor.762

Examples of these geometries can be found in Ref. 118.763

VI. DISCUSSION764

In the present work, some of the applications of Killing-Yano tensors in general relativity and765

supersymmetric quantum field theory have been reviewed. Additionally, the Papadopoulos list of G766

structures whose G invariant tensors are Killing-Yano has been reproduced and enlarged to cases767

which do not appear in the Berger list. It should be remarked that the results presented here about G768

structures do not consist in a no go theorem. For instance, we have shown that between the SU(3)769

structures, the nearly Kahler are the ones for which their almost Kahler 2-form is Killing-Yano. But770

this does not imply the absence of Killing-Yano for other SU(3) structures. In fact, the presence of771

Killing-Yano tensors in half-flat manifolds, which are outside this classification, are under current772

investigation.122 What the present work is showing is that for these other structures the presence of773

a Killing-Yano tensor may be a special situation, while for the nearly Kahler case the presence of774

hidden symmetries is something generic. The same considerations hold for the other G structures775

studied.776

The presence of these hidden symmetries in these structures can be of interest in the AdS/CFT777

correspondence. For instance, we have shown that nearly Kahler, weak G2 holonomy or Einstein-778

Sasaki manifolds do admit non-trivial Killing-Yano tensors. The cones over these manifolds779

are Ricci-flat and of holonomy G2, Spin(7) and SU(3) holonomy, respectively, and from these780

manifolds one may construct ten-dimensional supergravity solutions whose near horizon lim-781

its are the form AdS3 × (weak G2), AdS4 × (nearly Kahler), and AdS5 × (Einstein-Sasaki). In782

some regimes, certain anomalous dimensions of the dual quantum field theories may be calcu-783

lated by studying strings configuration over these backgrounds. The energy and the conserved784

quantities for the movement of these strings give information about the anomalous dimensions785

of the dual theory. It is even possible to draw conclusions about the dual theory by studying786

particle limits of that string. For example, in Ref. 123 anomalous long Bogomoln’yi-Prasad-787

Sommerfeld (BPS) operators are matched to massless point-like strings in AdS5 backgrounds788

with the Einstein-Sasaki spaces found in Ref. 124 as internal spaces, and the conserved charges789

for that particle-like movement gives information about the anomalous dimensions of that oper-790

ators. Thus, the presence of hidden symmetries in these backgrounds is of theoretical interest,791

and it may be an interesting task to understand to which quantum numbers of the dual theory792

these Killing-Yano tensors are matched with. Several of these are W-symmetries, as pointed out in793

Ref. 73, but a more concrete description still is desirable.794

Another interesting task could be to understand more deeply whether or not the relation between795

the algebraic type of the curvature for a given space time and the presence of hidden symmetries,796

which is known for Killing-Yano tensors of order two in four dimensions, can be generalized to797

higher dimensions and for tensors of higher rank. In our opinion, these tasks are of theoretical interest798

and deserve further attention.799
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