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We construct static codimension-two branes in any odd dimension D, with a negative cosmological

constant, and show that they are exact solutions of Chern-Simons (super)gravity theory for (super)AdSD
coupled to external sources. The stability of these solutions is analyzed by counting the number of

preserved supersymmetries. It is shown that static massive (D� 3)-branes are unstable unless some

suitable gauge fields are added and the brane is extremal. In particular, in three dimensions, a 0-brane is

recognized as the negative mass counterpart of the Bañados-Teitelboim-Zanelli black hole. For these 0-

branes, we write explicitly magnetically charged Bogomol’nyi-Prasad-Sommerfield states with various

numbers of preserved supersymmetries within the OSpðp j 2Þ �OSpðq j 2Þ supergroups. In five dimen-

sions, we prove that stable 2-branes with magnetic charge always exist for the generic supergroup

SUð2; 4 j NÞ, where N � 4. For the special case N ¼ 4, in which Chern-Simons supergravity requires the

addition of a nontrivial gauge field configuration in order to preserve the maximal number of degrees of

freedom, we show for two different static 2-branes that they are Bogomol’nyi-Prasad-Sommerfield states

(one of which is the ground state), and from the corresponding algebra of charges we show that the energy

is bounded from below. In higher dimensions, our results admit a straightforward generalization, although

there are presumably more solutions corresponding to different intersections of the elementary objects.
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I. INTRODUCTION

Strings, membranes, and higher-dimensional branes, in
general, are extended objects that generalize the notion of a
classical point particle. They are localized objects whose
history traces a timelike worldvolume embedded in an
ambient spacetime. Although those worldhistories are
sets of measure zero, they constitute topological obstruc-
tions in spacetime. Their presence leads to a nontrivial
classification for the topology of loops and other closed
surfaces in spacetime.

These worldhistories are also naked singularities, not
surrounded by horizons that prevent an external observer
from accessing them. In general relativity, naked singular-
ities are often viewed as unphysical solutions that typically
violate some basic laws of physics, from which anything
can emerge [1]. It has been suggested that nature should
prevent the existence of naked singularities through a built-
in mechanism inherent to gravitation theory: cosmic
censorship.

The simplest example of a naked singularity is the static
black hole of mass M< 0. More generally, rotating black
holes with angular momentum J and charge Q exhibit

naked singularities if M<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þQ2

p
. Even though a gen-

eral proof of the cosmic censorship conjecture has not been
given, some supporting evidence for it can be presented. It
is a simple exercise to show that a static, electrically
charged extremal black hole (jMj ¼ jQj) repels a charged
particle whose charge (q) is larger than its mass (m), a
mechanism which precludes a charged black hole from
becoming overcharged and naked [2,3]. Other experiments
provide convincing evidence that nonextremal naked sin-
gularities are generically unstable under linearized pertur-
bations [4]: a small localized perturbation around a naked
singularity grows exponentially in finite time in the line-
arized approximation for generic initial data.
There is, however, a class of naked singularities that

does not give rise to unphysical situations. This was origi-
nally discussed in the context of asymptotically AdS3
spacetimes [5], where it is well known that nonsingular
matter can collapse to a naked singularity [6,7]. The ge-
ometry in this case is produced by identifying points in the
maximally symmetric manifold M that are connected by
(the exponential action of) a Killing vector �. The identi-
fication involves an operation of cutting and removing a
portion of the manifold and sewing it back along identified

lines. The resulting quotient space ~M ¼ M=� is generi-
cally a new manifold with the same local geometry but
different topology. Additionally, if the Killing vector field
leaves fixed points, a singularity is introduced where the
norm of the Killing vector vanishes, ���� ¼ 0. This van-

ishing can be interpreted in different ways. If the Killing
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vector is spacelike, ���� > 0, a fixed point produces a

conical singularity; if ���� < 0, a fixed point would gen-

erate closed timelike curves, as in the case of the 2þ 1
black hole, where the region ���� < 0 corresponds to

r2 < 0 [8,9].
A naked singularity produced by identification in a

manifold of constant curvature does not produce a region
where the curvature grows infinitely, as in the curvature
singularity near r ¼ 0 in a four-dimensional
Schwarzschild black hole. This means that the conical or
causal singularities generated in this form are not infinite
sources of energy that could emit unbounded amounts of
energy and paradoxes. Perhaps the most clear example of
the physical relevance of conical singularities is in flat 2þ
1 spacetime, as first shown in [10]. In fact, a conical
singularity cannot be revealed by the local features of the
geometry, and only when one takes a vector on a parallel
tour around it, something funny happens at the apex of the
cone: a finite rotation—equal to the angular deficit that
produced the cone. The apex of the cone is not properly a
point of the manifold, and its removal changes the topology
from R2 to R2nf0g. From the point of view of a physicist
living in the vicinity of a conical singularity in an otherwise
flat space, it is more useful to describe the conical singu-
larity by saying that the curvature of its manifold has a
deltalike singularity, R1

2 ¼ 2���ðx; yÞdx ^ dy, where the
angular deficit is 2��. The advantage of this notation is
that it indicates the rotation angle that a vector picks up by
parallel transport around the apex. The disadvantage is that
it generates the impression that r ¼ 0 is a point of the
manifold where the � has support. The equivalence of
these two points of view was emphasized long ago by
Wheeler, who showed that a multiply connected spacetime
(wormhole) could support a divergence-free electric field
which, for a far away observer, would seem to be produced
by an electric charge, a phenomenon dubbed byWheeler as
‘‘charge without charge’’ [11]. Similar ideas of topological
structures that mimic particle features have been discussed
in different geometrical settings [12], and possibly go back
to the middle of the last century [13].

The construction outlined above has an essential feature
that will be exploited here. Since the identification by a
Killing vector does not change the intrinsic geometry of a
manifold, the metric properties in M are the same as in
~M ¼ M=�, except at the isolated fixed points of �. In the
cases under study here,M is the anti-de Sitter (AdS) space
and Jab ¼ xa@b � xb@a is a spacelike Killing vector in the
embedding flat space that takes the (xa-xb) plane onto
itself, leaving fixed the codimension-two space defined
by xa ¼ xb ¼ 0. This set of fixed points of the Killing
vector corresponds to the worldvolume spanned by a
(D� 3)-brane as it evolves in time in the ambient AdSD
spacetime. The procedure could be repeated an arbitrary
number of times, leaving additional fixed points in the
(xa-xb) plane. Each additional deficit produces a cone at

a fixed point, with the only restriction that the sum of all
angular deficits is bounded in terms of the topology and
open/closed nature of the manifold. For instance, in a ð2þ
1Þ-dimensional Lorentzian manifold admitting an open
spacelike slicing, it should not exceed 2� [5].
These defect singularities are not very different from an

ordinary boundary or membrane, where the manifold is
discontinuous. In all these cases, the singularities are to-
pological obstructions and not features revealed by the
local geometry. On the other hand, boundaries, branes,
and topological singularities, in general, play another role
in physics: these are the places that contain matter sources.
Point charges, conductors, strings, and matter distributions
are usually depicted as submanifolds in space that evolve
as submanifolds of spacetime. Their role is to bring in
interactions into otherwise free (or self-interacting) classi-
cal field theories. In quantum theory the idealized sources
are probes to test the response of the theory to perturba-
tions and therefore furnish a tool to set up a perturbative
expansion to extract physically observable information.
There is a class of theories where these ideas turn out to

be particularly relevant. These are the so-called Chern-
Simons (super)gravities, a special class of gauge theories
whose dynamics are entirely given in terms of a gauge
connection A [14]. The addition of extended objects in
these theories was considered a decade ago [15,16].
However, including interactions of these with the original
connection has been tougher than expected. It is worth
mentioning that an approach has been considered where
the extended p-branes are coupled to differential forms and
their interaction is given by topological phases produced
by their exchange [17,18]. There are two problems related
to branes in Chern-Simons (CS) theories. The first is how
to couple them in a natural way so that the dynamics is still
given in terms of the connection A and some external
current. The second problem has to do with the stability
of these structures. One way to ensure stability is by
making these branes Bogomol’nyi-Prasad-Sommerfield
(BPS) states, that is, configurations that admit globally
defined covariantly constant spinors, also called Killing
spinors.
In [19], it was shown that a naive coupling between a CS

supergravity theory and a brane does not work as in the
standard case. The problem is as follows: in standard
supergravity the supersymmetry transformation takes the
form �c ¼ ðdþ!ab�

ab þ fabc�
abc þ � � �Þ� ¼ 0, where

! is the spin connection and f is some combination of the
Ramond-Ramond field strengths, the torsion, etc. In CS
gravity theories, instead of f there appear the nongravita-
tional components of the connection in the superalgebra.
As a consequence, the projector that is needed to annihilate
half the components of � in the BPS configuration does not
form, which in turn means that the branes would system-
atically break all the supersymmetries. There is a caveat
here: it might be that the intricate dynamical structure of
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CS theories, with different dynamical sectors, could pro-
vide an effective theory in some particular sector, with the
right field content to reconstruct the right projector. This is
a conjecture, however, that would be highly nontrivial to
test. An alternative proposal was presented in the same
Ref. [19], as well as in [20], and it is investigated further in
the present paper. The idea is that branes couple to lower-
dimensional CS forms for the same connection, but whose
components are restricted to live on the brane
worldvolume.

A particularly interesting feature of CS theories—and of
their supersymmetric extensions—is their unique con-
strained form that depends on the spacetime dimension
and the number of supersymmetries considered. The su-
persymmetry transformations have the same form in all
cases, inherited from the usual gauge transformation �A ¼
D�, whereD� ¼ d�þ ½A;�� is the covariant derivative of
the superalgebra (see, e.g., [21]). The gravitino c belongs
to the gauge connection A ¼ �cQ� �Qc þ � � � so that a
bosonic brane configuration (c ¼ 0) is supersymmetric
provided

�c ¼ D� ¼ 0; (1)

where the covariant derivative should be projected along
the supercharge generators. In the case of AdS supergrav-
ities, the relevant contribution to (1) is the spinorial gauge
parameter �, � ¼ ��Q� �Q�þ � � � [14]. Then, the stability
of these branes is guaranteed if a nontrivial gauge parame-
ter � is found in the spacetime surrounding the brane such
that the previous equation is satisfied, involving, besides
the spacetime connection, also the fields that correspond to
different interactions required by the closure of the gauge
superalgebra (see, e.g., [22,23]).

As shown in [24], in order to find a nonvanishing glob-
ally defined Killing spinor, it is sufficient to combine a
topological defect with another Uð1Þ ‘‘charge,’’ namely,
the angular momentum for rotations that leave a spatial
plane invariant. The boosts that change the angular velocity
of this plane form an Abelian subgroup. Then, by matching
the amount of angular deficit and angular momentum the
two effects cancel out and a BPS configuration can be
obtained by ensuring (1). Those configurations are pre-
cisely extremal 0-branes, with M ¼ �jJj. The conclusion
reported in this paper is that it is also always possible to
stabilize a topological defect with J ¼ 0, by switching on
an appropriate combination of gauge fields. Indeed, we
generalize this framework and formally construct static
extremal branes of higher codimensions. More concretely,
the contents of the paper are the following.

In Sec. II we briefly review the relevant aspects of CS
supergravities and the coupling of extended objects pro-
posed in [19,20]. We deal with the three-dimensional case
in Sec. III, where we show that there are no globally
defined Killing spinors in a nontrivial configuration unless
we have extended supersymmetry and the inclusion of

matter. We present the general case based on the ospðp j
2Þ � ospðq j 2Þ supergravity and construct the spectrum of
BPS 0-branes. They include the Bañados-Teitelboim-
Zanelli (BTZ) black hole and a family of supersymmetric
extremal naked singularities. Section IV is devoted to
analyzing the case of static 2-branes in five-dimensional
AdS supergravity. We must remember at this point that this
theory has a complicated set of vacua displaying regions
with different numbers of degrees of freedom. We con-
sider, thus, the suð2; 2 j NÞ theory and find its BPS states in
a generic sector of the theory where the number of degrees
of freedom is maximal. We show in detail that for N ¼ 4
these 2-branes saturate a Bogomol’nyi bound. Section V
deals with static codimension-two branes in AdS in arbi-
trary higher odd dimensions. We discuss our results and
comment on some future avenues of research in Sec. VI.
The article includes a few appendixes that attempt to
separately address several technical issues in order to
ease the reading of its main core while providing all
necessary details to make it as self-contained as possible.

II. CHERN-SIMONS ADS SUPERGRAVITIES

A CS action in D ¼ 2nþ 1 dimensions defines a gauge
theory for the connection field A in a Lie algebra G. The
dynamic gauge field A is coupled to an external source
j½2p� in a gauge-invariant way, as described by the action

I½A; j½2p�� ¼ �
Z
M
hC2nþ1ðAÞ � j½2p� ^C2pþ1ðAÞi: (2)

HereM is a (2nþ 1)-dimensional manifold, the level � is a
dimensionless quantized coupling constant, the quantities
marked in bold take values in G, and h� � �i denotes an
invariant symmetric trace in the algebra. The Chern-
Simons density C2nþ1ðAÞ is a (2nþ 1)-form that is poly-
nomial in the connection 1-form A and the curvature 2-
form F ¼ dAþA ^A, defined through the relation

dhC2nþ1ðAÞi ¼ 1

nþ 1
hF ^ � � � ^ Fi � 1

nþ 1
hFnþ1i: (3)

The external current j½2p� (0 � p < n) is a covariantly

constant (2n� 2p)-form, Dj½2p� ¼ 0. Definition (3) fixes

the CS form modulo an exact form d�2p that corresponds

to a boundary term in the action, which we will neglect in
this discussion. In quantum theory the boundary terms
must be taken into account, because they provide a well-
defined action principle, regularizing the action and its
conserved charges [25–27].
We restrict to spacetimes with negative cosmological

constant � ¼ �ðD� 1ÞðD� 2Þ=2‘2, and, consequently,
we consider a gauge group that is a supersymmetric ex-
tension of AdS group SOðD� 1; 2Þ. We denote the gen-
erators of the super AdS by

G K ¼ fJAB;Qs
�; �Q

�
s ;X

Kg;
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they include the AdS generators JAB ¼ �JBA ðA; B ¼
0; . . . ; DÞ, or pseudorotations that leave invariant the metric
�AB ¼ ð�;þ; . . . ;þ;�Þ. These are customarily decom-
posed as Jab and Pa :¼ JaD, where a; b ¼ 0; . . . ; D� 1.
The supersymmetric generators are Qs

� and �Q�
s , where

� ¼ 1; . . . ; 2½D=2� is a spinorial index and s ¼ 1; . . . ;N
is an internal group index corresponding to R symmetry.
There are a number of additional bosonic generators col-
lectively represented by XK, necessary for the closure of
the super AdS algebra. The number of generators X and
the algebra they close changes with the spacetime dimen-
sion, and a classification of the super AdS algebras in all
dimensions is given in Ref. [21].

The Lie-algebra valued connection 1-form A :¼ AKGK

can be spanned with respect to these generators in the form

A ¼ 1

‘
eaPa þ 1

2
!abJab þ ð �c s

�Q
�
s � �Qs

�c
�
s Þ þA �X;

(4)

where ea is the vielbein, !ab is the spin connection, and
c �

s are N gravitini, and we have denoted by AK the
gauge fields associated to the internal symmetries gener-
ated byXK. The associated curvature 2-form, F :¼ FKGK,
in the bosonic sector (c ¼ 0) then reads

F ¼ 1

2

�
Rab þ 1

‘2
eaeb

�
Jab þ 1

‘
TaPa þF �X; (5)

with the Riemann curvature Rab ¼ d!ab þ!ac ^!c
b, the

torsion Ta ¼ Dea ¼ dea þ!a
b ^ eb, and the remaining

terms F ¼ dAþA ^Aþ � � � . The field equations
obtained by varying the action (2) with respect to A take
the form

hFp ^ ðFn�p � j½2p�ÞGKi ¼ 0; 0 � p < n; (6)

with the invariant tensor of AdSD defined as

hJA1B1
. . . JAnþ1Bnþ1

i ¼ �1
2"A1B1...Anþ1Bnþ1

; (7)

where we use the convention "01...D ¼ 1. The locally flat
configuration F ¼ 0 (pure gauge) is always a solution of
the source-free CS equation hFnGKi ¼ 0, while in the
presence of the sources the pure gauge becomes a solution
only for p � 0.

We consider a particular form of the current j½2p� that
describes a 2p-brane with charge q2p, localized on a

(2pþ 1)-dimensional timelike manifold �2pþ1 represent-

ing its worldvolume. Being charged with respect to the
gauge group implies that this current transforms in some
nontrivial representation of the Lie algebra, labeled by a set
of n� p indices,

j ½2p� ¼ q2p�ð�2n�2pÞGK1...Kn�p : (8)

The Dirac delta in this equation is a (2n� 2p)-form with
support at the center of the (2n� 2p)-dimensional trans-
verse spacelike manifold �2n�2p. The particular form of

the current j½2p� given by Eq. (8) represents a static

2p-brane at the center of the transverse space.
The interaction with the brane breaks the gauge symme-

try. The worldvolume of the brane could have at most local
SOð2p; 2Þ isometries, while the transverse section is at
most invariant under SOð2n� 2pÞ. Thus, the interaction
reduces the maximal SOð2n; 2Þ isometry ofM2nþ1 down to
a maximal isometry SOð2p; 2Þ � SOð2n� 2pÞ of the
2p-brane spacetime �2pþ1 � �2n�2p. For supersymmetric

solutions, we expect that the fermionic part of the gauge
symmetry group behaves similarly, being broken by the
very presence of a static 2p-brane to a supergroup whose
bosonic part is SOð2p; 2Þ � SOð2n� 2pÞ.

III. STATIC 0-BRANE IN ADS3

We deal now with the case of three-dimensional AdS
supergravities. Even if much is known about them, we
review some of these results, identifying new supersym-
metric extremal naked singularities that will be interpreted
as BPS 0-branes, whose spectra we determine.

A. Conical defect in AdS3 (review)

AdS3 space can be seen as a hyperboloid in R2;2, where
the Cartesian coordinates xA ¼ ðx0; x1; x2; x3Þ are sub-
jected to the constraint �ABx

AxB ¼ �‘2. Using the pa-
rametrization

x0 ¼ A cos	03; x1 ¼ B cos	12;

x3 ¼ A sin	03; x2 ¼ B sin	12;
(9)

the AdS3 space corresponds to the surface B2 � A2 ¼
�‘2. Its metric then reads

ds2 ¼ �ABdx
AdxB

¼ ‘2

B2 þ ‘2
dB2 � ðB2 þ ‘2Þd	2

03 þ B2d	2
12: (10)

Note that by unwrapping the 	03 coordinate and calling
B ¼ r, one gets a global covering of AdS3 in polar
coordinates.
A 0-brane can be seen as a defect on the (x1-x2) plane

produced by an angular deficit of 2�� in the 	12 angle, so
that

	12 ’ 	12 þ 2�ð1� �Þ: (11)

A natural way to implement this is by introducing a scaled
coordinate 	 such that 	12 ¼ ð1� �Þ	, where 	 ’ 	þ
2�. Introducing the rescaled radial and time coordinates
r ¼ ð1� �ÞB and t ¼ ‘	03=ð1� �Þ, respectively, the
metric (10) becomes

ds2 ¼ �
�
ð1� �Þ2 þ r2

‘2

�
dt2 þ dr2

ð1� �Þ2 þ r2

‘2

þ r2d	2;

(12)
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which is just the BTZ solution, but with negative mass,
M ¼ �ð1� �Þ2. Therefore, this naked singularity 0-brane
sits at the topological defect whose magnitude 2�� is
related to the ‘‘negative mass of the black hole’’ [5,24].

The identification (11) in terms of the coordinates of the
embedding space represents a 	12 rotation by 2�ð1� �Þ
in the (x1-x2) plane:

x1

x2

� �
’ cos2�� sin2��

� sin2�� cos2��

� �
x1

x2

� �
¼ e�2��J12

x1

x2

� �
;

(13)

where

J 12 ¼ 0 �1
1 0

� �

is a matrix representation of @	 acting on the vector

ðx1; x2Þ, or in its more convenient unitary representation,
J12 ¼ x1@2 � x2@1. The exponent is the Killing vector � ¼
�A@A that identifies xA and xA þ �A:

� ¼ 2��ðx2@1 � x1@2Þ ¼ �2��@	: (14)

Note that for � ¼ 0 (no deficit) the Killing vector van-
ishes. Also note that there is an ambiguity in the choice o
f �: shifting � by an integer produces the same effect in
(13). This means that, for an identification, � and �þ k
are indistinguishable. Nevertheless, a deficit angle greater
than 2� seems geometrically inadmissible, and therefore
we consider � to be restricted to values � 1.

On the other hand, there is no such restriction for an
angular excess that corresponds to a negative value of � in
the metric or in Eq. (11). Therefore, the identity 2�� ’
2�ð�þ kÞ seems to be acceptable for � 2 ½0; 1� and
negative integer values of k. This does not correspond to
a standard conical defect but rather to a lettuce leaf-like
configuration known as Elizabethian geometry [28].

There is another discrete symmetry related to the choice
of � in the metric: reflection ð1� �Þ ! �ð1� �Þ is
equivalent to the shift � ! 2� � that cannot be obtained
from � by addition of any integer k. The curvature is
invariant under this symmetry –for example, a
D-dimensional 0-brane obtained as a surface deficit of
SD�2 has the scalar curvature

R ¼ �� ðD� 2ÞðD� 3Þ�ð�� 2Þ
ð1� �Þ2r2

that clearly becomes the constant � when D ¼ 3, or when
there is no deficit � ¼ 0, but also when � ¼ 2.

In what follows, we will discuss only the values of � that
correspond to angular deficits, namely, � 2 ½0; 1Þ. The
spectrum of three-dimensional naked singularities is the
one described originally in [5].

B. Field equations

A straightforward computation shows that the geometry
defined by (12) is a spacetime that is AdS almost every-
where and torsion-free:

Rab þ 1

‘2
ea ^ eb ¼ 2���ð�12Þdx1 ^ dx2�½ab�

½12� ; (15)

Ta ¼ 0; (16)

where the Dirac delta has support at the center of the two-
dimensional spatial section that corresponds to the (x1-x2)
plane. These two equations can be put in a more compact
form as

F ¼ j½0�; (17)

where the source j½0� is a Lie-algebra valued 2-form current

j ½0� ¼ 2���ð�12ÞJ12 (18)

that indicates the presence of a brane at the center of the
�12, produced by a deficit angle 2�� generated by J12 (see
Appendix A for further details). This is the field equation
that governs the spacetime geometry in the presence of a
source that can be obtained from the general expression for
the field equations, Eq. (6), in the only possible case in
three dimensions n ¼ 1, p ¼ 0.
The stability of a 0-brane can be established if the

background can be viewed as the bosonic sector of a
supersymmetric configuration (BPS state). For this, it is
sufficient to prove the existence of a globally defined
Killing spinor field that satisfies (1) in the spacetime that
surrounds the brane. The worldvolume of the brane is not
part of the ambient manifold M because the geometry is
not properly defined there. The situation is analogous to
trying to solve Dirac equation on a conical surface: clearly
one does not worry about the behavior of the Dirac field at
the conical singularity, since that point is not properly part
of a differentiable manifold.
In order to inspect the BPS condition, one needs to know

the explicit form of the gauge algebra that extends the AdS
symmetry in the corresponding dimension.

C. BPS branes in 2þ 1 dimensions

Supersymmetric extension of AdS group in three
dimensions, with N ¼ pþ q supersymmetries, is
OSpðp j 2Þ �OSpðq j 2Þ [29] with the generators GK ¼
fGþ

K ;G
�
K g, and the connection 1-form can be written as

A ¼ AKGK ¼ Aþ þA�; (19)

where

A� ¼
�
!a � 1

‘
ea
�
J�a þ 1

2
bIJ�T�

IJ þ c I��Q
��
I : (20)

Here fTþ
IJ;T

�
I0J0 g generate the OðpÞ �OðqÞ subgroup, and

we have introduced !a ¼ 1
2 "abc!

bc. The corresponding
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field strength also splits as F ¼ Fþ þ F�, with

F� ¼
�
Ra � 1

‘
Ta þ 1

2‘2
"abce

b ^ ec
�
J�a

þ 1

2
F IJ�T�

IJ þ spinors; (21)

the curvature being given by Ra ¼ 1
2"abcR

bc ¼
d!a þ 1

2"
abc!b ^!c (see Appendix B 1 for details).

We seek a bosonic configuration (c� ¼ 0) that pos-

sesses nontrivial supersymmetries � ¼ �þ þ �� ¼
�þ�
I QþI

� þ ���
I0 Q�I0

� , so that the spinor � is a solution of

the Killing spinor equation (1):

D� :¼ ðDþ�þÞ�I QþI
� þ ðD���Þ�I0Q�I0

� ¼ 0:

Each term must be zero independently, so we have

D��� ¼
�
d� 1

2

�
!a � 1

‘
ea
�
�a þ b�

�
�� ¼ 0; (22)

where b� is a square matrix with components ðb�ÞKL [the
components of the oðpÞ or oðqÞ gauge fields] and �a are
Dirac matrices. The term b��� means ðb���ÞI� ¼
ðb�ÞIJ��J

�.
The AdS connection in the region around the brane is

locally flat, F� ¼ 0. This means that the torsion must
vanish and the metric is that of a locally AdS spacetime.
The only effect of the presence of the brane is in the
topology of the region around it. Next, the conditions for
the geometry to admit a global Killing spinor in the pres-
ence of the defect will be analyzed.

1. N ¼ 1 supersymmetry

The minimal supersymmetry, N ¼ 1, is described by
the super AdS algebra ospð1 j 2Þ with ðp; qÞ ¼ ð1; 0Þ or
ð0; 1Þ, so the b� are absent, and only one gravitino, either
cþ or c�, is present, and consequently, either Qþ or Q�
is included. Suppose the supersymmetry generator is Qþ;
then, the Killing spinor is � ¼ �þQþ and Eq. (22) must be
solved for theþ choice only. The derivation is presented in
Appendix B 2, and the result is given by

�þ ¼ efðrÞ�1eð1=2Þið1��Þð	þðt=‘ÞÞ�þ; (23)

where ðt; r; 	Þ ¼ ð‘	03

1�� ; ð1� �ÞB; 	12

1��Þ, fðrÞ ¼
1
2 sinh

�1ð r
ð1��Þ‘Þ, and �þ is a constant eigenspinor of �0

(say, �0�
þ ¼ i�þ). Similarly, for the ð0; 1Þ spinor � ¼

��Q�, one obtains

�� ¼ e�fðrÞ�1e�ð1=2Þið1��Þð	þðt=‘ÞÞ��; (24)

where �0�
� ¼ �i�� (of course, one could choose theþi

eigenvalue as well). In both cases, the spinor � must be
either periodic or antiperiodic in the angular coordinate 	,
�ð	þ 2�Þ ¼ ��ð	Þ. The expressions (23) and (24) sat-
isfy these boundary conditions provided a is an integer
and, therefore,

� ¼ n 2 Z: (25)

Since the angular deficit satisfies � 2 ½0; 1�, the only BPS
configurations are either � ¼ 0 (spacetime is AdS3, no
defect) or � ¼ 1 (the spacetime is the zero-mass BTZ
black hole). This means that there are no globally defined
Killing spinors except in the known cases (M ¼ 0;�1), as
reported in [30].

2. N ¼ 2 supersymmetries

N ¼ 2 supersymmetries occur for ðp; qÞ ¼ ð1; 1Þ,
ð2; 0Þ, and its symmetric reflection ð0; 2Þ. The case ðp; qÞ ¼
ð1; 1Þ admits the Killing spinor � ¼ �þQþ þ ��Q�,
where �þ and �� are given by Eqs. (23) and (24), respec-
tively, which again implies either � ¼ 0 or 1.
In the case ðp; qÞ ¼ ð2; 0Þ, the algebra contains a gen-

erator of oð2Þ that (modulo reflections) acts as uð1Þ. The
corresponding Abelian field b introduces an additional
charge in one of the two copies (say, �þ). In this repre-
sentation, ðbþÞIJ � b
I

J, where


 ¼ 0 1
�1 0

� �
:

The CS field equations around the source are F� ¼ 0,
where the curvatures read

ðFþÞIJ ¼ �I
J

�
Ra þ 1

‘
Ta þ 1

2‘2
"abce

b ^ ec
�
Jþa

� 1

2
db
I

J; (26)

ðF�ÞIJ ¼ �I
J

�
Ra � 1

‘
Ta þ 1

2‘2
"abce

b ^ ec
�
J�a : (27)

Therefore, the geometry is locally AdS and torsion-free as
in the previous case, and db ¼ 0. This last condition
enables us to write the 1-form b locally as b ¼ d�.
Globally, this is much more interesting than being a trivial
connection, since � could be multivalued (like the angle
	12 itself), allowing for different topological sectors for b,
labeled by the winding number. This provides the basics to
find a nontrivial Killing spinor charged with respect to b,
producing a Bohm-Aharonov phase that cancels the con-
tribution of the spin connection [31,32]. Thus, a Killing
spinor � ¼ �þI QþI satisfies

d�þI � 1

2

�
!a þ 1

‘
ea
�
�a�

þ
I � d�
I

J�þJ ¼ 0: (28)

Choosing � ¼ q	12, only one component of the Killing
equation receives a correction when compared with its
form for b ¼ 0:

ð@	12
� 1

2�0 � q
Þ�ð	12Þ ¼ 0: (29)

The solution is

�þI ¼ efðrÞeði=2‘Þð1��Þtþði=2Þð1��Þð1þ2qÞ	�þ
I ; (30)
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where we have used 	12 ¼ ð1� �Þ	 and that �þ
I is a

constant simultaneous eigenspinor of 
 and �0,


I
J�þ

J ¼ i�þ
I ; ð�0Þ��ð�þ

I Þ� ¼ ið�þ
I Þ�: (31)

The (anti)periodic boundary condition �þð	þ 2�Þ ¼
��þð	Þ requires the Uð1Þ charge to be quantized:

ð1� �Þð1þ 2qÞ 2 Z: (32)

Notice that this extremality condition perfectly matches
that obtained by Izquierdo and Townsend [after replacing
ð1� �Þ ! � and ð1� �Þq ! Q in their Eq. (3.5)] [5].
Therefore, for a given topological defect � 2 ½0; 1Þ, all
charges given by q ¼ k

2ð1��Þ � 1
2 , k 2 Z satisfy the BPS

condition. Conversely, if the Uð1Þ charge is fixed, there are
several possible values for angular defect given by

0<�k ¼ 2qþ k

2qþ 1
< 1; k 2 Z: (33)

Note that for a given value of q, the number of allowed
values for � increases with jqj.

We conclude that nontrivial Killing spinors exist for
these choices of q and �, and the corresponding 0-branes
should be stable BPS configurations. Each matrix condi-
tion in (31) projects out 1=2 of the spinor components, so
the final solution preserves 1=4 of the original supersym-
metries, a 1=4-BPS state. There is a single unbroken super-
charge in the solution. Obviously, the same is true for
ðp; qÞ ¼ ð0; 2Þ, just replacing þ by � in the preceding
discussion.

The current that describes this 0-brane couples to the
geometry and to theUð1Þ field. The gravitational part of the
current is given by Eq. (18). Additionally, the Uð1Þ charge
of the brane couples to b. The form of this contribution
can be found from the Abelian gauge field b ¼ qd	12

[that carries an electromagnetic flux given by the integral
of qdd	12 ¼ �2��q�ð�12Þ], so the total current is [see
(17)]

j ½0� ¼ 2��ðJ12 � qT12þ Þ�ð�12Þ: (34)

The presence of the oð2Þ R-symmetry field b is responsible
for stabilizing the 0-brane: the conical defect in the spatial
section is compensated by the Uð1Þ charge in the internal
gauge space [31,32]. In the following sections, it is shown
that this is a generic feature and that an Abelian gauge field
can stabilize any static codimension-two brane in higher
dimensions.

3. N ¼ pþ q supersymmetries

For the ospðp j 2Þ � ospðq j 2Þ superalgebra, the brane
solution is again locally flat, F ¼ 0, namely, locally AdS
geometry, torsion-free, and a flat R connection dbIð�ÞJ þ
bIð�ÞK ^ bKð�ÞJ ¼ 0,:

A AdS ¼ 0-brane; bIJ� :locally flat; (35)

where the 0-brane is given by Eqs. (10) and (11). The
connection b has the general form b ¼ g�1dg [where g
belongs toOðpÞ �OðqÞ], but here we consider a particular
Abelian choice of this form in the Cartan subalgebra of
oðpÞ � oðqÞ, such that dbIð�ÞJ ¼ 0 and bIð�ÞK ^ bKð�ÞJ ¼ 0.

The Cartan subalgebra is spanned by

fTþ
12;T

þ
34; . . . ;T

þ
2½p=2��1;2½p=2�;T

�
12;T

�
34; . . . ;T

�
2½q=2��1;2½q=2�g:

This means that we can take the matter connection as b ¼
�Td	12, with T a linear combination of some Cartan
generators, say, kþ þ k� of them, with kþ � ½p=2� and
k� � ½q=2�, and the coefficients represent the correspond-
ing charges q�k . Explicitly,

T ¼ Tþ þ T�; (36)

where

T� ¼ Xk�
k¼1

q�k T
�
2k�1;2k: (37)

Thus, the connection and the source for this configuration
read

A ¼ AAdS þ Td	12; (38)

j ½0� ¼ 2��ðJ12 � TÞ�ð�12Þ: (39)

For the Killing spinors, we already know that when kþ ¼
k� ¼ 0, there is no solution apart from the global AdS
space, whereas for kþ or k� � 0 (say, kþ ¼ 1), the system
resembles theN ¼ 2 case, and a Killing spinor of the type
(30) exists for ð1� �Þð1þ 2qþ1 Þ 2 Z.
The 	12 component of the Killing spinor �� equa-

tion (22) reads

�
@	12

� 1

2
�0 �

Xk�
k¼1

q�k 

�
2k�1;2k

�
��ð	12Þ ¼ 0 (40)

and has the general lowest supersymmetry-preserving so-
lution

�� ¼ exp

�
�fðrÞ � i

2‘
ð1� �Þt

� i

2
ð1� �Þ

�
1þ Xk�

k¼1

q�k
�
	

�
��: (41)

The constant spinors �� are chosen such that

ð�0Þ���
��
I ¼ i���

I ; (42)

ð
�2k�1;2kÞJI��
J ¼ i��

I ; k ¼ 1; . . . ; k�: (43)

This gives rise to p� kþ (q� k�) independent compo-
nents. The boundary condition �ð	þ 2�Þ ¼ ��ð	Þ leads
to the condition on the charges

ð1� �Þð1þ qþ12 þ � � � þ qþkþ�1;kþÞ 2 Z; (44)
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ð1� �Þð1þ q�12 þ � � � þ q�k��1;k�Þ 2 Z: (45)

Notice that each projection in (43) effectively acts on
a two-dimensional subspace because it corresponds to
an Abelian rotation inside the Cartan subgroup of
ospðp j 2Þ � ospðq j 2Þ. Thus, at the beginning, there
were N ¼ pþ q (real two-component) spinors, and
kþ þ k� Abelian projections leave N � ðk� þ kþÞ vec-
torial components unchanged. Furthermore, the spinorial
projection (42) breaks half of supersymmetries, which
finally gives ½N � ðk� þ kþÞ�=2 supercharges.

So far, we have shown that the three-dimensional space-
time containing a 0-brane admits a globally defined Killing
spinor, by explicitly constructing it. This should be suffi-
cient to guarantee this geometry to be a stable vacuum for
supersymmetric theories with different values of N . The
supersymmetry algebra establishes a lower bound for the
energy, which is saturated by the vacuum configuration.
Thus, it is possible to assert the stability of the purely
bosonic configuration by just checking that a Killing spinor
can exist in that background.

The only missing link in this proof of stability is that we
have not shown the charges that satisfy the supersymmetry
algebra to be defined for this configuration. In fact, the
charges that generate the symmetry (super)group should be
finite and satisfy the right Poisson algebra in the phase
space of the theory.

In 2þ 1 dimensions, it is rather straightforward to check
that the canonical charges satisfy the algebra of the super-
symmetric extension of the AdS group, that is, the super
Virasoro algebra [30,33,34]. Since there is not much dif-
ference in the construction for naked singularities and for
the standard black holes, we will not devote more to this
discussion here. However, in the five-dimensional case that
follows, the construction of the charges and the establish-
ment of the energy lower bound will be explicitly carried
out.

IV. STATIC 2-BRANE IN ADS5

Now we turn to the generalization of the conical defect
discussed above to higher dimensions. There are two ob-
vious generalizations of a 0-brane in three-dimensional
AdS space: a 0-brane inAdSD or a (D� 3)-brane inAdSD.

The first one is a topological defect obtained as a surface
deficit of a (D� 2) sphere that produces naked singular-
ities corresponding to the negative energy states of the
black hole spectrum obtained in Chern-Simons gravities
[20]. These solutions have divergent curvature as r ! 0
(the space is not locally AdS) and correspond to pathologi-
cal, possibly unstable geometries, which are unlikely to
support Killing spinors.

The second option, where the topological defect is con-
structed as an angular deficit in a two-dimensional plane,
gives rise to spacetimes of constant negative curvature,
with pointlike singularities at the fixed points of some

identification Killing vector. Those singularities can be
understood as the position of the (D� 3)-brane, in close
analogy with the situation discussed above.
Consider a (D� 3)-brane in locally AdSD space pro-

duced by a 2-form current with support at the center of a 2-
plane (the transverse space �12). The (D� 3)-brane has
internal local symmetry SOðD� 3; 2Þ and is invariant
under external SOð2Þ rotations in the transverse space.
The full symmetry of the system is therefore SOð2Þ �
SOðD� 3; 2Þ. Adding more dimensions to the brane does
not change the picture [20].
Focusing on the five-dimensional case, the idea is to

enlarge the 0-brane in AdS3 with two additional coordi-
nates x3 and x4:

x0 ¼ A cos	05 cosh�; x1 ¼ B cos	12;

x5 ¼ A sin	05 cosh�; x2 ¼ B sin	12;

x3 ¼ A sinh� cos�; x4 ¼ A sinh� sin�:

(46)

Here, the functions A 2 ½‘;1Þ and B 2 ½0;1Þ satisfy the
constraint A2 � B2 ¼ ‘2, ensuring that the spacetime is
locally AdS5, �ABx

AxB ¼ �‘2. Introducing an angular
deficit � in the x1-x2 plane, the 2-brane sits at B ¼ 0 (A ¼
‘). In AdS5, B 2 ½0;1Þ is the radius of the cylinder with
the brane at its axis;	12 2 ½0; 2�ð1� �ÞÞ is the azimuthal
angle of the cylinder; 	05 2 ð�1;1Þ is a time coordinate
both in the braneworld and in the target space (	05 is
unwrapped in order to avoid closed timelike curves); � 2
½0;1Þ is the internal radial coordinate in the brane; and
� 2 ½0; 2�Þ is an internal angular coordinate on the brane.
The three-dimensional 0-brane is recovered when � ¼ 0.
Notice that the intrinsic geometry of the brane is AdS3

and (46) is a solution of the theory in the sector where F ¼
j½2�, where the source 2-form is

j ½2� ¼ 2���ð�12ÞJ12: (47)

The metric now reads

ds2 ¼ ‘2dB2

B2 þ ‘2
þ B2d	2

12 þ ðB2 þ ‘2Þ
� ðd�2 þ sinh2�d�2 � cosh2�d	2

05Þ: (48)

This can also be described in terms of a standard periodic
angular coordinate 	 2 ½0; 2�Þ (without defect in the
�12 plane) and the usual unwrapped time coordinate t.

This is achieved by rescaling ðB;	12; 	05Þ ¼ ð r
1�� ; ð1�

�Þ	; ð1��Þt
‘ Þ, so the metric (48) becomes

ds2 ¼ dr2

r2

‘2
�M2

þ r2d	2 þ
�
r2

‘2
�M2

�

�
�
�cosh2�dt2 � ‘2

M2
d�2 � ‘2

M2
sinh2�d�2

�
: (49)

Here the negative mass parameter M ¼ �ð1� �Þ2 char-
acterizes a naked singularity. The three-dimensional space-
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time section multiplied by the scale factor ðr2
‘2
�M2Þ and

parameterized by ðt; �; �Þ is the worldvolume of the brane
with global AdS3 geometry of radius ‘=ð1� �Þ.

A. BPS states

The supersymmetric extension of the AdS group in five
dimensions is SUð2; 2 j NÞ, whose bosonic sector is
AdS5 � SUðNÞ �Uð1Þ. The supergroup is generated by
the set GK ¼ fG �K;Zg, where Z is the Uð1Þ generator and
G �K represent the AdS generators JAB ¼ fJab;Pag, the
SUðNÞ generators T� (� ¼ 1; . . . ; N2 � 1), and the super-
symmetry generators Q�

s that transform in a vector repre-
sentation of SUðNÞ labeled by s ¼ 1; . . . ; N, where
� ¼ 1; . . . ; 4 are spinor indices. For more details, see
Appendix C 1.

The gauge connection 1-form that takes values in this
Lie superalgebra has components

A ¼ 1

‘
eaPa þ 1

2
!abJab þ a�T� þ ð �c s

�Q
�
s � �Qs

�c
�
s Þ

þ bZ:

The associated field strength in the bosonic sector (c ¼ 0)
is

F ¼ 1

2
FabJab þ 1

‘
TaJa þF �T� þ fZ; (50)

where Fab ¼ Rab þ 1
‘2
ea ^ eb and Ta ¼ dea þ!a

b ^ eb

is the torsion 2-form. The Uð1Þ and SUðNÞ field strengths
are

f ¼ db and F ¼ daþ a ^ a; (51)

respectively. Here a � a�
� is the SUðNÞ connection and

� are the suðNÞ generators.

The Chern-Simons field equations for the 2-brane have
the form

hF ^ ðF� j½2�ÞGKi ¼ 0; (52)

where the source j½2� ¼ jLGL is a 2-form with support at

the center of the transverse space.
Equation (52) comes from the five-dimensional version

of the action (2), which now reads

I½A; j� ¼ �
Z
M5

hC5ðAÞ � j½2� ^C3ðAÞi: (53)

A Killing spinor � ¼ ��s�Q
�
s � �Qs

��
�
s is a solution of the

equation

ðD�Þs �
�
dþ 1

4
!ab�ab þ 1

2‘
ea�a þ i

�
1

4
� 1

N

�
b

�
�s

� ars�r ¼ 0; (54)

where asr ¼ a�ð
�Þsr. The consistency condition for the
Killing spinor equation (54) in the region surrounding the
singular points that must be removed from the manifold,
DD� ¼ ½F; �� ¼ 0, reads

�
1

4
Fab�ab þ 1

2‘
Ta�a þ i

�
1

4
� 1

N

�
f

�
�s �F r

s�r ¼ 0;

(55)

where F r
s ¼ F �ð
�Þrs.

We are interested in the p-brane solutions, that is, with
locally AdS spacetime, FAB ¼ 0. Following [35], we
choose the ansatz that restricts the SUðNÞ field strength
F to the two-dimensional r-� submanifold in spacetime,
F � ¼ F �

r�dr ^ d�, and the magnetic part of theUð1Þ field
strength, fij, to be invertible. The source-free field equa-

tions become

�
1

N2
� 1

42

�
f ^ f ¼ 0; (56)

F � ^ f ¼ 0: (57)

As shown in [36], the dynamical content of the theory
depends crucially onN. Moreover, for a given N, the phase
space has various sectors each with a different number of
degrees of freedom. In that reference it was also proven
that the canonical charges can be calculated only in the
canonical sectors, where the symplectic form has maximal
rank. In these sectors, the Hamiltonian analysis can be
safely applied and the theory possesses maximal number
of degrees of freedom. In our case, the ansatz (57) is
canonical only if the magnetic part of the Abelian field
strength, fij, is invertible. Invertibility requires a nonvan-

ishing Pfaffian of fij, which implies f ^ f � 0, and there-

fore the canonical sector we will consider only holds for
N ¼ 4. For D ¼ 5, N � 4, the invertibility of fij is not

required, and the BPS states in these cases are treated in a
way common for all D> 5 with N > 2 supersymmetries
and will be discussed later.
For the locally AdS geometry, the consistency condition

(55) is

F r
s�r ¼ 0; (58)

hence,F must be nonvanishing for more than one value of
the index r, so that the contributions of all components
cancel. Taking advantage of the isomorphism suð4Þ ’
soð6Þ, the SUð4Þ curvature can be expressed as F s

r ¼
1
2F

IJð
IJÞsr, where the soð6Þ generators

IJ ¼ 1

4½�̂I; �̂J� ðI; J ¼ 1; . . . ; 6Þ (59)

are given in terms of the Euclidean Dirac matrices �̂I. The
commuting matrices 
12 and 
34 generate a Uð1Þ �Uð1Þ
subgroup for SUð4Þ, and since ð
12Þ2 ¼ ð
34Þ2 ¼ � 1

4 , their

eigenvalues are � i
2 .

A simple nontrivial solution of (54) is a ‘‘twisted’’
configuration [31,32], for which the only nonvanishing
Uð1Þ �Uð1Þ components of the SUð4Þ curvature are
F 12 ¼ da12 and F 34 ¼ da34, and the Killing spinor � is
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assumed to satisfy

ð
12Þrs�r ¼ i

2
�s; ð
34Þrs�r ¼ � i

2
�s: (60)

These chirality projections preserve 1=4 of the supersym-
metries. Therefore, the consistency condition (58) be-
comes

i

2
ðF 12 �F 34Þ�s ¼ 0; (61)

which is solved by F 12 ¼ F 34. Then the SUð4Þ field has
only one independent component

a12 ¼ a34 þ d�ðxiÞ; (62)

where �ðxiÞ is an arbitrary phase. Using the identity
asr�s ¼ i

2d��r, the Killing equation (54) reduces to�
dþ 1

4
!ab�ab þ 1

2‘
�a � i

2
d�

�
�s ¼ 0: (63)

We shall take a particular choice of � that produces non-
trivial topology, since it introduces a new source of charge
q,

�ðxÞ ¼ q	12; (64)

which represents a line of flux 2�q piercing through the
center of the �12 plane. In general, there may be other
solutions with different �’s, but this is sufficient for our
purposes here. The remaining components of the SUð4Þ
and Uð1Þ gauge fields can be chosen so as to satisfy all the
consistency conditions, for example,

A AdS ¼ static 2-brane at the center of�12; (65)

a ¼ hð�ÞdrðT12 þ T34Þ þ qd	12T12; (66)

b ¼ ½BgðrÞ�d�þ Erd	�Z: (67)

Here h ¼ hð�Þ is an arbitrary periodic function of �, and E
and B are nonvanishing constants. The function gðrÞ is
continuous and satisfies the boundary conditions

gð0Þ ¼ 0; gð1Þ ¼ 1: (68)

These conditions are imposed to ensure that f�� vanishes at

the singularity and is nontrivial on the boundary. One
possible choice is gðrÞ ¼ r2=ðr2 þ ‘2Þ. For r � 0 (outside
the singularity), the field strength for the connection (65)–
(67) takes the form

Fr�0 ¼ �h0ð�Þdr ^ d�ðT12 þ T34Þ þ ½Bg0ðrÞ�dr ^ d�

þBgðrÞd� ^ d�þ Edr ^ d	�Z: (69)

The first term in the right-hand side corresponds to F , and
the second to f. It is easily checked that detðfijÞ ¼
B2E2g2ðrÞ � 0 and F ^ f ¼ 0, as required by (57).

At r ¼ 0, the field strength acquires an additional term
coming from the conical singularity in the 1-2 plane,

dd	12 ¼ �2���ðrÞdr ^ d	, so that the full AdS curva-
ture is

F ¼ Fr�0 þ j½2�; (70)

where a source has the form

j ½2� ¼ 2��ðJ12 � qT12Þ�ðrÞdr ^ d	: (71)

There are no contributions of the conical singularity to the
torsion Ta

�� or to the Uð1Þ field strength f because of the

identity r�ðrÞ ¼ 0. The first term in the right-hand side
represents the topological defect related to the (negative)
mass, M ¼ �ð1� �Þ2, and 2��q is related to the mag-
netic charge q coming from the broken SUð4Þ group.
However, it is not yet guaranteed that the ansatz (65)–

(67) that satisfies the consistency condition and the source-
free equations hF2

r�0GKi ¼ 0 is also a solution of the full

field equations (52). To check this, one may write Eq. (70)
in the equivalent form

hðF� Fr�0 � j½2�Þ2GKi ¼ 0: (72)

Then, using the fact that j½2� ^ j½2� � 0 (because j½2� is

defined on a two-dimensional plane), and since Fr�0 ^
j½2� is proportional to gð0Þ ¼ 0, one can see that Eq. (52)

is indeed satisfied.
Knowing the background configuration, we can solve

Eq. (63), that has the same form as the Killing equation in
pure Chern-Simons AdS gravity (see Appendix C 2), up to
theUð1Þ gauge function� ¼ q	12 that gives an additional
shift to the exponent:

�s ¼ e�fðrÞ�1e�ð1=2Þ��3eð1=2Þ	12�12eði=2Þq	12e�ð1=2Þ	05�0

� eð1=2Þ��34�s: (73)

The constant spinors �s are chosen as common eigenvec-
tors of the commuting suð4Þ generators:

�12�s ¼ �i�s; �34�s ¼ �i�s: (74)

Because �0 also commutes with �12 and �34 (it is normal-
ized as �0 ¼ i�12�34; see Appendix C 1), we additionally
have

�0�s ¼ �i�s: (75)

Taking these projections into account, we can analyze
global properties of the fermion �s. Requiring that it is
single-valued under 	 ! 	þ 2� and � ! �þ 2�, that
is, with periodic [Ramond (R) sector] or antiperiodic
(Neveu-Schwartz sector) boundary conditions, the charge
q becomes quantized:

ð1� �Þðq� 1Þ ¼ n 2 Z: (76)

We finally obtain the Killing spinor in the form

�s ¼ e�fðrÞ�1e�ð1=2Þ��3eði=2Þðn	��Þeði=2‘Þð1��Þt�s: (77)

To calculate the number of preserved supersymmetries, we
recall that the group projective operators (60) already break
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3=4 of the supercharges. These are complemented by the
spinorial chirality projections (74) that analogously pre-
serve 1=4 of the remaining supersymmetries. All in all, this
finally gives a 1=16 BPS state. There are two unbroken
supercharges, which correspond to the minimum number
compatible with the expected symmetries of a 2-brane
worldvolume. In the next section, we will show that for
N � 4, there exists a five-dimensional 2-brane that is a 1=4
BPS state.

The remaining bosonic symmetry of this BPS solution is
described by the Killing vectors �K (D�K ¼ 0), and it
includes the original Uð1Þ symmetry with the parameter
�Z, as well as the Cartan subgroup Uð1Þ �Uð1Þ �Uð1Þ of
SUð4Þ [where the thirdUð1Þ generator is not switched on in
our configuration, though] with the gauge parameters �12,
�34, and �56. The isometries of the 2-brane are linear
combinations of @t and @	. The proof is given in

Appendix C 3.
In the considered BPS solution, we removed the singu-

larity from the manifold when solving the consistency of
the Killing spinor equation (55). If, however, one were to
insist on including the singular point, one would have to
take into account the contribution of the sources. Using the
twisting of the SUð4Þ field (60), as well as the AdS pro-
jections (74), one obtains

2��
i

2

�
1þ q

2

�
�ð�12Þ�s ¼ 0: (78)

Clearly, when we have the singularity cut from the mani-
fold this equation does not arise. Otherwise, we have to
integrate this expression over the transverse section �12,
and we obtain

q ¼ �2; (79)

meaning that the electromagnetic charge has a fixed value.
From (76), this also implies that

� ¼ 1� jnj
3
; jnj ¼ 1; 2; 3: (80)

Note that n ¼ �3 corresponds to globalAdS5, while jnj ¼
1; 2 are two different charged BPS 2-branes.

B. Canonical charges and their central extensions

In canonical sectors of Chern-Simons theories, the split-
ting between first and second class constraints can be
performed explicitly [37] and the conserved charges can
be calculated following the Regge-Teitelboim approach
[38]:

Q½�� ¼ ��
Z
�1

h� �F ^Ai; (81)

where �1 is the boundary at spatial infinity (r ! 1), � ¼
�KðxÞGK is a gauge parameter, and �F is the background
field strength. The charge is obtained assuming the bound-
ary conditions A ! �A and � ! ��, where �� are asymptotic

Killing vectors of the background, �D �� ¼ 0. Let us empha-
size that the bar denotes the spatial asymptotic sector of the
solutions.
The algebra of charges generically picks up a central

extension of the gauge algebra [39]:

fQ½��; Q½��g ¼ Q½½�;��� þ C½�;��; (82)

where ½�;��K ¼ fMN
K�M�N , and the central charge

C½�;�� has the form

C½�;�� ¼ ��
Z
�1

h� �F ^ d�i: (83)

In a locally AdS spacetime with a 2-brane whose metric
is given by (48), the spatial boundary �1 taken at constant
radius B ¼ r=ð1� �Þ ! 1, and constant time, 	05 ¼
ð1� �Þt=‘ ¼ const, the asymptotic metric reads

ds2j�1 ¼ r2

ð1� �Þ2 ðd�
2 þ sinh2�d�2Þ þ r2d	2; (84)

and its topology is isomorphic to H2 � S1, where H2 is a
two-dimensional hyperboloid parameterized by ð�; �Þ.
Evaluating Eq. (69) for our case of SUð4Þ �Uð1Þmatter

at the boundary (j ¼ 0 and dr ¼ 0) gives the Abelian
background field strength on H2:

�F ¼ Bd� ^ d�Z: (85)

Around this background, the charges (81) are

Q½�� ¼
Z
�1

d3x�KqK; qK ¼ �B
4

�KLA
L
	; (86)

where �KL is the invariant Killing bilinear form for
PSUð1; 1 j 4Þ (see Appendix C 1), and the normalization

of the volume element d3x of�1 has been chosen as d	
2� for

S1 and d�d�
VolðH2Þ for H2. Note that the class of solutions

considered here has identically vanishing Uð1Þ charge
(generated by Z), since �zz ¼ � �Kz ¼ 0.
At infinity, the gauge parameter � approaches ��, a

covariantly constant vector that describes asymptotic sym-
metries of the background configuration. It possesses a
Uð1Þ symmetry associated to ��Z ¼ const, Uð1Þ � SOð4Þ
symmetry coming from SUð4Þ gauge parameters ��12 ¼
const and ��IJjI;J2f3;4;5;6g ¼ const, and the only nonvanish-

ing AdS parameters are ��25 ¼ � ��12 ¼ const describing a
@	 isometry of the 2-brane. Derivation of ��K is given in

Appendix C 3.
Splitting the connection into the background AdS and

the rest,

�A ¼ �AAdS þ ðð1� �ÞqT12 þ ErZÞd	
þB�Zd�;

ð1� �Þðq� 1Þ ¼ nðn 2 ZÞ; (87)

where the AdS part includes a static 2-brane (see
Appendix C 2),
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�A AdS ¼ r

‘
ðJ25 � J12Þd	þ r

ð1� �Þ‘ ðJ35 � J13Þd�

þ
�

r

ð1� �Þ‘ sinh�ðJ45 � J14Þ � cosh�J34

�
d�:

(88)

Thus, the charge for the background �A becomes

�Q ¼ ��
Z
�1

h �� �F^ �Ai ¼ �B
4

ð1� �Þq ��12
suð4Þ; (89)

which shows that this state is magnetically charged, except
for the trivial case ð1� �Þq ¼ nþ 1� � ¼ 0 that corre-
sponds to global AdS5 (� ¼ 0 and n ¼ �1).

Furthermore, the central extension (83) of the algebra
psuð2; 2 j 4Þ for this background takes the form

C½�;�� ¼ �B
4

Z
�1

d3x�KL�
K@	�

L: (90)

In particular, C½�Z; �K� � 0, which implies that there is no
uð1Þ central extension.

C. BPS bound

In order to establish the existence of a BPS bound, the
standard procedure is to evaluate the anticommutator of the
supercharges in the state that admits globally defined
Killing spinors. The anticommutator of supersymmetry
generators being positive semidefinite leads to an inequal-
ity among the generators for bosonic symmetries. Since
one of those generators is the Hamiltonian, the inequality
can be used to establish a lower bound for the energy, the
BPS bound, as shown in detail in Appendix C 4.

The first step in this program is to write the charge (89)
in Fourier modes of the spatial section of the vectors X ¼
f ��K; qKg:

XwmkðrÞ ¼
Z d�d�d	

Lð2�Þ2 Xðr; �; �;	Þe�ð2�i=LÞw��im��ik	:

(91)

The boundary fields are functions of the periodic coordi-
nate 	 2 ½0; 2�� and two hyperbolic coordinates � 2 R
and � 2 ½0; 2��. The expansion on S1 �H2 has a discrete
series for 	 and � and a continuous Fourier spectrum for
the noncompact coordinate �. Here we have taken � 2
½� L

2 ;
L
2�, so that VolðH2Þ ¼ 2�L in the limit L ! 1. The

bosonic modes are periodic in 	 and � and therefore the
numbers m and k must be integers. For the fermionic
modes these numbers can be integers and half-integers
for Ramond (R) and Neveu-Schwartz (NS) boundary con-
ditions, respectively. This gives rise to four possible sectors
R1R2, R1NS2, etc. Since � is a noncompact coordinate, the
spectrum of w is continuous.

The notation is simplified calling ~s ¼ ðw;m; kÞ, and
consequently

P
~s ¼

R
dw

P
m;k, �~s;~s0 ¼ �ðw�

w0Þ�mm0�kk0 , etc. Then, the mode expansions for the ca-

nonical and central charges (86) and (90) read

Q½�� ¼ X
~s

�K
~s qK;� ~s; qK;~s ¼ �B

4
�KLA

L
	;~s; (92)

C½�;�� ¼ i�B
4

�KL

X
~s; ~s0
�K
~s �

L
~s0k�~sþ~s0;0; (93)

and the algebra adopts the form

fqK;~s; qL;~s0 g ¼ fKL
MqM;~sþ~s0 þ i�B

4
k�KL�~sþ~s0;0: (94)

This is a supersymmetric extension of the WZW4 algebra
with a nontrivial central extension for psuð2; 2 j 4Þ which
depends only on the uð1Þ flux determined byB. The modes
qK;~s with ~s ¼ ð0; 0; kÞ form a Kac-Moody subalgebra with

the central charge �B=4, while the modes with ~s ¼
ðw; 0; 0Þ and (0, m, 0) form Kac-Moody subalgebras with-
out central charges.
For the supersymmetric charges, using qZ � 0 and �q ¼

qy�0, the algebra (94) multiplied by �0 gives a positive
semidefinite operator:

fq�r;~s; qys�;~s0 g ¼ � 1

2
�s
rð�a�0Þ��qa;~0 þ

1

4
�s
rð�ab�0Þ��qab;~0

� 1

4
ð�0Þ��ð�̂IJÞsrqIJ;~0 �

i�B
4

kð�0Þ���s
r;

which means that its eigenvalues are all positive or zero.
Identifying the energy E ¼ q0;~0 with the time component

of the AdS boost charge qa;~0 ¼ ðE; q �a;~0Þ leads to the bound
(see Appendix C 4)

E � max

�
v� þ �� þ �

4
jBkj

�
: (95)

The BPS configuration has only the SUð4Þ charge q12;~0 ¼
�B
4 ð1� �þ nÞ [see Eq. (89)], and the corresponding BPS

energy saturates the bound:

EBPS ¼ �jBj
4

ðj1� �þ nj þ jkjÞ: (96)

The minimal energy corresponds to the R2 sector kmin ¼ 0
(no winding around the singularity) and in the Uð1Þ sector,
we can have nmin ¼ 0. Thus, minimal energy is

Emin
BPS ¼

�jBð1� �Þj
4

> 0: (97)

This stable configuration with nontrivial winding numbers
is not the lowest energy state. As shown below, another
BPS state exists for which all charges are zero and Emin

BPS ¼
0.

D. Different BPS solution

Consider now an ansatz whereF� ¼ F �
r	dr ^ d	, f ^

dr ^ d	 ¼ 0, and fij is invertible. Proceeding in the same
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way as before, the gauge connections are found to be of the
form

a ¼ hð	ÞdrðT12 þ T34Þ þ qd	12T12; (98)

b ¼ Erd�þB�gðrÞd	; (99)

where the continuous function gðrÞ satisfies the boundary
conditions gð0Þ ¼ 0 and gð1Þ ¼ 1, and the field strength
for r � 0 becomes

F r�0 ¼ h0ð	Þd	 ^ drðT12 þ T34Þ þ ðEdr ^ d�

þBgðrÞd� ^ d	þB�g0ðrÞdr ^ d	ÞZ: (100)

In (98) we have again included a 2-brane in the implicit
assumption that the angle 	 has a deficit 2��. Therefore
the source sitting at r ¼ 0 is

j ½2� ¼ 2��ðJ12 � qT12Þ�ð�12Þ: (101)

On the other hand, the Abelian field b� does not contribute

to the source, again because gð0Þ ¼ 0.
Since this solution is also in the canonical sector of the

phase space as the previous one, and has the same sources,
the Killing spinor and the relations (73)–(80) remain the
same. What has changed is the explicit form of the fields,
Eqs. (98)–(100), and therefore the values of the charges
and central extension.

Indeed, for this solution, the background connection and
the field strength read

�A ¼ �AAdS þ ð�aqT12 þB�ZÞd	; (102)

�F ¼ Bd� ^ d	Z; (103)

respectively, and the charges and central charge have the
form

Q½�� ¼ �B
4

Z
�1

d3x�KAL
��KL; (104)

C½�; �� ¼ �B
4

Z
�1

d3x�K@��
L�KL; (105)

respectively. Plugging the solution in the formula, all the
charges for this configuration vanish:

�Q ¼ 0: (106)

The algebra of charges in this case has the form

fqK;~s; qL;~s0 g ¼ fKL
MqM;~sþ ~s0 þ i�B

4
m�KL�~sþ~s0;0; (107)

and a nontrivial central extension for psuð2; 2 j 4Þ appears
only in the modes with ~s ¼ ð0; m; 0Þ that correspond to the
angle �. It can be shown, similarly as in the previous case,
that the energy is always non-negative:

E � X
a<b

jqab;~0j þ
X
I<J

jqIJ;~0j þ
��������
�B
4

m

��������; (108)

and the bound is saturated for the BPS state

EBPS ¼ 0; (109)

where all charges, including the energy, vanish. Note that
here the background is uncharged and with zero energy—
that is, the ground state.
This configuration is therefore a vacuum state, which is,

however, not equivalent to the trivial vacuum A ¼ 0, the
main difference between these two configurations being:
while A ¼ 0 is maximally (super)symmetric under the
entire psuð2; 2 j 4Þ gauge algebra, the ansatz (102) is
only invariant under a residual symmetry whose bosonic
sector is uð1Þ � soð2; 2Þ � soð2Þ. Moreover, the ansatz
(102) is a generic background which has propagating
degrees of freedom, while the background A ¼ 0 allow
no propagation of local perturbative excitations (it is a
maximally degenerate background).

V. STATIC CODIMENSION-TWOBRANES INADSD

In the previous sections we discussed in detail 0- and 2-
branes in three and five dimensions, respectively, showing
that these branes are stable when charged CS matter is
added. These examples already exhibit the most character-
istic features of higher-dimensional codimension-two
branes in AdSD.
In the introduction of Sec. IV, possible generalizations of

p-branes to higher dimensions were discussed. We are
interested here in p-branes living in a spacetime with
constant negative curvature everywhere, except in the
points where the p-brane is placed. These locally AdSD
spacetimes are obtained by identifications of points in the
global AdSD that do not change the local metric structure
but introduces topological defects. In particular, a
codimension-two brane (p ¼ D� 3) is produced by iden-
tification of the points in a 2-plane using the Killing vector
describing azimuthal rotations, @	, as already discussed in

three and five dimensions.
In order to construct a (D� 3)-brane that satisfies the

CS equations of motion

hFðD�3Þ=2 ^ ðF� j½D�3�ÞGKi ¼ 0; (110)

we consider the flat embedding space RD�1;2 with the
signature ð�;þ; � � � ;þ;�Þ and global coordinates xA

(A ¼ 0; . . . ; D). A (D� 3)-brane is then obtained by in-
troducing an angular deficit � in the 1-2 plane �12

parameterized by B ¼ r=ð1� �Þ 2 ½0;1Þ and 	12 ¼
ð1� �Þ	 2 ½0; 2�ð1� �ÞÞ. This identification is gener-
ated by the Killing vector

� ¼ 2��ðx2@1 � x1@2Þ ¼ �2��@	; (111)

and a conical singularity is formed at r ¼ 0. The coordi-
nates x0 and xD label another Euclidean plane with the

radius A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ ‘2

p
� ‘ and the angle 	0D ¼

ð1� �Þt=‘ 2 ð�1;1Þ that, unwrapped, represents time.
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The rest of the coordinates are introduced to have xA

satisfying the AdSD constraint x � x ¼ �‘2. An explicit
coordinate transformation is given in Appendix D 1. Apart
from the coordinates t, r, and 	, the metric depends on
ðD� 3Þ=2 noncompact coordinates �u 2 ½0;1Þ (u ¼
1; . . . ; D�3

2 ) that are radii of some cylinders in different

directions of RD�1;2, and also ðD� 3Þ=2 azimuthal angles
	2uþ1;2uþ2 2 ½0; 2�Þ of these cylinders, associated to the

planes x2uþ1-x2uþ2. The metric has the form that resembles
the lower-dimensional cases (12) and (49),

ds2 ¼ dr2

r2

‘2
þ ð1� �Þ2 þ r2d	2

þ
�
r2

‘2
þ ð1� �Þ2

�
d�2

AdSD�2
; (112)

describing a naked singularity with M ¼ �ð1� �Þ2, and
d�2

AdSD�2
is the global AdSD�2 with radius ‘=ð1� �Þ.

The spacetime of a (D� 3)-brane has constant negative
curvature, i.e., vanishing AdS curvature Fr�0 ¼ 0, with a
pointlike singularity given by the external current

j ½D�3� ¼ 2���ð�12ÞJ12: (113)

Similarly to the lower-dimensional cases, we can ask
whether this brane is stable in the framework of the CS
supergravity with the superalgebra G. The smallest super-
algebras that contain the AdSD in the bosonic sector in odd
dimensions D � 5 are given in Ref. [21], where it was
shown that for D ¼ 8k� 1, 8kþ 3, and 4kþ 1 the corre-
sponding superalgebras G are ospðN j mÞ, ospðm j NÞ,
and suðm j NÞ, respectively, where m ¼ 2½D=2�. In addition
to AdSD generators G contains the internal subalgebras
soðNÞ, spðNÞ, or suðNÞ spanned by T�, plus some bosonic
generators Z� required by the closure of the superalgebra.
The spinor c s has m spinorial components and it trans-
forms as a vector under action of the internal group, so that
there are always N ¼ N gravitini, independently on the
number of the bosonic generators Z�.

The superalgebra-valued connection 1-form and the cor-
responding field strength are given by Eqs. (4) and (5). In
Appendix D 1 it is proven that the (D� 3)-branes in the
absence of CS ‘‘matter’’ (A ¼ 0, c s ¼ 0) are unstable, by
showing that the Killing spinor �s that counts unbroken
supersymmetries of the brane has the form

�s ¼ e�fðrÞ�1

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1

YðD�3Þ=2

v¼1

eði=2Þ	2vþ1;2vþ2

� eði=2Þð1��Þð	�ðt=‘ÞÞ�s; (114)

where �a are the D-dimensional � matrices. �s are con-
stant spinors that are common eigenvectors of the commut-
ing set of matrices

�2uþ1;2uþ2�s ¼ i�s

�
u ¼ 1; . . . ;

D� 3

2

�
: (115)

These projections reduce the number of supercharges by a

factor 1=2ðD�3Þ=2. In order to have the Killing spinor �s
globally well-defined, it has to be periodic or antiperiodic
under the change of all angles for a period 2� that leads to
the condition

� ¼ 0; (116)

which gives global AdSD as the only solution admitting
unbroken symmetries.
In order to have a BPS codimension-two brane, one has

to add other gauge fields, and it is expected, based on the
lower-dimensional experience, that this would permit the
existence of the BPS branes in higher dimensions as well.
To this end, we restrict to a class of codimension-two
branes treated generically. This means that all special cases
are excluded in this section. For example, we assume that
N � m, because for N ¼ m, the equations of motion and
the dynamic content of CS gravities take a singular form
[21] and must be treated separately. Discussion that fol-
lows, therefore, also covers 2-branes in D ¼ 5 with N � 4
matter that were omitted in Sec. IVA.
Under these assumptions, we present the simplest matter

that admits nontrivial Killing spinors on a static (D� 3)-
brane: an Abelian pure-gauge field associated to some
generator T1. The arguments that prove it go similarly as
in the five-dimensional case, so we will skip the details.
The gauge connection is

A AdS ¼ static ðD� 3Þ-brane at the center of�12;

(117)

A ¼ qd	12T1; (118)

whereAAdS is given by Eqs. (D3)–(D6), and the constant q
is magnetic charge. The field strength is then

F ¼ j½D�3�; (119)

where the Abelian generator contributes to the source:

j ½D�3� ¼ 2��ðJ12 � qT1Þ: (120)

This configuration clearly satisfies the equations of motion
(110).
For the Killing spinor �s, the consistency condition

ðFÞrs�r ¼ 0 is identically satisfied for r � 0. A nontrivial
solution for �s is obtained similarly as in the pure gravity
case, but now we also need the constant spinor to be an
eigenvector of the Abelian generator T1,

ðT1Þsr�r ¼ �i�s; (121)

which further breaks 1=2 of the remaining supercharges.
Then, the equation D	�s ¼ 0 has an additional constant

shift iaq, leading to the result
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�s ¼ e�fðrÞ�1

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1

YðD�3Þ=2

v¼1

eði=2Þ	2vþ1;2vþ2

� eði=2Þð1��Þð1�2qÞð	�ðt=‘ÞÞ�s: (122)

In order for this spinor to be globally well-defined, instead
of (116), the magnetic charge is quantized:

ð1� �Þð1� 2qÞ ¼ n 2 Z: (123)

This is the same condition as in five-dimensional case,
Eq. (76). This leaves us with a BPS configuration preserv-

ing 1=2ðD�1Þ=2 of the original supercharges.
To conclude, let us note that, in a generic higher-

dimensional case, it is sufficient to put an Abelian pointlike
charge (118) to stabilize a codimension-two brane. The
reason why the D ¼ 5, N ¼ 4, 2-brane discussed in
Sec. IVA needs two Abelian generators taken from a
broken SUð4Þ in order to form a stable configuration is
that this CS theory possesses some irregular sectors in the
configuration space that could be treated only if the non-
Abelian matter is supported by nonvanishing components
F , for r � 0. Thus, pure-gauge pointlike charges are not
sufficient to provide that. The generic case N � m consid-
ered here allows us, therefore, much more freedom for the
choice of matter fields.

VI. DISCUSSION

In this paper we deal with exact, static, codimension-two
brane solutions of Chern-Simons AdS supergravities,
coupled to external sources. These solutions, describing
local AdS geometries, are systematically constructed in
any dimension D, using an identification along a Killing
vector field with fixed point at the ‘‘center’’ of an
Euclidean two-dimensional plane and producing a topo-
logical defect of magnitude � 2 ð0; 1Þ. The metric of the
resulting (D� 3)-brane is a naked singularity with mass
M ¼ �ð1� �Þ2 < 0 and becomes a stable BPS state with
the addition of an Abelian Chern-Simons charge in such a
way that the brane becomes extremal. The extremality
condition involves, apart from the mass M and the charge
q, also some winding number n 2 Z. In particular, when
the charge is removed (q ¼ 0), the only supersymmetric
solution is the global AdSD, with � ¼ 0 and n ¼ �1. This
result is generic, valid in all dimensions.

More explicitly, our analysis starts with the simplest
case of three-dimensional supergravity, based on the
OSpðp j 2Þ �OSpðq j 2Þ supergroup, for which we derive
the spectrum of BPS 0-branes. This includes a family of
supersymmetric extremal naked singularities and also the
continuation to positive mass M � 0 that corresponds to
the BTZ black hole.

Next, we move to a more complicated case, that of five-
dimensional AdS supergravity for the SUð2; 2 j NÞ super-
group, and we find the BPS states in a generic sector of the
theory where the number of degrees of freedom is maxi-

mal. The cases N ¼ 4 and N � 4 are treated separately,
since the former contains some irregular sectors in the
phase space, and its BPS branes possess less supersymme-
tries. We showed that for N ¼ 4 these 2-branes saturate the
Bogomol’nyi bound. We generalize these results to arbi-
trary higher odd dimensions.
A point to note in our calculations is that, in solving the

Killing equation for the spinor �, one writes a uð1Þ-valued
closed 1-form as b ¼ qd	12. Since the Killing equation is
local and one wants to be sure the spinor is everywhere
well-defined, one has to write b as an exact form every-
where in R2-f0g. This can be done defining the angle
function 	12 in different patches in such a way that on
the intersection of these patches the angles differ by a
constant, which is just the period 2�ð1� �Þ. Then, again
at such an intersection, evaluating the Killing spinor in
either patch should give the same result up to a phase due to
the uð1Þ gauge freedom. Finally, since the Killing spinor

has a ei	12ð...Þ factor, one obtains the same quantization
condition as in the previous sections, and the spinor can
be periodic or antiperiodic.
Another puzzling issue is thatM< 0 states can be stable

even though they look like negative energy states. The
answer is that M is a parameter that characterizes the
conical defect, M ¼ �ð1� �Þ2, while the energy has to
be defined as a conserved charge associated to the AdS
boost P0 (that, in the ‘ ! 1 limit, becomes a standard
Poincaré timelike translation). The Bogomol’nyi inequal-
ity then ensures that the energy is bounded from below. An
example of a spacetime with negative mass is global AdS
that is stable and maximally supersymmetric with M ¼
�1.
The p-branes described in this paper greatly enrich the

spectrum of states of Chern-Simons supergravity. In par-
ticular, this has interesting consequences for the case of
three dimensions, where standard Einstein-Hilbert gravity
and Chern-Simons gravity meet. The negative mass 0-
branes in three-dimensional supergravity should contribute
to the partition function. It has been conjectured that
configurations of this kind might correspond to the missing
non-normalizable states required to account for the
Bekenstein entropy in the Liouville representation of
three-dimensional gravity [40,41]. Interestingly enough,
this problem was recently revisited in [42], where the
authors scrutinize several possible missing contributions
to the partition function that may account for the trouble-
some writing of a physically sensible expression for it. It is
natural to wonder whether the 0-branes discussed in this
paper may play a role in that discussion.
BPS and non-BPS p-branes in standard supergravity

display interesting intersection rules that can be seen as
arising from the no-force conditions or compatibility of
chirality projections on the Killing spinors (see, for ex-
ample, [43–45]). One may wonder about the corresponding
statements in the case of p-branes coupled to Chern-
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Simons supergravity. The full answer to this problem is an
interesting avenue for future research. In this article, we
made the first step in that direction by analyzing the case of
intersecting 2-branes in five dimensions in Appendix C 5.
We showed that these 2-branes without matter do not
intersect in a way compatible with supersymmetry. The
question as to whether the addition of CS matter can
stabilize the branes still remains open.

An interesting generalization to be considered is that of
p-branes of codimension higher than two. They can be
produced by implementing deficit solid angles in the ap-
propriate spheres [20]. The question whether there are BPS
configurations of this kind and under which conditions they
might exist should be possible to answer following the
approach introduced in this paper. In the case of
codimension-two branes, it is sufficient to have a Uð1Þ
gauge field to stabilize the system that becomes a BPS
configuration. A global Uð1Þ can be gauged such that the
gravitino becomes charged and the Bohm-Aharonov phase
cancels the contribution resulting from the conical defect.
This is actually the same mechanism that embodies the
twisting procedure in finding supersymmetric wrapped
D-brane solutions in standard supergravity [46,47].

We have restricted our discussion to the case of static 2-
branes. A natural step forward is to scrutinize a more
general situation in which the angular momentum is
prompted into the system, i.e., the case of spinning
p-branes [20,48]. The existence of spinning BPS
p-branes, either with the addition of matter or without it,
is a rather interesting problem. In particular, it was shown
that singularities arising in BPS solutions of standard
supergravity are smoothed out by the inclusion of angular
momentum [49]. Whether this phenomenon also takes
place in Chern-Simons supergravity is to be discussed in
the near future.
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APPENDIX A: CONICAL SINGULARITY

A conical singularity is produced in a flat 2D plane with
polar coordinates ðB;	12Þ, B � 0, identifying the angular
coordinate

	12 ’ 	12 þ 2�ð1� �Þ; 0<�< 1: (A1)

The angular sector 2�� is cut out of the plane, the resulting
edges being identified, and the surface becomes the cone

ds2 ¼ dB2 þ B2d	2
12; (A2)

with 0 � 	12 � 2�ð1� �Þ. The coordinates ðB;	12Þ
cover the surface of the cone with the apex at B ¼ 0, while
the coordinates ðx1; x2Þ ¼ ðr cos	; r sin	Þ represent the
projection of the cone to the x1-x2 plane, with the apex at
r ¼ 0. The two sets of coordinates are related by

B ¼ r

1� �
; 	12 ¼ ð1� �Þ	: (A3)

The angle between the generatrix of the cone and its axis is
�0 ¼ arcsinð1� �Þ.
The conical singularity at r ¼ 0 can be geometrically

regularized by defining the apex of the cone as the limit of
a spherical cap of vanishing radius. Cutting the cone along
the circle r ¼ r0, the tip of the cone can be replaced by a
spherical cap of radius ", with r0 ¼ " cos�0. In this way,
the two pieces become smoothly joined as a single surface
�". The surface element of this regularized cone is

d2s" ¼
8<
: "2 sin�d�d	; r < r0; � 2

�
0; �2 � �0

�
;

BdBd	12; r > r0:

(A4)

The scalar curvature is given by

R" ¼
�
2="2; r < r0;
0 r > r0:

(A5)

In the limit " ! 0, R" must be interpreted as a distribution.
Multiplying it by a test function �ð ~rÞ ¼ �ðr;	Þ and in-
tegrating over the regularized cone gives

Z
�"

d2s"R"�ð~rÞ ¼ 4�
Z ð�=2Þ��0

0
d� sin� ��ðrÞ; (A6)

where ��ðrÞ � 1
2�

R
2�
0 d	�ðr;	Þ. Since r ¼ " sin�, we

obtain

lim
"!0

Z
�"

d2s"R"�ð ~rÞ ¼ 4�� ��ð0Þ; (A7)

EDELSTEIN et al. PHYSICAL REVIEW D 82, 044053 (2010)

044053-16



from which we conclude that the scalar curvature is given
by R ¼ lim"!0R" ¼ 4���ð ~rÞ. In two dimensions, R is
uniquely related to the Riemann curvature 2-form as Rab ¼
1
2 "

abRdx1 ^ dx2, so that we can write its only nonvanish-

ing component as

R12 ¼ 2���ðx1Þ�ðx2Þdx1 ^ dx2: (A8)

On the other hand, from R12 ¼ d!12 ¼ �dd	12, where
!ab is the spin connection of the cone calculated from
(A2), we conclude that geometrical regularization is
equivalent to the identity

dd	12 ¼ �2���ð�12Þ; (A9)

where �ð�12Þ � �ðx1Þ�ðx2Þdx1 ^ dx2, which is valid for
the entire cone.

APPENDIX B: 0-BRANES IN CS SUPERGRAVITY
IN THREE DIMENSIONS

1. Super AdS3 group

The minimal supersymmetric extension of the AdS
group in three dimensions is OSpðp j 2Þ �OSpðq j 2Þ,
with the generators GK ¼ fPa; Jab;T

þ
IJ;T

�
I0J0 ;Q

þI
� ;Q�I0

� g
[29]. The SOð2; 2Þ generators in AdS3, Pa and Jab (a ¼
0; 1; 2), can be conveniently redefined as

J�
a ¼ 1

2ð12"abcJbc � PaÞ; (B1)

in order to make explicit the isomorphism SOð2; 2Þ ’
Spð2Þ � Spð2Þ. The generators Jþa and J�a commute, and
each copy satisfies

½Ja; Jb� ¼ "abcJ
c: (B2)

The bosonic sector also contains the internal groupOðpÞ �
OðqÞ with generators Tþ

IJ ¼ �Tþ
JI ðI; J ¼ 1; . . . ; pÞ and

T�
I0J0 ¼ �T�

J0I0 ðI0; J0 ¼ 1; . . . qÞ, respectively, where each

set of rotation generators satisfies

½TIJ;TKL� ¼ �ILTJK � �JLTIK � �IKTJL þ �JKTIL:

Finally, the supersymmetric generators are N ¼ pþ q

real spinors QþI
� and Q�I0

� (� ¼ 1; 2 are spinorial indices)
that transform in the vector representation of OðpÞ and
OðqÞ, respectively.

With the above definitions, the generators of the super
AdS3 algebra split into two commuting sets GK ¼
fGþ

K ;G
�
K g, where G�

K ¼ fJ�a ;T�
IJ;Q

�I
� g. Each set of gen-

erators satisfies the graded commutator algebra

½Ja;QI
�� ¼ �1

2ð�aÞ��QI
�; ½TIJ;QK

�� ¼ ð
IJÞKLQ
L
�;

fQI
�;Q

J
�g ¼ c½2�IJðC�aÞ��Ja þ C��T

IJ�: (B3)

The 
 matrices have components ð
IJÞKL ¼ �I
L�

JK �
�J

L�
IK. The conjugation matrix C ¼ C�� ¼ "�� lowers

(and C�1 ¼ C�� raises) spinor indices ("12 ¼ þ1), and
the number c ¼ �1 distinguishes the two inequivalent
representations of � matrices in three dimensions.

We use a standard representation for the � matrices and
generators of OSpðp j 2Þ �OSpðq j 2Þ as, for example,
the one in Ref. [50].

2. Absence of Killing spinors for the 0-brane in
minimally supersymmetric AdS3

The ansatz for the metric of a static three-dimensional 0-
brane displayed in (10) can be described by the vielbein ea

and the spin connection !a � 1
2"

a
bc!

bc, at r � 0, as

e0 ¼ Ad	03; e1 ¼ ‘

A
dB; e2 ¼ Bd	12;

!0 ¼ �A

‘
d	12; !1 ¼ 0; !2 ¼ B

‘
d	03;

where A2 � B2 ¼ ‘2, B ¼ r=ð1� �Þ, 	12 ¼ ð1� �Þ	,
and	03 ¼ ð1� �Þt=‘. We want to solve the Killing spinor
equation (22) for �þ ¼ �þ�

I QþI
� � �þQþ. In Chern-

Simons AdS3 supergravity, considering the gauge connec-
tion A describing only the 0-brane [i.e., without additional
OðpÞ �OðqÞ gauge fields switched on],

D�þ ¼
�
d� 1

2

�
!a þ 1

‘
ea
�
�a

�
�þ ¼ 0: (B4)

Here, �a are three-dimensional � matrices and, for sim-
plicity, we choose only one of the two inequivalent repre-
sentation of � matrices, with c ¼ 1. In our notation,
"012 ¼ 1.
The radial component of the Killing spinor equation,

Dr�
þ ¼

�
@r � 1

2ð1� �ÞA�1

�
�þ ¼ 0; (B5)

has the general solution

�þ ¼ efðrÞ�1�þðt; 	Þ; (B6)

where �þ is a spinor and

fðrÞ ¼ 1

2

Z r=ð1��Þ

0

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ ð1� �Þ2‘2p

¼ 1

2
sinh�1

�
r

ð1� �Þ‘
�
: (B7)

The two remaining components of the equation are�
@	 � 1� �

2‘
e�2f�1ðAþ B�1Þ�0

�
�þ ¼ 0; (B8)

�
@t � 1� �

2‘2
e�2f�1ðAþ B�1Þ�0

�
�þ ¼ 0: (B9)

It turns out that fðrÞ satisfies the identity
‘e�2f�1 ¼ A� B�1; (B10)

and therefore

e	2f�1ðA� B�1Þ ¼ ‘: (B11)
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Thus, the general solution of (B8) and (B9) reads �þ ¼
eð1=2Þð1��Þ�0ð	þðt=‘ÞÞ�þ, and

�þ ¼ efðrÞ�1eð1=2Þð1��Þ�0ð	þðt=‘ÞÞ�þ: (B12)

Here, �þ is a constant spinor that can always be chosen as
an eigenvector of the matrix �0, for instance,

�0�
þ ¼ i�þ: (B13)

The Killing spinor �þ has to be globally single-valued; that
is, it must be either periodic or antiperiodic under rotations
by 2�: �þð	þ 2�Þ ¼ ��þð	Þ. This is satisfied by (B12)
provided the topological defect is quantized:

� ¼ n 2 Z: (B14)

Because � 2 ½0; 1Þ, one must have n ¼ 0, which corre-
sponds to global AdS3. We conclude that purely gravita-
tional static 0-branes in three-dimensional N ¼ 1 CS
supergravity with all additional matter fields switched off
do not admit Killing spinors (they are not BPS states).

APPENDIX C: 2-BRANES IN CS SUPERGRAVITY
IN FIVE DIMENSIONS

1. Super AdS5 group

The AdS group in five dimensions is isomorphic to
SUð2; 2Þ. Its supersymmetric extension is the super unitary
group SUð2; 2 j NÞ, whose bosonic sector is AdS5 �
SUðNÞ �Uð1Þ. The suð2; 2 j NÞ algebra is spanned by
the AdS generators JAB ¼ ðJab;PaÞ ðA; B ¼ 0; . . . ; 5Þ, the
SUðNÞ generators T� ð� ¼ 1; . . . ; N2 � 1Þ, an Abelian
generator Z, and the supersymmetric generators Q�

s and
�Qs
�. The AdS transformations include Lorentz rotations Jab

and AdS boosts Pa � Ja5 ða; b ¼ 0; . . . ; 4Þ that leave in-
variant the bilinear form �AB ¼ diagð�;þ;þ;þ;þ;�Þ
the fermionic generators are labeled by spinorial index
� ¼ 1; . . . ; 4 and by s ¼ 1; . . . ; N.

The dimension of this superalgebra is N2 þ 8N þ 15.
For N ¼ 1, the generators T� are absent, and the bosonic
sector is given by AdS5 � uð1Þ algebra. The structure
constants and invariant tensor of the superalgebra are
calculated in [35,51], whose notation we follow here.
The bosonic generators JAB, T�, and Z form the algebra
suð2; 2Þ � suðNÞ � uð1Þ, while the supersymmetry gener-
ators transforms as spinors under AdS and as vectors under
suðNÞ:
½JAB;Q�

s � ¼ �1
2ð�ABÞ��Q�

s ; ½T�;Q
�
s � ¼ ð
�ÞrsQ�

r ;

½JAB; �Qs
�� ¼ 1

2
�Qs
�ð�ABÞ��; ½T�; �Q

s
�� ¼ � �Qr

�ð
�Þsr;
where the 4� 4 matrices �AB are defined as �ab ¼ 1

2 �½�a;�b� and �a5 ¼ �a, and the Dirac matrices in five

dimensions �a satisfy �y
0 ¼ ��0 and �y

a ¼ �a for a �
0. Also, 
� are anti-Hermitian N � N matrices, generators
of suðNÞ. The supersymmetry generators carry uð1Þ
charges,

½Z;Q�
s � ¼ �i

�
1

4
� 1

N

�
Q�

s ; ½Z; �Qs
�� ¼ i

�
1

4
� 1

N

�
�Qs
�;

(C1)

and the anticommutator of the supersymmetry generators
has the form

fQ�
s ; �Q

r
�g ¼ 1

4�
r
sð�ABÞ��JAB � ��

�ð
�ÞrsT� þ i��
��

r
sZ:

(C2)

For N ¼ 4 the Abelian generator Z becomes a central
charge and the superalgebra becomes a central extension
of PSUð2; 2 j 4Þ.
An invariant third rank tensor, completely symmetric in

bosonic and antisymmetric in fermionic indices, can be
constructed as

igKLM � hGKGLGMi
¼ 1

2 Str½ðGKGL þ ð�Þ"K"LGLGKÞGM�; (C3)

and it has the following nonvanishing components:

g½AB�½CD�½EF� ¼�1

2
"ABCDEF; gZ½AB�½CD� ¼�1

4
�½AB�½CD�;

g�1�2�3
¼���1�2�3

; gZ�1�2
¼� 1

N
��1�2

;

g½AB�ð�rÞð s�Þ ¼� i

4
ð�ABÞ���s

r; gZð�rÞð s�Þ ¼
1

2

�
1

4
þ 1

N

�
��
��

s
r;

g�ð�rÞð s�Þ ¼� i

2
��
�ð
�Þsr; gZZZ ¼ 1

N2
� 1

42
; (C4)

Here �½AB�½CD� � �AC�BD � �AD�BC and � �K �L are the

Killing metrics of SOð2; 4Þ and SUðNÞ, respectively. The
symmetric third rank invariant tensor for suðNÞ is
��1�2�3

� 1
2i TrNðf
�1

; 
�2
g
�3

Þ, and the � matrices are

normalized so that

Tr 4ð�a�b�c�d�eÞ ¼ �4i"abcde (C5)

ð"abcde5 :¼ "abcde; "012345 ¼ 1Þ, which is consistent with
�0 ¼ i�1�2�3�4.
Splitting the generators as GK ¼ ðG �K;ZÞ, the invariant

tensor for SUð2; 2 j NÞ has g �K �LZ invertible and g �KZZ ¼ 0.
In the special case N ¼ 4, the invariant tensor gKLM of
SUð2; 2 j 4Þ simplifies to gz �K �L ¼ � 1

4� �K �L and gZZZ ¼ 0,

where � �K �L is the Killing metric for PSUð2; 2 j 4Þ.

2. Killing spinors without additional matter

In this section we integrate the Killing spinor equation
for a single static 2-brane in five dimensions:

D� ¼
�
dþ 1

4
!ab�ab þ 1

2‘
ea�a

�
� ¼ 0; (C6)

where the vielbein of a 2-brane is
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e0 ¼ A cosh�d	05; e1 ¼ ‘

A
dB; e2 ¼ Bd	12;

e3 ¼ Ad�; e4 ¼ A sinh�d�: (C7)

As before, A2 � B2 ¼ ‘2. Assuming a torsionless space-
time Ta ¼ 0, which is true everywhere outside the singu-
larity, the nonvanishing components of the spin connection
are found to be

!01 ¼ B

‘
cosh�d	05; !13 ¼ �B

‘
d�;

!03 ¼ sinh�d	05; !14 ¼ �B

‘
sinh�d�;

!12 ¼ �A

‘
d	12; !34 ¼ � cosh�d�:

(C8)

Again, rescaling the coordinates as B ¼ r=ð1� �Þ, 	12 ¼
ð1� �Þ	, and 	05 ¼ ð1� �Þt=‘, the radial component of
Eq. (C6) has the form�

@r þ 1

2ð1� �ÞA�1

�
� ¼ 0; (C9)

the solution is

� ¼ e�f�1�ðt; 	; �; �Þ; (C10)

and the radial function fðrÞ ¼ 1
2 sinh

�1ð r
ð1��Þ‘Þ has the same

form as in three dimensions, Eq. (B7). The equation along
�, ef�1D�� ¼ 0, then becomes�

@� þ 1

2‘
e2f�1ðA� B�1Þ�3

�
� ¼ 0: (C11)

Even though AðrÞ and BðrÞ are functions of r, the radial
dependence in this equation drops out thanks to the identity
(B11), becoming just ð@� þ 1

2 �3Þ� ¼ 0, whose solution is

� ¼ e�ð1=2Þ��3�ðt; 	; �Þ: (C12)

The component of the Killing spinor equation along 	 is
similarly simplified:�

@	 � 1� �

2
�12

�
� ¼ 0; (C13)

whose integral is

� ¼ eð1=2Þð1��Þ	�12�ðt; �Þ: (C14)

The component along t becomes ð@t þ a
2‘�0Þ� ¼ 0 and

integrates to

� ¼ e�ðð1��Þt=2‘Þ�0’ð�Þ: (C15)

The last component corresponding to the coordinate � is

solved in an analogous manner with ’ð�Þ ¼ eð1=2Þ��34�, so
the final form of the Killing spinor is

� ¼ e�f�1e�ð1=2Þ��3eð1=2Þð1��Þ	�12e�ðð1��Þt=2‘Þ�0eð1=2Þ��34�:

(C16)

The constant spinor � can be chosen as a common eigen-
vector of two commuting Dirac matrices:

�12� ¼ �i�; �34� ¼ �i�: (C17)

For � to be globally well-defined, with periodic or anti-
periodic boundary conditions in the angular coordinates 	
and �with the periods 2�, we have to impose the condition

� ¼ n 2 Z: (C18)

Similarly as in three dimensions, the only allowed solution
is � ¼ 0, which is the globalAdS5. Thus, static 2-branes in
five dimensions without additional fields switched on do
not admit Killing spinors.

3. Asymptotic killing vectors

We look for the asymptotic Killing vectors �� ¼ ��KGK,
solutions of the equation �D �� ¼ 0 at the spatial boundary
�1, for the BPS background obtained in Sec. IVA. We
assume only the bosonic sector of super AdS5 connection
to be switched on:

�A ¼ �AAdS þ ðð1� �ÞqT12 þ ErZÞd	þB�Zd�;

(C19)

where ð1� �Þðq� 1Þ ¼ n 2 Z, and the spacetime ge-
ometry is encoded in the AdS connection for the 2-brane:

�A AdS ¼ r

‘
ðJ25 � J12Þd	þ r

ð1� �Þ‘ ðJ35 � J13Þd�

þ
�
r sinh�

ð1� �Þ‘ ðJ45 � J14Þ � cosh�J34

�
d�:

(C20)

The radial coordinate r on �1 is a large fixed parameter.
The topology of �1 is H2ð�; �Þ � S1ð	Þ, where 	 and �
are periodic coordinates, and therefore the solutions must
be periodic in 	 and � as well. We will assume that � � 0
(this is a true 2-brane and not global AdS).
The equation

d ��þ ½ �AAdS; ��� þ ð1� �þ nÞd	½T12; ��� ¼ 0 (C21)

gives that the Abelian Killing vector (d ��Z ¼ 0) is constant:

Uð1Þ: ��Z ¼ const; (C22)

and this is a also a symmetry of the solution in the bulk
manifold.
For the SUð4Þ components, we have

�DSUð4Þ ��IJ ¼ d ��IJ þ ð1� �þ nÞd	ð�½I
2
��J�1 � �½I

1
��J�2Þ

¼ 0; (C23)

which becomes d ��12 ¼ 0 and d ��IJjI;J2f3;4;5;6g ¼ 0, leading
to the asymptotic Killing vectors

SUð4Þ: ��12; ��IJjI;J2f3;4;5;6g ¼ const; (C24)

corresponding to the Uð1Þ � SOð4Þ symmetry.
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Furthermore, taking into account that the functions sinð1�
�þ nÞ	 and cosð1� �þ nÞ	 are not periodic in 	 for
� 2 ð0; 1Þ, there are no additional solutions. The non-
Abelian asymptotic symmetry (C24) is much larger than
the one in the bulk, described by ��12, ��34, and ��56, and
reflects the Uð1Þ �Uð1Þ �Uð1Þ invariance of the
background.

The AdS components of the asymptotic Killing equation

�D AdS
��AB ¼ d ��AB þ �AAC

AdS
��C

B � �ABC
AdS

��C
A ¼ 0

have a 1-parameter’s solution

AdS 5: ��25 ¼ � ��12 ¼ const; (C25)

that corresponds to the @	 isometry.

4. Mode expansion and Bogomol’nyi bound in 5D

Here we show explicitly that the algebra of conserved
charges of 2-branes implies a lower bound for E.

We start from the mode expansion of the algebra of
supercharges on the spatial boundary isomorphic to H2 �
S1, parameterized by the coordinates � 2 ½� L

2 ;
L
2� (where

L ! 1) and � 2 ½0; 2��, and the circle S1 is parameter-
ized by the periodic angle	. All quantities like the charges
can be expanded in Fourier modes of the spatial section as

Xðr; �; �;	Þ ¼
Z

dw
X
m;k

XwmkðrÞeð2�i=LÞw�þim�þik	;

(C26)

where the Fourier coefficients are

XwmkðrÞ ¼
Z d�d�d	

Lð2�Þ2 Xðr; �; �;	Þe�ð2�i=LÞw��im��ik	:

(C27)

The notation is simplified calling ~s ¼ ðw;m; kÞ, and con-
sequently

P
~s ¼

R
dw

P
m;k, �~s;~s0 ¼ �ðw� w0Þ�mm0�kk0 ,

etc. Then, the mode expansions for the canonical and
central charges (86) and (90) read

Q½�� ¼ X
~s

�K
~s qK;�~s; qK;~s ¼ �B

4
�KLA

L
	;~s; (C28)

C½�;�� ¼ i�B
4

�KL

X
~s;~s0
�K
~s �

L
~s0k�~sþ~s0;0; (C29)

and the algebra of supersymmetric charges written in
modes adopts the form

fqK;~s; qL;~s0 g ¼ fKL
MqM;~sþ~s0 þ i�B

4
k�KL�~sþ ~s0;0: (C30)

This is a supersymmetric extension of the WZW4 alge-
bra. It has a nontrivial central extension for psuð2; 2 j 4Þ
which depends only on the uð1Þ flux determined byB. The
modes qK;~s with ~s ¼ ð0; 0; kÞ form a Kac-Moody subalge-

bra with the central charge �B=4, while the modes with

~s ¼ ðw; 0; 0Þ and ð0; m; 0Þ form Kac-Moody subalgebras
without central charges. For the supersymmetry charges,
using qZ ¼ 0, the algebra reads

fq�r;~s; �qs�;~s0 g ¼ � 1

2
�s
rð�aÞ��qa;~sþ ~s0 þ 1

4
�s
rð�abÞ��qab;~sþ ~s0

� 1

4
��
�ð�̂IJÞsrqIJ;~sþ~s0 � i�B

4
k�s

r�
�
��~sþ~s0;~0:

(C31)

Multiplying this algebra by �0 and using �q ¼ qy�0 [where
ð�0Þ2 ¼ �1], we can construct a semipositive definite
matrix fq�

r;~0
; qys

�;~0
g that leads to the bound

� 1

2
�s
rð�a�0Þ��qa;~0 þ

1

4
�s
rð�ab�0Þ��qab;~0

� 1

4
ð�0Þ��ð�̂IJÞsrqIJ;~0 �

i�B
4

kð�0Þ���s
r � 0: (C32)

Identifying the energy E ¼ q0;~0 with the time component

of the AdS boost charge qa;~0 ¼ ðE; q �a;~0Þ, where the Lorentz
index is decomposed as a ¼ ð0; �aÞ, and� �a �b ¼ � �a �b ð �a; �b ¼
1; 2; 3; 4Þ is the Euclidean metric, one finds

� 1
2�

s
rð�a�0Þ��qa;~0 ¼ 1

2�
s
r�

�
�E� 1

2�
s
rð��a�0Þ��q �a;~0;

and the bound (C32) can be rewritten as

�s
r�

�
�E � Ms�

r�; (C33)

where M ¼ ½Ms�
r�� is an auxiliary matrix,

M � 1 

�
��a�0q �a;~0 �

1

2
�ab�0qab;~0

�
þ 1

2
�̂IJqIJ;~0 
 �0

þ i�B
4

kð1 
 �0Þ; (C34)

in the basis vr 
 ��. Thus, from (C33) it follows that the
energy must be larger than all eigenvalues �i of the matrix
M:

E � �i ð8 iÞ: (C35)

Since the trace of M vanishes, (C33) implies E � 0, the
largest � must be non-negative, and it is sufficient to find
the eigenvalues of the simpler matrix with the same eigen-
values as M:

iM�0 ¼ 1 

�
�i��aq �a;~0 þ

i

2
�abqab;~0

�
� i

2
qIJ;~0�̂

IJ 
 1

þ �B
4

kð1 
 1Þ: (C36)

For simplicity, we choose the rest frame (q �a;~0 ¼ 0)

and we find that ði2 �abqab;~0Þ�� has four eigenvalues

f��þ;���g (with �� � 0) given by
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�� ¼
�
�X

�a

q2
0 �a;~0

þ X
�a< �b

q2
�a �b;~0

�
�
�ð"0bcdeqbc;~0qde;~0Þ2

þX
�a

ð" �abcdeqbc;~0qde;~0Þ2
�
1=2

�
1=2

:

Similarly, the matrix ð� i
2qIJ;~0�̂

IJÞrs has four eigenvalues

f�vþ;�v�g, where v� � 0 and

v� ¼
�X
I<J

q2
IJ;~0

�
�X

I

ð"IJKLMqJK;~0qLM;~0Þ2
�
1=2

�
1=2

:

The 16 eigenvalues of the 16� 16 matrix M are then � ¼
�v� � �� þ �B

4 k, with 24 ¼ 16 independent combina-

tions of �. Clearly, E is larger than the largest �, which
finally leads to the bound given by Eq. (95):

E � max

�
v� þ �� þ �

4
jBkj

�
: (C37)

5. Intersecting 2-branes

Here we show that the intersection of two 2-branes in 5
dimensions does not make a BPS 0-brane.

Based on the previous construction for the 2-brane, we
take a pointlike singularity in AdS5 placed at the origin of
the x1-x2 plane, �12, and another pointlike singularity in
the origin of the orthogonal x3-x4 plane, �34. The brane
then has support at the intersection of the origins of these
planes that has a one-dimensional worldvolume. In the
embedding space, the coordinates are

x0 ¼ A cos	05; x1 ¼ B cos	12; x3 ¼ C cos	34;

x5 ¼ A sin	05; x2 ¼ B sin	12; x4 ¼ C sin	34;

(C38)

with the AdS constraint �A2 þ B2 þ C2 ¼ �‘2 and the
angles 	12 and 	34 that have some angular deficits. The
metric of this spacetime of constant curvature is

ds2 ¼
�
1� B2

A2

�
dB2 þ

�
1� C2

A2

�
dC2 � 2BCdBdC

þ B2d	2
12 þ C2d	2

34 � A2d	2
05:

The vielbein can be chosen as

e0 ¼ Ad	05; e1 ¼ ‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ B2

p dB; e2 ¼ Bd	12;

e4 ¼ Cd	34; e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ B2

p

A
dC� BC

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ B2

p dB;

(C39)

while the nonvanishing components of the Levi-Cività spin
connection in the space surrounding the singularities read

!01¼ AB

‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þB2

p d	05; !03¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þB2

p d	05;

!12¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þB2

p

‘
d	12; !13¼� B

‘A

�
dC� BC

‘2þB2
dB

�
;

!14¼� BC

‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þB2

p d	34; !34¼� Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þB2

p d	34:

(C40)

The 0-brane is produced by two independent rotations in
the planes ðx1; x2Þ and ðx3; x4Þ, so we shall assume that both
angles 	12 2 ½0; 2�ð1� �ÞÞ and 	34 2 ½0; 2�ð1� �ÞÞ
have angular deficits with �;� 2 ½0; 1Þ. Then we can use
the identities dd	12 ¼ �2���ð�12Þ and dd	34 ¼
�2���ð�34Þ, where, as usual, �ð�ABÞ ¼
�ðxAÞ�ðxBÞdxA ^ dxB. The AdS curvature on the whole
manifold has the form

F ¼ 2���ð�12ÞJ12 þ 2���ð�34ÞJ34; (C41)

and it is a solution of the Chern-Simons equations of
motion

hðF2 � j½0�ÞJABi ¼ 0; (C42)

where the external current 4-form that defines this 0-brane
is

j ½0� ¼ 8�2���ð�12Þ ^ �ð�34ÞJ12J34: (C43)

However, it can be shown that the only solution of the
Killing spinor equation with all additional matter switched
off is � ¼ 0, even locally. That means that adding a simple
pointlike matter as for codimension-two branes, whose
purpose was to make a local solution be valid globally,
will not help in this case. The question whether adding
some nontrivial gauge fields could stabilize this 0-brane
remains open.

APPENDIX D: CODIMENSION-TWO BRANES IN
CS SUPERGRAVITY

1. Construction of a (D� 3)-brane

Consider the embedding space RD�1;2 with signature
ð�;þ; � � � ;þ;�Þ and global coordinates xA (A ¼
0; . . . ; D). The constraint x � x ¼ �‘2 defines global
AdSD.
We introduce the following coordinate transformation,

where the coordinates x0, x1, x2, and xD resemble three-
dimensional 0-brane ðB;	12; 	0DÞ, thickened by some ex-
tra coordinates �u,

x0 ¼ A cos	0D cosh�1 . . . cosh�ðD�3Þ=2;

x1 ¼ B cos	12; x2 ¼ B sin	12;

xD ¼ A sin	0D cosh�1 . . . cosh�ðD�3Þ=2;

(D1)
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where B 2 ½0;1Þ, 	12 2 ½0; 2�ð1� �ÞÞ, 	0D 2
ð�1;1Þ, and noncompact coordinates �u 2 ½0;1Þ (u ¼
1; . . . ; D�3

2 ) are radii of some cylinders, and

x2uþ1 ¼ A cosh�1 . . . cosh�u�1 sinh�u cos	2uþ1;2uþ2;

x2uþ2 ¼ A cosh�1 . . . cosh�u�1 sinh�u sin	2uþ1;2uþ2;

(D2)

with azimuthal coordinates 	2uþ1;2uþ2 2 ½0; 2�Þ (u ¼
1; . . . ; D�3

2 ) of these cylinders associated to the planes

x2uþ1 � x2uþ2.
Since the coordinate transformations (D1) and (D2)

preserve AdS constraint, the spacetime parameterized by
x� ¼ ðB; �u;	ijÞ is locally AdS. However, because the

angle 	12 in the 1-2 plane �12 has an angular deficit �,
the global structure of the manifold has been changed,
generating a conical singularity at r ¼ 0 that presents a
(D� 3)-brane.

The metric has the form

ds2 ¼ ‘2

A2
dB2 þ B2d	2

12

� A2cosh2�1 . . . cosh
2�ðD�3Þ=2d	2

0D

þ A2
XðD�3Þ=2

u¼1

cosh2�1 . . .

� cosh2�u�1ðd�2
u þ sinh2�ud	

2
2uþ1;2uþ2Þ:

The vielbein eA ¼ eA�dx
� can be chosen as

e0 ¼ A cosh�1 . . . cosh�ðD�3Þ=2d	0D; e1 ¼ ‘

A
dB;

e2 ¼ Bd	12; e2uþ1 ¼ A cosh�1 . . . cosh�u�1d�u;

e2uþ2 ¼ A cosh�1 . . . cosh�u�1 sinh�ud	2uþ1;2uþ2;

(D3)

and the torsionless spin connection out of the source then
reads

!01 ¼ B

‘A
e0; !1;rþ2 ¼ � 1

‘
erþ2;

!12 ¼ �A

‘
d	12; !2;rþ2 ¼ !0;2s ¼ 0;

(D4)

and

!0;2uþ1 ¼ sinh�u cosh�uþ1 . . . cosh�ðD�3Þ=2d	0D; (D5)

where u ¼ 1; . . . ; D�3
2 , s ¼ 1; . . . ; D�1

2 , and r ¼
1; . . . ; D� 3, and also

!2uþ1;2vþ2 ¼ !2uþ2;2vþ2 ¼ 0;

!2uþ2;2uþ1 ¼ cosh�ud	2uþ1;2uþ2;

!2uþ1;2vþ1 ¼ sinh�v cosh�vþ1 . . . cosh�u�1d�u;

!2uþ2;2vþ1 ¼ sinh�v cosh�vþ1 . . .

� cosh�u�1 sinh�ud	2uþ1;2uþ2; (D6)

with u; v ¼ 1; . . . ; D�3
2 and v < u.

The soð2; D� 1Þ curvature reads F ¼ � A
‘ dd	12J12,

and because of the deficit � in the range of the angle
	12, we have

F ¼ j½D�3� ¼ 2���ð�12ÞJ12: (D7)

2. Killing spinors without matter

In order to find a Killing spinor � satisfying the equation
D� ¼ 0 whose gauge connectionA is a (D� 3)-brane, we
use the known solution for D ¼ 5 for the coordinates r ¼
ð1� �ÞB, �1, and 	12. So we have in five dimensions

� ¼ e�fðrÞ�1e�ð1=2Þ�1�3eð1=2Þ	12�12�; (D8)

with fðrÞ given by Eq. (C10).
In D � 5, we can proceed by mathematical induction.

As we already know the solution with only one �1 coor-
dinate for the D ¼ 5 case, we assume the following de-
pendence in odd D for the first u� 1 coordinates �v:

� ¼ e�f�1

Y1�u

v¼1

e�ð1=2Þ�v�2vþ1�u; (D9)

where �u is a spinor that depends on all variables but �u.
The D-dimensional � matrices satisfy the Clifford algebra
f�a;�bg ¼ 2�ab.
Now the equation D�u

� ¼ 0 takes the form�
@�u

þ 1

2‘
cosh�1 . . . cosh�u�1ðA� B�1Þ�2uþ1 þ 1

2

� Xu�1

v¼1

sinh�v cosh�vþ1 . . . cosh�u�1�2uþ1;2vþ1

�
�

¼ 0;

where �ab :¼ 1
2 ½�a;�b�. Using Eq. (D9) and e2f�1 ¼ ðAþ

B�1Þ=‘, the last expression is equivalent to�
@�u

þ 1

2
�2uþ1

�
e�1�3 cosh�2 . . . cosh�u�1

þ 1

2

Xu�1

v¼2

sinh�v cosh�vþ1 . . . cosh�u�1�2vþ1

��

� Y1�u

v¼1

e�ð1=2Þ�v�2vþ1�u ¼ 0:

Multiplying eð1=2Þ�1�3 by the left, in the first term it cancels

the e�ð1=2Þ�1�3 coming from the right. The same occurs for
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the last u� 2 terms, since ½�3;�2uþ1;2vþ1� ¼ 0 and v > 1.
Furthermore, the �1 dependence vanishes in the second

term due to eð1=2Þ�1�3e�1�3e�ð1=2Þ�1�3 ¼ 1, and thus the
equation does not depend on the coordinate �1:�
@�u

þ 1

2
�2uþ1

�
e�2�5 cosh�3 . . . cosh�u�1

þ 1

2

Xu�1

v¼3

sinh�v cosh�vþ1 . . . cosh�u�1�2vþ1

��

� Y1�u

v¼2

e�ð1=2Þ�v�2vþ1�u ¼ 0:

We can now repeat the former procedure multiplying

eð1=2Þ�2�5 by the left and the dependence on �2 disappears,
as well. In the same way all �v will vanish, leaving

ð@�u
þ 1

2�2uþ1Þ�u ¼ 0; (D10)

whose solution is �u ¼ e�ð1=2Þ�u�2uþ1�uþ1, and we recover
for the next step in the inductive procedure the form (D9).
This means that the spinor � has the form

� ¼ e�fðrÞ�1

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1’ð	ijÞ; (D11)

where the spinor’, that depends on all angular coordinates
	0D;	12; . . . ; 	D�2;D�1, has to be determined.

Let us solve now the component D	2uþ1;2uþ2
� ¼ 0 of the

Killing spinor equation:

�
@	2uþ1;2uþ2

þ 1

2
cosh�u�2uþ2;2uþ1 þ 1

2‘
cosh�1 . . .

� cosh�u�1 sinh�uðA� B�1Þ�2uþ2 þ 1

2

Xu�1

v¼1

sinh�v

� cosh�vþ1 . . . cosh�u�1 sinh�u�2uþ2;2vþ1

�
� ¼ 0:

(D12)

Doing exactly the same that was done to find out the �u

dependence, we can get rid of the � variables and finally
we are left with

�
@	2uþ1;2uþ2

� 1

2
�2uþ1;2uþ2

�
’ ¼ 0; u ¼ 1; . . . ;

D� 3

2
;

(D13)

so that ’ / eð1=2Þ	2uþ1;2uþ2�2uþ1;2uþ2 and

� ¼ e�f�1eð1=2Þ	12�12

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1

� YðD�3Þ=2

v¼1

eð1=2Þ	2vþ1;2vþ2�2vþ1;2vþ2�ð	0DÞ;

where we have restored the dependence on 	12 which can
be added anywhere as long as it is placed after the �1

exponential.
Finally, let us solve the equation D	0D

� ¼ 0:

�
@	0D

þ 1

2‘
�0 cosh�1 . . . cosh�ðD�3Þ=2ðAþ B�1Þ

þ XðD�3Þ=2

u¼1

sinh�u cosh�uþ1 . . . cosh�ðD�3Þ=2�0;2uþ1

�
� ¼ 0:

Proceeding as with the other equations, we obtain ð@	0D
þ

1
2 �0Þ� ¼ 0, leading to

� ¼ e�ð1=2Þ	0D�0�; (D14)

where � is a constant spinor. The final result is

�s ¼ e�fðrÞ�1

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1

� YðD�3Þ=2

v¼1

eð1=2Þ	2vþ1;2vþ2�2vþ1;2vþ2eð1=2Þð	12�12�	0D�0Þ�s:

The set of mutually commuting matrices �2uþ1;2uþ2, with

ð�2uþ1;2uþ2Þ2 ¼ �1, and the constant spinors �s can be

chosen as their common eigenvector:

�2uþ1;2uþ2�s ¼ i�s ðu ¼ 1; . . . ;
D� 3

3
Þ: (D15)

The matrix �0 is proportional to �12�34 . . . �D�2;D�1 and it

can always be normalized so that

�0�s ¼ i�s: (D16)

The spinor �s then adopts the form

�s ¼ e�fðrÞ�1

YðD�3Þ=2

u¼1

e�ð1=2Þ�u�2uþ1

YðD�3Þ=2

v¼1

eði=2Þ	2vþ1;2vþ2

� eði=2Þð1��Þð	�ðt=‘ÞÞ�s; (D17)

where 	12 ¼ ð1� �Þ	 and 	0D ¼ ð1� �Þt=‘. In order
for spinor to be globally well-defined (periodic or antiperi-
odic in all angles), we need

� ¼ 0; (D18)

which gives global AdSD.
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