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Effect of quantum tunneling on the efficiency of exci-
tation energy transfer in plasmonic nanoparticle chain
waveguides

Niranjan V. Ilawe,a M. Belén Oviedo,b,c and Bryan M. Wong∗a

We present a detailed analysis of the electronic couplings that mediate excitation energy transfer
(EET) in plasmonic nanoantenna systems using large-scale quantum dynamical calculations. To
capture the intricate electronic interactions in these large systems, we utilize a real-time, time-
dependent, density functional tight binding (RT-TDDFTB) approach to characterize the quantum-
mechanical efficiency of EET in plasmonic nanoparticle chains with subnanometer interparticle
spacings. In contrast to classical electrodynamics methods, our quantum dynamical calculations
do not predict a monotonic increase in EET efficiency with a decrease in interparticle spacing
between the nanoparticles of the nanoantenna. Most notably, we show a sudden drop in EET
efficiencies as the interparticle distance approaches subnanometer length scales within the na-
noparticle chain. We attribute this drop in EET efficiency to the onset of quantum charge tunne-
ling between the nanoparticles of the chain which, in turn, changes the nature of the electronic
couplings between them. We further characterize this abrupt change in EET efficiency through
visualizations of both the spatial and time-dependent charge distributions within the nanoantenna,
which provide an intuitive classification of the various types of electronic excitations in these plas-
monic systems. Finally, while the use of classical electrodynamics methods have long been used
to characterize complex plasmonic systems, our findings demonstrate that quantum-mechanical
effects can result in qualitatively different (and sometimes completely opposite) results that are
essential for accurately calculating EET mechanisms and efficiencies in these systems.

Achieving a controlled transfer of energy and information at high
speeds and minimal losses has been a continual research goal in
technological fields ranging from energy harvesting to nanopho-
tonic circuits.1–4 Coupling light to localized surface plasmon reso-
nances (LSPRs)5 in metallic nanoparticle ensembles provides an
electromagnetic pathway to direct and control this flow of energy.
Starting with the ground-breaking experimental demonstration
of this phenomena by Maier et al.,6 many other researchers7,8

have also shown experimental evidence of other excitation energy
transfer (EET) mechanisms. In terms of applications, others have
also recently examined waveguides with various shapes such as
L-bends,9 T-joints,10 Y-splitters,11 and other more complex en-
sembles that are inspired from natural light-harvesting antenna
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systems.12

One of the recurring issues with the practical application of
these plasmonic ensembles in fields such as photonic circuits and
energy harvesting is that the propagation distance of energy re-
mains too short.6 A possible way for increasing this propagation
distance in plasmonic chains is to decrease the interparticle spa-
cings, which results in stronger plasmon couplings.13–15 Anot-
her factor, particularly for applications in photonics circuits, is
that the overall size of the electronic components in such circuits
has reached subnanometer sizes. This has made it necessary to
reduce the size of the transport structures, i.e. the nanoparti-
cle ensembles, to subnanometer sizes.16 While the production of
both smaller interparticle spacings and small nanoparticles were
limited with lithographic manufacturing methods, the advent of
bottom-up assembly techniques for metallic nanoparticle ensem-
bles have partially solved this problem.13–15,17,18 This approach is
not only cost-effective, but has also made possible the fabrication
of complex nanoparticle assemblies with subnanometer interpar-
ticle spacings.19,20

These nanoscale structures, which are separated by small in-
terparticle gaps, support hybridized plasmon resonances as a re-
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sult of interactions between the basic plasmon resonances of the
elementary nanoparticles. For example, the Bonding Dipole hy-
bridized Plasmon (BDP) is characterized by in-phase charge os-
cillations in each of the nanoparticles.21 Another hybridized plas-
mon mode, the Charge Transfer Plasmon (CTP), is observed in
the structure when the nanoparticles touch each other or a con-
ductive junction is established between them, allowing for a di-
rect charge transfer from one nanoparticle to the other.22 The on-
set of such hybridized plasmon resonances drastically modify the
near and far field properties of the systems and has led to increa-
sed interest in their applicability in novel devices.23–29 However,
recent studies have shown that as the interparticle spacing enters
the subnanometer regime, the quantum nature of the electrons
significantly alters the plasmonic response of the system.22 In
particular, in the quantum regime, electrons can tunnel through
the flat energy barrier between nanoparticles and thus enable a
CTP before the particles touch each other. This is known as direct
tunneling. Another form is Fowler-Nordheim tunneling, where
tunneling occurs in the presence of high electric fields.30

As such, the need to fabricate subnanometer nanoparticle as-
semblies has posed additional problems for the theoretical analy-
sis of these structures. The most widely employed approaches
for analyzing EET in nanoparticle assemblies has been finite-
difference time-domain (FDTD) calculations or similar methods
based on solving Maxwell’s equations. These methods rely on the
Drude model to characterize bulk metal properties such as the
plasma frequency.9,31–33 Other approaches have also employed
Förster resonance energy transfer (FRET) models to study EET in
plasmonic structures,34–36 but these methodologies contain va-
rious approximations, such as the spectral overlap and dipole
approximation, which limit their applicability to complex sys-
tems.37–39 Along with these approximations, most of these stu-
dies limit their analyses to systems with a minimum interparti-
cle spacing of 1 nm and above.9,10,31,32,40 Also, as mentioned
previously, with smaller dimensions, quantum effects will ultima-
tely play an important role, and it is essential to consider these
non-classical effects. Recent studies have begun to address this
problem by proposing quantum-corrected models within classical
electromagnetic simulations;41,42 however, these models do not
provide an atomistic treatment of the systems under study. While
first-principle methods such as DFT can correctly predict quantum
effects, the large size of nanoparticle assemblies remain beyond
their reach with current computational resources. In this work,
we probe in atomistic detail the electronic couplings in metal na-
noparticle chains with varying inter-particle spacings using the
density functional tight-binding approach and its real-time, time-
dependent counterpart, RT-TDDFTB. In contrast to our previous
study on long-range EET mechanisms,39 this study investigates
extremely small inter-particle spacings, where quantum effects
play an important role and are beyond the scope of classical FDTD
methods. Based on our RT-TDDFTB calculations, we reveal two
different regimes of EET efficiency: (1) For large inter-particle se-
parations, EET efficiency increases with decreasing inter-particle
spacing, which is consistent with classical calculations; (2) a sud-
den drop in efficiency is observed as the inter-particle distance is
further reduced, even before the nanoparticles touch each other.

We attribute this drop in efficiency to the onset of an interparticle
charge transfer between the nanoparticles of the chain. We also
show that the onset of this charge transfer mechanism in the na-
noparticle chain dramatically alters the nature of the coupling be-
tween the plasmonic nanoparticles. In particular, the bonding di-
pole plasmon (BDP) is converted to a hybridized-BDP with some
charge transfer character, which is responsible for the decrease
in the capacitive coupling in the nanoparticle chain. We also pro-
pose a visually intuitive way to classify the peaks in the absorption
spectrum of the nanoparticles as various types of plasmonic exci-
tations. While we focus our study on a simple chain-like ensemble
of nanoparticles, our methodology is expected to apply to a broad
range of other complex plasmonic ensembles.

Theory and Methodology
The real-time electron dynamics for very large systems (at an
electronic and atomistic level of detail) cannot be routinely cal-
culated with conventional linear-response TD-DFT or other con-
tinuum models. To probe the large nanoparticle assemblies in
this work, we utilize the self-consistent density functional tight-
binding (SCC-DFTB) formalism along with its real-time, time-
dependent counterpart, RT-TDDFTB. This formalism has been
previously used to probe the nonequilibrium electron dynamics in
several large chemical systems,43 including photoinjection dyna-
mics in dye-sensitized TiO2 solar cells,44,45 many-body interacti-
ons in solvated nanodroplets,46 and long-range couplings in plas-
monic nanoantennas.39 While we give a brief description of the
methodology here, a more detailed description on the DFTB and
SCC-DFTB formalism can be found in refs 47 and 48.47,48 DFTB
is an application of the tight-binding (TB) approach to parame-
terize full DFT. The main idea behind this method is to describe
the Hamiltonian eigenstates with an atomic-like basis set and re-
place the Hamiltonian with parameterized matrix elements that
depend only on the internuclear distances (neglecting integrals
of more than two centers) and orbital symmetries. The origin of
DFTB begins with the expression of the Kohn-Sham total energy,

EKS =
occ

∑
i
〈ψi|(−

1
2

∇
2 +Vext)|ψi〉+EH +Exc +EII (1)

where Vext is the external interaction (including electron-ion in-
teractions), EH is the Hartree energy, Exc = (T-Ts) + (Eee-EH) is
the exchange-correlation energy and EII is the ion-ion interaction
energy. Upon expanding the Kohn-Sham total energy in terms
of a reference density and a small correction ρ0 + δρ, the DFTB
energy is parameterized as

EDFT B =
occ

∑
i
〈ϕi|Ĥ0|ϕi〉+

1
2

M

∑
AB

γAB∆qA∆qB +EAB
rep (2)

The first term in eq 2 corresponds to a Kohn-Sham effective Ha-
miltonian, Ĥ0, evaluated at the reference density, ρ0, and is ap-
proximated in the DFTB framework as,

Ĥ0 ≈ 〈ϕµ |T̂ +υe f f [ρ
0
A +ρ

0
B]|ϕυ 〉,µ ∈ A,υ ∈ B (3)

where ϕµ forms a minimal Slater-type orbital basis centered on
the atomic sites, ρ0

A is the reference density of the neutral atom
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A, and υe f f is the effective Kohn-Sham potential. It should be no-
ted that the Hamiltonian matrix elements depend only on atoms
A and B and, therefore, only two-center Hamiltonian matrix ele-
ments, as well as two-center elements of the overlap matrix, are
explicitly calculated using analytical functions as per the LCAO
(linear combination of atomic orbitals) formalism. These matrix
elements are pre-tabulated for all pairs of chemical elements as a
function of distance between atomic pairs, thus significantly im-
proving the computational efficiency of the DFTB approach. The
second term in Eq. 2 is the energy due to charge fluctuations
and is parameterized analytically as a function of orbital char-
ges and γAB, which is a function of inter-atomic separation and
the Hubbard parameter (U).49 The quantity ∆qA = qA−q0

A is the
difference between the charge of the isolated atom q0

A and the
charge qA obtained via a Mulliken population analysis of atom A
in the molecule. Erep is the distance-dependent diatomic repul-
sive potential and contains the core electron effects, ion-ion re-
pulsion terms, as well as some exchange-correlation effects. Erep

can be considered as a practical equivalent to an xc-functional
in DFT as it approximates the many-body correlation interactions
with simple functions. As per the consideration of free atoms, ρ0

is spherically symmetric; hence, the ion-ion repulsion can be ap-
proximated to depend only on the elements and their distance.
Contributions of 3 and more centers are rather small and can be
neglected. These pair-wise repulsive functions are obtained by
fitting to DFT calculations using a suitable reference structure.
With this assumption of tightly bound electrons and a minimal
local basis (only one radial function for each angular momentum
state), the DFTB Hamiltonian is given by

ĤDFT B = 〈ϕµ |Ĥ0|ϕυ 〉+
1
2

Ŝµυ ∑
X
(γAX + γBX )∆qX (4)

where the Hamiltonian matrix elements and the overlap ma-
trix elements are precalculated as discussed above. Since the
DFTB Hamiltonian depends explicitly on the atomic charge, a
self-consistent charge (SCC) procedure is used in the SCC-DFTB
approach to self-consistently solve eq 4.

Once the initial electronic ground state is calculated using the
above procedure, it is used as an initial input condition in the real-
time quantum dynamics calculations. We carry out our real-time
quantum dynamics calculations by applying a time-dependent
electric field to the initial ground state density matrix, resulting
in the Hamiltonian

Ĥ(t) = Ĥ0−E0(t) · µ̂(t) (5)

where E0(t) is the applied electric field, and µ̂ is the dipole mo-
ment operator. As we are directly propagating the quantum sy-
stem in the time domain, we can choose E0(t) to have any time-
dependent form. For example, if E0(t) is a Dirac delta function
(=E0δ (t−t0)), this corresponds to an optical absorption spectrum
in the frequency domain (obtained after a Fourier transform of
the time-evolving dipole moment). However, if we choose E0(t)
to take the form of a sinusoidal perturbation, it represents a conti-
nuous interaction of the system with monochromatic light in the
time domain. Both of these different choices give different but

Fig. 1 Absorption spectra of a 55 atom icosahedral silver nanoparticle.
A prominent plasmon resonance peak is observed around 3.23 eV.

complementary viewpoints of quantum dynamics. Upon applica-
tion of either of these time-dependent fields, the density matrix,
ρ̂, will evolve according to the Liouville-von Neumann equation
of motion which, in the nonorthogonal-DFTB basis, is given by

∂ ρ̂

∂ t
=

1
ih̄
(S−1 · Ĥ[ρ̂] · ρ̂− ρ̂ · Ĥ[ρ̂] ·S−1) (6)

where Ĥ is the Hamiltonian matrix (which implicitly depends on
the density matrix), S−1 is the inverse of the overlap matrix, and h̄
is Planck’s constant. When the applied incident fields are smaller
than the internal fields within the matter, the system is found
to be in the linear response regime.50 We utilized the DFTB+
code51 to compute the ground-state Hamiltonian, overlap matrix
elements, and the initial single-electron density matrix within the
self-consistent DFTB approach.

Results and Discussion
As mentioned previously, the transfer of excitation energy al-
ong metal nanoparticle chains takes place via an electromagne-
tic pathway provided by local surface plasmon resonances. The-
refore, we begin the analysis of EET along plasmonic chains by
first characterizing the plasmon resonance energy of a single sil-
ver NP containing 55 atoms and having an icosahedral shape.
Accordingly, we optimize the geometry of the NP and plot its
absorption spectrum. We use the hyb-0-2 set of DFTB parame-
ters (available at dftb.org) for computing these properties. As
can be seen in Figure 1, a prominent peak, corresponding to the
plasmon resonance is observed around 3.23 eV. This result is in
good agreement with a time-dependent density functional theory
(DFT) calculation of 3.6 eV52 and a recent experimental result of
3.8 eV53 for similar-sized Ag nanoparticles.

Along with the absorption spectrum, we also plot the field en-
hancement of a single Ag NP in Figure 2. Specifically, the Ag NP is
excited with a sinusoidal electric field with its frequency equal to
its plasmonic energy (3.23 eV) and polarized in the direction of
its transition dipole moment. The electric field induced by plas-
monic oscillations at any point in space is calculated using the
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Fig. 2 Electric field enhancement of a Ag55 NP exhibiting a dipolar orien-
tation in alignment with the polarization vector E. The dark spheres indi-
cate the position of the Ag atoms.

following expression:

EEE(((rrr))) = ∑
i

∆qi

4πε0

(rrriii−−− rrr)
||rrriii−−− rrr||3

(7)

and the electric field enhancement, Γ, is calculated as follows:54

Γ =
|EEE|2(ω)

|EEEappl |2(ω)
(8)

where the applied field has the form Eappl(t)=E0sin(ωt) in the
time domain, and ω is the plasmon energy. As expected from plas-
monic excitations, high values of field enhancements are observed
around the Ag NP, which are distributed in a dipolar fashion, as
shown in Figure 2.

Exploring excitation energy transfer in Ag NP chains
With the energy of a single Ag nanoparticle (NP) characterized,
we now proceed to an analysis of the EET in plasmonic NP as-
semblies. Accordingly, we use the single Ag NP to construct mo-
del NP chains, each containing 8 Ag NPs and with varying in-
terparticle spacings. As mentioned earlier, previous studies have
mostly investigated the EET in NP chains with considerably lar-
ger interparticle distances where quantum effects can be safely
neglected,32,55 and approximations such as the dipolar approx-
imation are valid.39 Here, we are specifically interested in the
subnanometer interparticle spacings where both these approxi-
mations do not hold. Therefore, we construct model NP chains
with interparticle distances (d) varying between 5 Å to 0.5 Å. We
define the interparticle distance as the edge-to-edge distance be-
tween the NPs, and two of the model NP waveguides are shown
in Figure 3. We also construct a NP chain where the NPs touch
each other (d=0 Å). Note that we define particles to be touching
each other when the center-to-center distance between two atoms
from adjacent NPs is less than the Ag-Ag bond-forming distance
(the Ag-Ag atom bond length is 3.00 Å). We would also like to
point out that all of these chains are extremely large systems,

Fig. 3 Pictorial representation of two of the finite chains with 8 Ag NPs
with radius a ≈ 1.23 nm and interparticle (edge-to-edge) distance equal
to (a) 1 Å and (b) 5 Å.

Fig. 4 The values of field intensity are taken at identical positions in each
nanoparticle chain as shown by the black dots. The points lie exactly
between two nanoparticles and on a line approximately 1 Å below the
lowest atom in the NP.

each containing a total of 440 atoms. To simulate EET along the
NP chains, we excite only the first Ag NP in the chain using a
monochromatic laser with an energy equal to the plasmonic reso-
nance energy of a single Ag NP (3.23 eV), and the entire system
is allowed to evolve in time according to Eq. 6. To quantify the
EET efficiency along the chain, we compute the electric field in-
tensities, I =

√
ε0/µ0×|E|2, where E is the total electric field, at

identical points between each of the NPs along the axial direction
shown in Figure 4, and ε0 and µ0 are the permittivity and perme-
ability of free space, respectively. We utilize this metric of com-
puting electric field intensities along the NP chain to allow for a
direct comparison of EET efficiencies obtained in other previous
studies.9,31,32,55 Figure 5 shows the intensity trends of the NP
chains with interparticle distances ranging from 0 to 5 Å. Trans-
mission loss factors were calculated from Figure 5 by fitting to
an exponential decay, I = I0 exp(−bz) with the transmission loss
factor, b. The loss factors and decay lengths for all the chains
are shown in Table 1. Table 1 also shows the group velocities for
each of the chains (details on the calculation of group velocities
are shown in the Supplementary Information). From the intensity
trends in Figure 5 and transmission loss factors in Table 1, we ob-
serve a monotonic increase in the EET efficiency (i.e. the slope of
the intensity lines and transmission loss factor both decrease) as
the interparticle distance is reduced from 5 Å to about 2 Å. This
result is in qualitative agreement with results obtained by pre-
vious studies on similar systems using classical electrodynamic
methods.32,55 This increase in EET efficiency can be attributed to
an increase in capacitive coupling between the Ag NPs as the in-
terparticle distance between them is reduced. This phenomenon
is analogous to a charged capacitor,56 where the capacitance of
a capacitor increases as the charged plates are brought closer to-
gether. However, as the interparticle distance is further reduced
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Fig. 5 Field intensities along silver NP chains with varying interparticle
distances. The first nanoparticle in each of the chains is excited at the
plasmon resonance energy, and the intensity values are computed at the
interparticle gaps of the NPs as shown in Figure 3. The excitation energy
used in the simulation is equal to the plasmon resonance energy of the
single Ag nanoparticle. A drastic drop in the field intensity is seen for Ag
chains with interparticle spacings less than 2 Å.

below 2 Å, we observe an opposite trend of the EET efficiency. In
particular, we see a sudden drop in EET efficiency for interpar-
ticle distances below 2 Å (i.e. the slope of the intensity line and
transmission lost factor both increase). This result is qualitati-
vely opposite to what has been predicted by previous computa-
tional studies.32,55 Specifically, previous studies have observed a
decrease in EET when the interparticle distance is reduced to a
distance where the NPs directly touch each other.55 In contrast,
we observe a decrease in EET efficiency even before the instance
when the NPs touch each other. At this point we would also like
to mention that due to the finite nature of the chains, some end
effects, such as the back transfer of electronic excitation energy,
are seen in the shorter chains (interparticle spacings of 1 Å, 0.5 Å,
and 0 Å). These end effects result in the non-monotonic intensity
trends seen in the last few NPs and, hence, only a general trend
of the chain is considered. A brief description of these end effects
can be found in our previous study.39

Table 1 Transmission Loss Factor, Decay Length, and Group Velocity for
the silver NP chains

Interparticle Transmission Decay Group
Distance Loss Factor Length Velocity

(Å) (1/Å) (Å) (m/s (105))

5 0.057 17.54 2.341
4 0.048 20.83 2.570
3 0.041 24.39 2.802
2 0.035 28.57 3.295

1.5 0.038 26.32 2.937
1 0.186 5.38 1.775

0.5 0.199 5.03 1.523

Analyzing the electronic couplings in NP chains
We next investigate the decrease in EET efficiency by analyzing in
detail the electronic couplings between the NPs in the plasmonic
chain. For this purpose, we plot the absorption spectrum of Ag
NP dimers with varying interparticle distances in Figure 6. On

Fig. 6 Absorption spectrum for Ag NP dimers with varying interparti-
cle separations. An additional lower-energy peak (corresponding to a
charge transfer plasmon excitation) emerges in the absorption spectrum
for dimers having an interparticle spacing less than 2 Å, denoted by red
arrows.

careful observation of Figure 6, we note that for all interparti-
cle distances, a single prominent peak, close to the value of the
single NP plasmonic energy is observed. However, for interpar-
ticle spacings less than 2 Å, an additional peak, at an energy lo-
wer than the prominent peak, forms in the absorption spectrum.
This peak, marked with red arrows in Figure 6, is seen clearly in
the absorption spectrum of the dimers with interparticle distan-
ces of 1, 0.5, and 0 Å. The prominent peak, close to the single NP
plasmon energy, normally arises due to interactions (hybridiza-
tions) between the basic plasmon resonances of the elementary
nanostructures (in this case, the single Ag NP). This excitation is
the bonding (symmetric) mode, normally known as the Bonding
Dipole Plasmon, or BDP, and is characterized by charge oscillati-
ons of the NPs in phase with each other.21 The other peak appea-
ring at lower energies and smaller interparticle distances, is nor-
mally observed when an optical-frequency conductive pathway is
established between two NPs, enabling the transfer of charge be-
tween them. This conductive pathway can be physical, due to a
physical bridge or due to quantum tunneling. This is known as
a Charge Transfer Plasmon, or CTP.22 Unlike the BDP, the CTP
is characterized by a total charge moving between the two nano-
particles of the dimer, which we observe as the lower-energy peak
in our absorption spectrum. In our case of non-touching NPs, the
CTP excitation can be attributed completely to quantum tunne-
ling that establishes a conductive pathway between the two NPs
of the dimer. While charge transfer plasmons have been previ-
ously observed theoretically in DFT and quantum-corrected clas-
sical models,22,30,56 to the best of our knowledge, this study is the
first to predict CTPs using RT-TDDFTB calculations. The presence
of a CTP peak is examined further below with our RT-TDDFTB
calculations to understand the drop in EET efficiency.

Investigating the nature of plasmonic excitations
To analyze in detail the different plasmon modes and to assess
changes in their nature, we need an intuitive way to analyze these
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Fig. 7 (a) Snapshot of charge distributions at one time moment and (b)
time-dependent total charge fluctuations at the BDP peak for a Ag NP
dimer with interparticle distance equal to 5 Å. The charge distributions
show a dipolar distribution of charges within each of the NPs. The time-
dependent total charge oscillation shows no charge moving between the
two NPs.

excitations. For example, the BDP is characterized by charge os-
cillations within individual NPs that are in phase with each other,
while the CTP is characterized by the total charge oscillating from
one NP to the other. Hence, we plot the Mulliken charge distri-
bution in the 5 Å NP dimer at a single instance in time, excited at
the BDP peak as shown in Figure 7(a). In particular, we observe
a dipolar distribution of atomistic charges in each of the NPs that
are in phase with each other. Furthermore, to get a quantitative
picture of this particular excitation, we plot the changes in the
Mulliken charges (∆q) for both NP1 and NP2, with respect to their
ground state values as a function of time in Fig 7(b). In particular,
we find that the time-dependent change in Mulliken charges in
both the NPs remains constant with time. In conjunction with Fi-
gure 7(a), this shows that the charge oscillations only take place
within individual NPs, confirming the BDP nature of the excita-
tion. We now apply a similar analysis to a NP dimer, where the
additional low-energy (CTP) peak appears. Figure 8 shows the
charge distributions and the time-dependent changes in Mulliken
charges for the NP dimer with an interparticle spacing of 1 Å. In
this case, however, we compare the absorption spectra when the
NP dimer is excited at either the BDP or CTP energy peak. When
excited at the BDP peak, the 1 Å NP dimer shows charge distri-
butions very similar to the charge distributions shown by the 5 Å
dimer (Figure 8(b)), suggesting that it is a BDP-type excitation.
However, the time-dependent changes in Mulliken charges shows

a rather different picture (Figure 8(d)), and we observe some
charge transfer from one NP to the other. This is uncharacteristic
of a BDP excitation, and we discuss this in detail later. Likewise,
when excited at the CTP peak, one of the NPs shows a predo-
minantly positive charge, while the other one shows a negative
charge (Figure 8(a)). The time-dependent changes in Mulliken
charges confirm this observation in Figure 8(c). This behavior
is characteristic of a CTP excitation, where an oscillating current
occurs between the two NPs of the dimer. A previous study21

has similarly characterized CTP plasmons by plotting the charge
distribution (at a single moment in time) and the electric current
oscillating across a physical junction between two Ag dimers, at
a frequency corresponding to the energy of this mode (i.e. the
CTP mode). However, to the best of our knowledge, this study
is the first to classify plasmonic excitations using time-dependent
changes in Mulliken charges. We also note in Figure 8(a) that
we observe a slight dipolar nature of charge distributions near
the particle edges. This can be attributed to the atomistic treat-
ment of the nanoparticles, whereby the charge transfer plasmon
induced on the nanoparticle dimers also establishes a small oppo-
sing dipole on the inner edges of the same nanoparticles due to
inter-atomic electrodynamic interactions. A previous study25 has
also observed a similar effect when they studied complex plas-
monic clusters. Although this previous study investigated large
plasmonic nanoparticles arranged in complex formations, the ba-
sic electrodynamics reasoning holds, even for our clusters.

The CTP-type behavior seen at the BDP peak (Figure 8(d)) con-
firms the previous hypothesis that the appearance of the CTP peak
changes the nature of the original excitations in the dimer. In par-
ticular, we observe that at subnanometer interparticle spacings,
the pure BDP excitation forms a hybridized excitation that has
some CTP character. This hybridized BDP has also been called
the screened BDP (S-BDP) or a higher-order charge transfer plas-
mon (CTP’) in previous studies.21,57 We attribute the decrease in
the EET efficiency in smaller interparticle spacing chains to the
formation of this hybridized BDP. Since the hybridized BDP al-
lows for a small charge transfer between the NPs, it reduces the
capacitive coupling between the NPs. Going back to the capaci-
tor analogy used previously, this can be thought of as a leaking
capacitor. Overall, the formation of such a hybridized BDP redu-
ces the EET efficiency for subnanometer interparticle distances,
unforeseen by classical models.

Conclusion
In summary, we utilize a real-time, time-dependent density functi-
onal tight-binding (RT-TDDFTB) approach to study, in atomis-
tic detail, the electron dynamics of excitation energy transfer in
large plasmonic nanoantenna systems. In particular, we study NP
chains with subnanometer interparticle spacings that are beyond
the capabilities of classical methods. Such systems are beyond
the scope of classical methods such as FDTD and the FRET for-
malism due to the neglect of quantum effects (such as tunneling
and hybridization) and beyond the routine use of conventional
DFT due to size constraints. We also propose a visually intuitive
way to classify the plasmonic resonances in nanoparticle systems,
such as BDP, CTP, and hybridized excitations. Using the above

6 | 1–8Journal Name, [year], [vol.],

Page 6 of 8Journal of Materials Chemistry C



Fig. 8 Snapshot of charge distributions at one instance in time for a Ag
NP dimer with an interparticle distance equal to 1 Å excited at (a) the
CTP peak and (b) the BDP peak. The CTP peak distributions show a
total charge separation between the two NPs, while the BDP peak dis-
tributions show dipolar charge distributions within each of the NPs. The
time-dependent changes in Mulliken charges are shown for the (c) CTP
and (d) BDP peak for the same Ag NP dimer. For both the CTP and
the BDP excitations, a net charge fluctuation is seen between the NPs
which indicates a hybridized nature of the BDP peak at subnanometer
spacings.

methodologies, we find an initial monotonic increase in EET effi-
ciency as the interparticle spacing in the chains is reduced, which
is in qualitative agreement with classical studies. However, as the
distance is further reduced we observe a drastic drop in EET ef-
ficiency. While classical electrodynamics methods have predicted
this drop for NPs touching each other, our study shows this drop
in efficiency occurs even before the NPs touch. We attribute this
drop in efficiency to the interparticle charge transfer between the
closely spaced nanoparticles. We further show that this charge
transfer dramatically changes the nature of couplings between
the nanoparticles in the chain. In particular, we demonstrate that
the regular bonding dipole plasmon is converted to a hybridized
bonding dipole plasmon, which possesses some charge transfer
character. This, in turn, is ultimately responsible for the reduction
in capacitive coupling between the NPs and hence the drop in EET
efficiency. Consequently, our study has two important ramificati-
ons on EET in plasmonic nanosystems: (1) while classical met-
hods based on solving Maxwell’s equations have long been used
to analyze a variety of nanoantenna systems, our findings show
that the inclusion of quantum effects has a nontrivial effect on
EET dynamics, especially in plasmonic nanoantennas with subna-
nometer interparticle spacings, and (2) decreasing the interpar-
ticle spacing beyond a certain limit may not have the intended
effect of increasing EET efficiency and, therefore, a more careful
consideration of other strategies may be necessary in improving
energy transfer in plasmonic devices fabricated with subnanome-
ter dimensions.
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